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1 Extended formulations and lifts of polytopes

1.1 Polytopes and inequalities

A d-dimensional convex polytope P ⊆ �d is the convex hull of a �nite set of points in �d . Equivalently,
it is a closed and bounded set de�ned by a family of linear inequalities

P � {x ∈ �d : Ax 6 b}
for some matrix A ∈ �m×d .

Let us de�ne a measure of complexity for P: De�ne γ(P) to be the smallest number m such that for
some C ∈ �s×d , y ∈ �s ,A ∈ �m×d , b ∈ �m , we have

P � {x ∈ �d : Cx � y and Ax 6 b} .
In other words, this is the minimum number of inequalities needed to describe P. If P is full-
dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of
P).

Thinking of γ(P) as a measure of complexity makes sense from the point of view of optimization:
Interior point methods can e�ciently optimize linear functions over P (to arbitrary accuracy) in
time that is polynomial in γ(P).

1.2 Lifts of polytopes

Many simple polytopes require a large number of inequalities to describe. For instance, the cross-
polytope

Cd � {x ∈ �d : ‖x‖1 6 1} � {x ∈ �d : ±x1 ± x2 · · · ± xd 6 1}
has γ(Cd) � 2d . On the other hand, Cd is the projection of the polytope

Qd �



(x , y) ∈ �2d :

n∑
i�1

yi � 1, yi > 0, −yi 6 xi 6 yi ∀i



onto the x coordinates, and manifestly, γ(Qd) 6 3d. Thus Cd is the (linear) shadow of a much
simpler polytope in a higher dimension.
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Figure 1: A lift Q of a polytope P. [Source: Fiorini, Rothvoss, and Tiwary]

A polytope Q is called a lift of the polytope P if P is the image of Q under an a�ne projection, i.e.
P � π(Q), where π : �N

→ �n is the composition of a linear map and possibly a translation and
N > n. By applying an a�ne map �rst, one can assume that the projection is merely coordinate
projection to the �rst n coordinates.

Again, from an optimization stand point, lifts are important: If we can optimize linear functionals
over Q, then we can optimize linear functionals over P. For instance, if P is obtained from Q by
projecting onto the �rst n coordinates and w ∈ �n , then

max
x∈P

〈w , x〉 � max
y∈Q

〈w̄ , y〉 ,

where w̄ ∈ �N is given by w̄ � (w , 0, 0, . . . , 0).
De�ne now γ̄(P) to be the minimal value of γ(Q) over all lifts Q of P. (The value γ̄(P) is sometimes
called the (linear) extension complexity of P.)
Exercise 1.1. Prove that γ(Cd) � 2d .

1.2.1 The permutahedron

Figure 2: The permutahedron of order 4. [Source: Wikipedia]

Here is a somewhat more interesting family of examples where lifts reduce complexity. The permu-
tahedron Πn ⊆ �

n is the convex hull of the vectors (i1 , i2 , . . . , in)where {i1 , . . . , in} � {1, . . . , n}. It
is known that γ(Πn) � 2n

− 2.
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Let Bn ⊆ �
n2 denote the convex hull of the n × n permutation matrices. The Birkho�-von Neu-

mann theorem tells us that Bn is precisely the set of doubly stochastic matrices, thus γ(Bn) 6 n2

(corresponding to the non-negativity constraints on each entry).

Observe that Πn is the linear image of Bn under the map A 7→ A(1, 2, . . . , n)T , i.e. we multiply
a matrix A ∈ Bn on the right by the column vector (1, 2, . . . , n). Thus Bn is a lift of Πn , and we
conclude that γ̄(Πn) 6 n2

� γ(Πn).

1.2.2 The cut polytope

If P , NP, there are certain combinatorial polytopes we should not be able to optimize over
e�ciently. A central example is the cut polytope: CUTn ⊆ �

(n
2) is the convex hull of all all vectors of

the form
vS
{i , j} � |1S(i) − 1S( j)| {i , j} ∈

([n]
2

)
for some subset S ⊆ {1, . . . , n}. Here, 1S denotes the characteristic function of S.

Note that the MAX-CUT problem on a graph G � (V, E) can be encoded in the following way: Let
Wi j � 1 if {i , j} ∈ E and Wi j � 0 otherwise. Then the value of the maximum cut in G is precisely
the maximum of 〈W,A〉 for A ∈ CUTn . Accordingly, we should expect that γ̄(CUTn) cannot be
bounded by any polynomial in n (lest we violate a basic tenet of complexity theory).

1.2.3 Exercises

Exercise 1.2. De�ne the bipartite perfect matching polytope BMn ⊆ �
n2 as the convex hull of all the

indicator vectors of edge sets of perfect matchings in the complete bipartite graph Kn ,n . Show that
γ(BMn) 6 n2.

Exercise 1.3. De�ne the subtour elimination polytope SEPn ⊆ �
(n
2) as the set of points x � (xi j) ∈ �(n

2)
satisfying the inequalities

xi j > 0 {i , j} ∈
([n]
2

)
n∑

i�1
xi j � 2 j ∈ [n]∑

i∈S

∑
j<S

xi j > 2 S ⊆ [n], 2 6 |S| 6 n − 2 .

Show that γ̄(SEPn) 6 O(n3) by think of the xi j variables as edge capacities, and introducing new
variables to enforce that the capacities support a �ow of value 2 between every pair i , j ∈ [n].
Exercise 1.4 (Goemans). Show that for any polytope P,

# faces of P 6 2# facets of P .

Recall that a facet of P is a face of largest dimension. (Thus if P ⊆ �n is full-dimensional, then a
facet of P is an (n − 1)-dimensional face.) Use this to conclude that γ̄(Πn) > log(n!) > Ω(n log n).
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Exercise? 1.5 (Martin, 1991). De�ne the spanning tree polytope STn ⊆ �
(n
2) as the convex hull of all

the indicator vectors of spanning trees in the complete graph Kn . Show that γ̄(STn) 6 O(n3) by
introducing new variables {zuv ,w : u , v , w ∈ {1, 2, . . . , n}} meant to represent whether the edge
{u , v} is in the spanning tree T and w is in the component of v when the edge {u , v} is removed
from T.

1.3 Non-negative matrix factorization

The key to understanding γ̄(CUTn) comes from Yannakakis’ factorization theorem.

Consider a polytope P ⊆ �d and let us write in two ways: As a convex hull of vertices

P � conv (x1 , x2 , . . . , xn) ,
and as an intersection of half-spaces: For some A ∈ �m×d ,

P �

{
x ∈ �d : Ax 6 b

}
.

Given this pair of representations, we can de�ne the corresponding slack matrix of P by

Si j � bi − 〈Ai , x j〉 i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n} .
Here, A1 , . . . ,Am denote the rows of A.

We need one more de�nition. In what follows, we will use �+ � [0,∞). If we have a non-negative
matrix M ∈ �m×n

+ , then a rank-r non-negative factorization of M is a factorization M � AB where
A ∈ �m×r

+ and B ∈ �r×n
+ . We then de�ne the non-negative rank of M, written rank+(M), to be the

smallest r such that M admits a rank-r non-negative factorization.

Exercise 1.6. Show that rank+(M) is the smallest r such that M � M1 + · · · + Mr where each Mi is a
non-negative matrix satisfying rank+(Mi) � 1.

The next result gives a precise connection between non-negative rank and extension complexity.

Theorem 1.7 (Yannakakis Factorization Theorem). For every polytope P, it holds that γ̄(P) � rank+(S)
for any slack matrix S of P.

The key fact underlying this theorem is Farkas’ Lemma. It asserts that if P � {x ∈ �d : Ax 6 b}, then
every valid linear inequality over P can be written as a non-negative combination of the de�ning
inequalities 〈Ai , x〉 6 bi .

Exercise 1.8. Use Farkas’ Lemma to prove that if S and S′ are two di�erent slack matrices for the
same polytope P, then rank+(S) � rank+(S′).

There is an interesting connection here to proof systems. The theorem says that we can interpret
γ̄(P) as the minimum number of axioms so that every valid linear inequality for P can be proved
using a conic (i.e., non-negative) combination of the axioms.

1.4 Slack matrices and the correlation polytope

Thus to prove a lower bound on γ̄(CUTn), it su�ces to �nd a valid set of linear inequalities for
CUTn and prove a lower bound on the non-negative rank of the corresponding slack matrix.
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Toward this end, consider the correlation polytope CORRn ⊆ �
n2 given by

CORRn � conv
��

xxT : x ∈ {0, 1}n	�
.

Exercise 1.9. Show that for every n > 1, CUTn+1 and CORRn are linearly isomorphic.

Now we identify a particularly interesting family of valid linear inequalities for CORRn . (In fact, it
turns out that this will also be an exhaustive list.) A quadratic multi-linear function on�n is a function
f : �n

→ � of the form
f (x) � a0 +

∑
i

aii xi +
∑
i< j

ai j xi x j ,

for some real numbers a0 and {ai j}.
Suppose f is a quadratic multi-linear function that is also non-negative on {0, 1}n . Then “ f (x) >
0 ∀x ∈ {0, 1}n” can be encoded as a valid linear inequality on CORRn . To see this, write f (x) �
〈A, xxT〉 + a0 where A � (ai j). (Note that 〈·, ·〉 is intended to be the standard inner product on �n2 .)

Now let QML+
n be the set of all quadratic multi-linear functions that are non-negative on {0, 1}n ,

and consider the matrix (represented here as a function)Mn : QML+
n × {0, 1}n

→ �+ given by

Mn( f , x) � f (x) .
Then from the above discussion,Mn is a valid sub-matrix of some slack matrix of CORRn . To
summarize, we have the following theorem.

Theorem 1.10. For all n > 1, it holds that γ̄(CUTn+1) > rank+(Mn).
Exercise 1.11. Show that we have equality in the above theorem: For every n > 1,

γ̄(CUTn+1) � γ̄(CORRn) � rank+(Mn) .

The following result represents a breakthrough in our understanding of extension complexity.

Theorem 1.12 (Fiorini, Massar, Pokutta, Tiwari, de Wolf 2012). There is a constant c > 1 such that for
every n > 1, γ̄(CUTn) > cn .

We will examine a somewhat weaker lower bound following Chan-Lee-Raghavendra-Steurer
(2013) and Lee-Raghavendra-Steurer (2015). This method is only currently capable of proving
that γ̄(CUTn) > e cn1/3 , but it has the advantage of being somewhat more general—it extends well to
the setting of approximate lifts and spectrahedral lifts (those coming from semi-de�nite programs).

1.5 NMF and positivity certi�cates

If r � rank+(Mn), it means we can write

f (x) �Mn( f , x) �
r∑

i�1
Ai( f )Bi(x) (1.1)

for some functions Ai : QML+
n → �+ and Bi : {0, 1}n

→ �+. (Here we are using a factorization
Mn � AB where A f ,i � Ai( f ) and Bx ,i � Bi(x).)
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Thus the low-rank factorization gives us a “proof system” for QML+
n . Every f ∈ QML+

n can be
written as a conic combination of the functions B1 , B2 , . . . , Br , thereby certifying its positivity (since
the Bi’s are positive functions).

If we think about natural families B � {Bi} of “axioms,” then since QML+
n is invariant under the

natural action of Sn (the symmetric group on {1, 2, . . . , n}), we might expect that our family B
should share this invariance. Once we entertain this expectation, there are natural small families of
axioms to consider: The space of non-negative k-juntas for some k � n.

A k-junta b : {0, 1}n
→ � is a function whose value only depends on k of its input coordinates. For

a subset S ⊆ {1, . . . , n} with |S| � k and an element z ∈ {0, 1}k , let qS,z : {0, 1}n
→ {0, 1} denote

the function given by qS,z(x) � 1 if and only if x |S � z.

We let Jk � {qS,z : |S| 6 k , z ∈ {0, 1}|S|}. Observe that |Jk | 6 O(nk). Let us also de�ne cone(Jk) as
the set of all conic combinations of functions in Jk .

Exercise 1.13. Show that cone(Jk) is precisely the set of all non-negative combinations of non-
negative k-juntas.

If it were true that QML+
n ⊆ cone(Jk) for some k, we could immediately conclude that rank+(Mn) 6

|Jk | 6 O(nk) by writingMn in the form (1.1) where now {Bi} ranges over the elements of Jk and
{Ai( f )} gives the corresponding non-negative coe�cients that follow from f ∈ Jk .

1.5.1 Symmetric families of axioms

Exercise? 1.14. Consider �rst the following lemma [Yannakakis 1991].

Lemma 1.15. Let H be a subgroup of the symmetric group Sn with |H | > |Sn |/�n
d

�
for some d < n/4. Then

there exists a set J ⊆ [n] such that | J | 6 d and such that H contains all the even permutations that �x the
elements of J.

Using this lemma, prove the following. Let Q be a family of functions mapping {0, 1}n to � and
such that Q is invariant under the action of Sn , i.e. for every π ∈ Sn ,

Q � {x 7→ q(πx) : q ∈ Q} ,
where πx permutes the coordinates of x according to π.

Show that if d < n/4 and |Q | < �n
d

�
, then each q ∈ Q can be written

q(x1 , . . . , xn) � q′(xi1 , . . . , xid , x1 + x2 + · · · + xn) (1.2)

for some q′ : {0, 1}d
×�→ �. In other words, every q ∈ Q depends on at most d coordinates and

possibly also the value
∑n

i�1 xi .

Exercise 1.16. Use the preceding exercise to show the following. Suppose that QML+
2n ⊆ cone(Q)

for some family Q that is invariant under the action of Sn , and such that |Q | < �2n
d

�
for some d < n/2.

Then QML+
n ⊆ cone(Jd). This shows that, invariant families of axioms of a given size, one cannot

do much better than Jd .

[Hint: Given q ∈ QML+
n , de�ne f ∈ QML+

2n by f (x , y) � q(x). Now apply Exercise 1.14 to Q to
investigate the structure of f .]
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1.6 Junta degree and the dual cone

Clearly QML+
n ⊆ cone(Jn). We will now see that juntas cannot yield a smaller set of axioms for

QML+
n . Combined with Exercise 1.16, this shows that if QML+

n ⊆ cone(Q) and Q is a family of
non-negative functions that is invariant under the action of Sn (see Exercise 1.14), then |Q | > cn for
some c > 1.

Theorem 1.17. Consider the function f : {0, 1}n
→ �+ given by f (x) � (x1 + x2 + · · · + xn − 1)2. Then

f < cone(Jn−1).

Proof. Suppose we write f �
∑N

i�1 qi where each qi is non-negative. Clearly if
∑n

i�1 xi � 1, then
f (x1 , . . . , xn) � 0, hence qi(x1 , . . . , xn) � 0 for every i. But if qi ∈ Jn−1, then there is some coordinate
onwhich it does not depend. Without loss, suppose it is the �rst coordinate. Then 0 � qi(1, 0, . . . , 0) �
qi(0, 0, . . . , 0). But f (0, 0, . . . , 0) � 1. We conclude that f < Jn−1. �

Let us now prove this in a more roundabout way by introducing a few de�nitions. First, for
f : {0, 1}n

→ �+, de�ne the junta degree of f to be

degJ( f ) � min{k : f ∈ cone(Jk)} .
Since every f is an n-junta, we have degJ( f ) 6 n.

Now because { f : degJ( f ) 6 k} is a cone (spanned by Jk), there is a universal way of proving
that degJ( f ) > k. Say that a functional ϕ : {0, 1}n

→ � is k-locally positive if for all |S| 6 k and
z ∈ {0, 1}|S|, we have ∑

x∈{0,1}n

ϕ(x)qS,z(x) > 0 .

These are precisely the linear functionals separating a function f from cone(Jk): We have degJ( f ) >
k if and only if there is a k-locally positive functional ϕ such that

∑
x∈{0,1}n ϕ(x) f (x) < 0. Now we

are ready to prove Theorem 1.17 in a di�erent way.

Second proof of Theorem 1.17. We will use an appropriate k-locally positive functional. De�ne

ϕ(x) �



−1 |x | � 0
1 |x | � 1
0 |x | > 1 ,

where |x | denotes the hamming weight of x ∈ {0, 1}n .

Recall the the function f from the statement of the theorem and observe that by opening up the
square, we have

∑
x∈{0,1}n

ϕ(x) f (x) �
∑

x∈{0,1}n

ϕ(x) *.
,
1 − 2

∑
i

xi +
∑

i

x2
i + 2

∑
i, j

xi x j
+/
-

�

∑
x∈{0,1}n

ϕ(x) *
,
1 −

∑
i

xi+
-
� −1 . (1.3)
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Now consider some S ⊆ {1, . . . , n} with |S| � k 6 n − 1 and z ∈ {0, 1}k . If z � 0, then∑
x∈{0,1}n

ϕ(x)qS,z(x) � −1 + 1 · (n − k) > 0 .

If |z | > 1, then the sum is 0. If |z | � 1, then the sum is non-negative because in that case qS,z is
only supported on non-negative values of ϕ. We conclude that ϕ is k-locally positive for k 6 n − 1.
Combined with (1.3), this yields the statement of the theorem. �

Exercise 1.18. Consider the knapsack polynomial: For n > 1 odd,

f (x) �
(
x1 + x2 + · · · + xn −

n
2

)2
−

1
4 .

It is straightforward to check that f (x) > 0 for all x ∈ {0, 1}n . De�ne an appropriate locally positive
functional to show that degJ( f ) > b n

2 c.

1.7 From juntas to general factorizations

So far we have seen that we cannot achieve a low non-negative rank factorization ofMn using
k-juntas for k 6 n − 1.
Remark 1.19. If one translates this into the setting of lift-and-project systems, it says that the k-round
Sherali-Adams lift of the polytope

P �

{
x ∈ [0, 1]n2 : xi j � x ji , xi j 6 x jk + xki ∀i , j, k ∈ {1, . . . , n}}

does not capture CUTn for k 6 n − 1.

In the next lecture, we will show that a non-negative factorization ofMn would lead to a k-junta
factorization with k small (which we just saw is impossible). This will yield a lower bound on
γ̄(CUTn).
For now, let us state the theorem we want to prove. We �rst de�ne a submatrix ofMn . Fix some
integer m > 1 and a function 1 : {0, 1}m

→ �+. Now de�ne the matrix M1

n :
�[n]

m

�
× {0, 1}n

→ �+
given by

M1

n(S, x) � 1(x |S) .
Thematrix is indexed by subsets S ⊆ [n]with |S| � m and elements x ∈ {0, 1}n . Here, x |S represents
the (ordered) restriction of x to the coordinates in S.

Theorem 1.20 (Chan-Lee-Raghavendra-Steurer 2013). For every m > 1 and 1 : {0, 1}m
→ �+, there is

a constant C � C(1) such that for all n > 2m,

rank+(M1

n) > C
(

n
log n

)degJ (1)
.

Note that if 1 ∈ QML+
m then M1

n is a submatrix ofMn . Since Theorem 1.17 furnishes a sequence
of quadratic multi-linear functions {1 j} with degJ(1 j) → ∞, the preceding theorem tells us that
rank+(Mn) cannot be bounded by any polynomial in n. A more technical version of the theorem is
able to achieve a lower bound of e cn1/3 , but it is unclear if this method can match the lower bound of
Theorem 1.12. Its main advantage is that it extends to both the setting of approximation algorithms,
and also to semi-de�nite extended formulations.
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2 Entropy maximization and approximation by juntas

Our goal is now to prove Theorem 1.20.

2.1 Analytic non-negative rank

Before getting to the proof, let us discuss the situation in somewhat more generality. Consider �nite
sets X and Y and a matrix M : X × Y → �+. Our goal is to show that rank+(M) is large. In other
words, that we cannot write

M(x , y) �
r∑

i�1
Ai(x)Bi(y)

for some small value r > 0 and A1 , . . . ,Ar : X → �+ , B1 , . . . , Br : Y → �+.

It would be nice if we could argue that M cannot be too correlated with anymap (x , y) 7→ Ai(x)Bi(y)
and therefore r must be large. This would avoid having to argue about a subtle relationship between
{Ai} and {Bi} for di�erent values of i. For instance, we could try to �nd a functional F : X ×Y → �
such that

∑
x ,y F(x , y)M(x , y) < 0 while

∑
x ,y F(x , y)Ai(x)Bi(y) > 0 for all i � 1, . . . , r.

In other words, we would like to de�ne a convex set of “low non-negative rank” matrices and show
that M is not in this set (by convex duality, this separation would always be accomplished with
such a linear functional F). Note that matrices of the form (x , y) 7→ Ai(x)Bi(y) are exactly those of
non-negative rank 1. But the convex hull of {N ∈ �X×Y

+ : rank+(N) � 1} is precisely the set of all
non-negative matrices (which certainly contains M!).

Instead, let us proceed analytically. For simplicity, let us equip both X and Y with the uniform
measure. Let Q � {b : Y → �+ | ‖b‖1 � 1} denote the set of probability densities on Y, where we
de�ne ‖b‖1 � 1

|Y |
∑

y∈Y |b(y)|.
Now de�ne

α+(N) � min


α : ∃A ∈ �X×k

+ , B ∈ �k×Y
+ with N � AB, {B1 , . . . , Bk} ⊆ Q , and

max
i∈[k]

‖Bi‖∞ 6 α and
k∑

i�1
‖A(i)‖∞ 6 α



.

Here {A(i)} are the columns of A and {Bi} are the rows of B. Note that now k is unconstrained.

Observe that for any c > 0, the set {N : α+(N) 6 c} is convex. To see this, given a pair N � AB and
N′ � A′B′, write

N + N′

2 �
� 1

2A 1
2A′

� (
B
B′

)
,

witnessing the fact that α+( 12 (N + N′)) 6 max{α+(N), α+(N′)}.

2.2 A truncation argument: Relating α+ and rank+

We will see now that low non-negative rank matrices are close to matrices with α+ small. In
standard communication complexity/discrepancy arguments, this corresponds to discarding “small
rectangles.”
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Lemma 2.1. For every non-negative M ∈ �X×Y
+ with rank+(M) 6 r and every δ ∈ (0, 1), there is a matrix

M̃ ∈ �X×Y
+ such that

‖M − M̃‖1 6 δ
and

α+(M̃) 6 r
δ
‖M‖∞ .

Proof. Suppose that M � AB with A ∈ �X×r
+ , B ∈ �r×Y

+ , and let us interpret this factorization in the
form

M(x , y) �
r∑

i�1
Ai(x)Bi(y) (2.1)

(where {Ai} are the columns of A and {Bi} are the rows of B). By rescaling the columns of A and
the rows of B, respectively, we may assume that �[Bi] � 1 for every i ∈ [r].
Let Λ � {i : ‖Bi‖∞ > τ} denote the “bad set” of indices (we will choose τ momentarily). Observe
that if i ∈ Λ, then

‖Ai‖∞ 6 ‖M‖∞
τ

,

from the representation (2.1) and the fact that all summands are positive.

De�ne the matrix M̃(x , y) � ∑
i<Λ Ai(x)Bi(y). It follows that

‖M − M̃‖1 � �
x ,y

�|M(x , y) − M̃(x , y)|� �
∑
i∈Λ

�
x ,y

[Ai(x)Bi(y)] .

Each of the latter terms is at most ‖Ai‖∞‖Bi‖1 6 ‖M‖∞
τ and |Λ| 6 r, thus

‖M − M̃‖1 6 r
‖M‖∞
τ

.

Next, observe that

�
y
[M(x , y)] �

r∑
i�1

Ai(x)‖Bi‖1 �
r∑

i�1
Ai(x) ,

implying that ‖Ai‖∞ 6 ‖M‖∞ and thus
∑r

i�1 ‖Ai‖∞ 6 r‖M‖∞.
Setting τ � r‖M‖∞/δ yields the statement of the lemma. �

Generally, the ratio ‖M‖∞
‖M‖1 will be small compared to r (e.g., polynomial in n vs. super-polynomial in

n). Thus from now on, we will actually prove a lower bound on α+(M). One has to verify that the
proof is robust enough to allow for the level of error inherent in Lemma 2.1.

2.3 Simplifying the B-side of the factorization

Returning to Theorem 1.20 and the matrix M1

n , we will assume, for the sake of an eventual contra-
diction, that α+(M1

n) 6 α. Thus we can write

M1

n(S, x) �
k∑

i�1
Ai(S)Bi(x) , (2.2)

10



where Ai , Bi > 0 and we have ‖Bi‖1 � 1 and ‖Bi‖∞ 6 α for all i ∈ [k], and �nally
∑k

i�1 ‖Ai‖∞ 6 α.
We will consider the uniform measures on

�[n]
m

�
and {0, 1}n . We use �S and �x to denote averaging

with respect to these measures.

Let d � degJ(1) − 1. From Section 1.6, we know there exists a d-locally positive functional
ϕ : {0, 1}n

→ � such that β :� �x ϕ(x)1(x) < 0, and �x ϕ(x)q(x) > 0 for every d-junta q.
For S ⊆ [n] with |S| � m, let us denote ϕS(x) � ϕ(x |S).
Following our observations in Section 1.6, we can see if each Bi in (2.2) were a d-junta, we would
have a contradiction: For some constant β < 0 (depending only on 1):

�
S,x

�
ϕS(x)M1

n(S, x)
�
� �

y∈{0,1}m
ϕ(y)1(y) � β < 0 , (2.3)

and yet

�
S,x


ϕS(x)

k∑
i�1

Ai(S)Bi(x)]

�

k∑
i�1
�
S

Ai(S)�
x

�
ϕS(x)Bi(x)� > 0 (2.4)

because�x
�
ϕS(x)Bi(x)� � �y∈{0,1}S ϕ(y)�x

�
Bi(x) �

x |S � y
�
> 0 since ϕ is d-locally positive and the

function y 7→ �x
�
Bi(x) �

x |S � y
�
is a d-junta.

Thus our goal now will be to approximate each Bi by a junta such that the equality in (2.2)
approximately holds in a suitable sense. In fact, the argument in (2.4) gives us a hint as to
what kind of approximation we want: If B̃i is our approximator for Bi , we would like that
�x[ϕS(x)B̃i(x)] > �x[ϕS(x)Bi(x)] − ε for some small ε > 0.

2.4 High entropy functions are close to juntas

Why should we expect that Bi : {0, 1}n
→ �+ can be approximated by a “simple” function? Recall

that �x Bi(x) � 1 and ‖Bi‖∞ 6 α. In particular, this implies that if we think of Bi as a probability
distribution on {0, 1}n , then its Shannon entropy is very high: At least n − log α bits.

Instead of using Shannon entropy, let us de�ne the relative entropy with respect to the uniform
measure by: Given a density b : {0, 1}n

→ �+ with �x b(x) � 1, de�ne

Ent(b) � �
x
[b(x) log b(x)] .

It is an exercise to check that 0 6 Ent(b) 6 n holds for every such b. Moreover, Ent(b) � 0 if and only
if b � 1 is the constant function equal to 1 everywhere. And Ent(b) � n if and only if b is supported
on a single point.

Most importantly, the function b 7→ Ent(b) is convex on the space of probability densities.

Fix i ∈ [k] and consider the following convex optimization problem. The variables are the values
{B̃i(x) : x ∈ {0, 1}n}. The value ε is not a variable, but a parameter we will choose later.

minimize Ent(B̃i) � �[B̃i log B̃i]
subject to �[B̃i] � 1 (2.5)

B̃i(x) > 0 ∀x ∈ {0, 1}n (2.6)
�
x

�
ϕS(x)B̃i(x)� 6 �

x

�
ϕS(x)Bi(x)� + ε ∀|S| � m . (2.7)
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The idea is that we attempt to �nd a density B̃i that satis�es the constraints we identi�ed earlier (2.7)
up to accuracy ε. To encourage “simplicity” of the approximator, we minimize its relative entropy
subject to these constraints.

It turns out that if we attempt to solve this program using the correct a particularly simple form
sub-gradient descent, then the solution we obtain (while not necessarily optimal!) will satisfy
constraints (2.5)–(2.7), and have a special form.

Claim 2.2. There exists a function B̃i : {0, 1}n
→ �n

+ satisfying all the preceding constraints and of
the form

B̃i �
exp

(∑M
j�1 λ jϕS j

)
� exp

(∑M
i�1 λ jϕS j

)
such that

M 6 C(1) log α
ε2

,

where C(1) is some constant depending only on 1.

Now eachϕS j only depends on m variables (those in S j and |S j | � m), meaning that our approximator
B̃i is an h-junta for

h 6 m · C(1) log α
ε2

. (2.8)

This doesn’t seem very good! The calculation in (2.4) needs that B̃i is a d-junta, and certainly d < m
(since 1 is a function on {0, 1}m).

So far we have only used the fact that each Bi has small relative entropy. We did not use the other
fact we know from our assumption α+(M1

n) 6 α, namely that
∑k

i�1 ‖Ai‖∞ 6 α. Now we employ this
assumption to drastically reduce the junta size in (2.8).

2.5 Random restriction: Using our bounds on the A-side of the factorization

Let’s try to apply the logic of (2.4) to the B̃i approximators anyway. Fix some i ∈ [k] and let Ji be the
set of coordinates on which B̃i depends. Then:

�
S,x

�
ϕS(x)Ai(S)B̃i(x)� � �

S
�

y∈{0,1}S
ϕ(y) �

x∈{0,1}n

�
Bi(x) �

x |S � y
�

Note that the map y 7→ �x∈{0,1}n
�
Bi(x) �

x |S � y
�
is a junta on Ji ∩ S. Thus if | Ji ∩ S| 6 d, then the

contribution from this term is non-negative since ϕ is d-locally positive. But |S| � m is �xed and n
is growing, thus | Ji ∩ S| > d is quite rare! Formally,

�
S,x

�
ϕS(x)Ai(S)B̃i(x)� > −‖Ai‖∞ �S[| Ji ∩ S| > d] > −‖Ai‖∞ hd+1(2m)d+1

nd+1 .

In the last estimate, we have used a simple union bound and n > 2m.

Putting everything together and summing over i ∈ [k], we conclude that

k∑
i�1
�
S,x

�
ϕS(x)Ai(S)B̃i(x)� > −α hd+1(2m)d+1

nd+1 .
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Note that by choosing n only moderately large, we will make this error term very small.

Moreover, since each B̃i satis�es (2.7), we have

k∑
i�1
�
S,x

�
ϕS(x)Ai(S)Bi(x)� �

k∑
i�1
�
S

Ai(S)�
x

�
ϕS(x)Bi(x)�

>
k∑

i�1
�
S

Ai(S)
(
−ε +�

x

�
ϕS(x)B̃i(x)�

)
> −ε

k∑
i�1

‖Ai‖1 − α hd+1(2m)d+1

nd+1 .

Almost there: Now observe that

‖1‖1 � �
S,x
[M1

n(S, x)] �
k∑

i�1
‖Ai‖1‖Bi‖1 �

k∑
i�1

‖Ai‖1 .

Plugging this into the preceding line yields

k∑
i�1
�
S,x

�
ϕS(x)Ai(S)Bi(x)� > −ε‖1‖1 − α hd+1(2m)d+1

nd+1 .

Recalling now (2.3), we have derived a contradiction to α+(M) 6 α if we can choose the right-hand
side to be bigger than β (which is a constant depending only on 1). Setting ε � −β/(2‖1‖1), we
consult (2.8) to see that

h 6 C′(1)m log α (2.9)

for some other constant C′(1) depending only on 1.

We thus arrive at a contradiction as long as α � o((n/ log n)d+1), recalling that m , d depend only on
1. This completes the argument.

2.6 Exercises

2.6.1 Stronger lower bounds

So far, we only saw how to prove a lower bound of γ̄(CUTn) > nω(1). To obtain stronger quantitative
lower bounds, one has to analyze carefully the parts of the argument that read “some constant
depending only on 1.” To do this properly, it turns out that one needs an appropriate de�nition of
“approximate” junta degree. Basically, the “proof” that a function has large junta degree (the locally
positive functional) has to be robust.

For a function f : {0, 1}n
→ �+ and ε > 0, de�ne

degεJ ( f ) � min
{

d : ∀ d-locally positive functionals ϕ : {0, 1}n
→ �, �

x
ϕ(x) f (x) > −ε‖ϕ‖∞�

x
f (x)

}
.

Exercise 2.3. Give an equivalent characterization of degεJ in terms of approximating f by a non-
negative sum of juntas, where the approximation is in the L1-norm.
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One can prove the following (see Lee-Raghavendra-Steurer 2014).
Theorem 2.4. For any 1 : {0, 1}m

→ �+ and ε > 0, the following holds. For all n > 2m,

rank+(M1

n) >
(

cε2n
m2(d log n + log(‖1‖∞/‖1‖1))

)degεJ (1)
,

where c > 0 is a universal constant.

The point of this result is that there is no hidden constant. This allows one to prove much stronger
bounds.
Exercise 2.5. In the de�nition of approximate junta degree, one notices the appearance of the
uniform measure. More generally, Theorem 2.4 holds under the p-biased product measure µn

p for
p ∈ [0, 1]. De�ne:

degε,pJ ( f ) � min



d : ∀ d-locally positive functionals ϕ : {0, 1}n
→ �,

�
x∼µn

p

ϕ(x) f (x) > −ε‖ϕ‖∞ �
x∼µn

p

f (x)

.

Prove that there is a constant ε > 0 such that for all n > 3, we have

degε,1/n
J ( f ) > n

2 + 1 ,

where f is the function de�ned in Theorem 1.17. Combined with Theorem 2.4, what lower bound
does this yield for γ̄(CUTn) ?

2.6.2 Approximation

We have been concerned so far with exact characterization of polytopes (and, mainly, CUTn). But in
this model, one can also talk about approximate lifts. For instance, consider the MAX-CUT problem:
Given a non-negative weight w :

�[n]
2

�
→ �+ on the edges of the (undirected) complete graph, the

goal is to compute the maximum-cut value

opt(w) def
� max

z∈CUTn

〈w , z〉
‖w‖1 .

The objective is the (normalized) weight of edges cut. (Strictly speaking, MAX-CUT involves �nding
the optimizer, not just its value.)

Fix the number of vertices n. For some constants 1 > c > s > 0, let us consider the matrix

Mc ,s(w , z) � c −
〈z , w〉
‖w‖1 ,

where w ranges over all weighted graphs w with opt(w) 6 s and z ranges over all cuts (the extreme
points of CUTn).
Exercise 2.6. Argue that if rank+(Mc ,s) > r, then the following holds. For any polytope P de�ned
by at most r inequalities, if P linearly projects to a polytope P̂ ⊆ �(n

2) such that P̂ ⊇ CUTn , then
there exists a weighted graph w such that opt(w) 6 s, but

max
z∈P̂

〈z , w〉
‖w‖1 > c .

In other words, P̂ does a poor job of capturing even approximate MAX-CUT optimization over
CUTn .
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3 PSD rank and sums-of-squares degree

We have previously explored whether the cut polytope can be expressed as the linear projection of
a polytope with a small number of facets (i.e., whether it has a small linear programming extended
formulation).

For many cut problems, semi-de�nite programs (SDPs) are able to achieve better approximation
ratios than LPs. The most famous example is the Goemans-Williamson 0.878-approximation for
MAX-CUT. The techniques we have seen so far (see also Section 2.6) are able to show that no
polynomial-size LP can achieve better than factor 1/2.

3.1 Spectrahedral lifts

The feasible regions of LPs are polyhedra. Up to linear isomorphism, every polyhedron P can be
represented as P � �n

+ ∩ V where �n
+ is the positive orthant and V ⊆ �n is an a�ne subspace.

In this context, it makes sense to study any cones that can be optimized over e�ciently. A prominent
example is the positive semi-de�nite cone. Let us de�ne Sn

+ ⊆ �
n2 as the set of n× n real, symmetric

matrices with non-negative eigenvalues. A spectrahedron is the intersection Sn
+ ∩ V with an a�ne

subspace V . The value n is referred to as the dimension of the spectrahedron.

In analogy with the γ parameter we de�ned for polyhedral lifts, let us de�ne γ̄sdp(P) for a polytope
P to be the minimal dimension of a spectrahedron that linearly projects to P.

Exercise 3.1. Show that γ̄sdp(P) 6 γ̄(P) for every polytope P. In other words, spectahedral lifts are
at least as powerful as polyhedral lifts in this model.

In fact, spectrahedral lifts can be strictly more powerful. Certainly there are many examples of this
in the setting of approximation (like the Goemans-Williamson SDP mentioned earlier), but there
are also recent gaps between γ̄ and γ̄sdp for exact characterizations of polytopes; see the work of
Fawzi, Saunderson, and Parrilo (2015).

Nevertheless, we are recently capable of proving strong lower bounds on the dimension of such
lifts. Let us consider the cut polytope CUTn as in previous posts.

Theorem 3.2 (Lee-Raghavendra-Steurer 2015). There is a constant c > 0 such that for every n > 1,
γ̄sdp(CUTn) > e cn2/11 .

Our goal now is to understand how the general framework we have seen for LP lower bounds
extends to the SDP setting.

3.2 PSD rank and factorizations

Just as in the setting of polyhedra, there is a notion of “factorization through a cone” that character-
izes the parameter γ̄sdp(P). Let M ∈ �m×n

+ be a non-negative matrix. One de�nes the psd rank of M
as the quantity

rankpsd(M) � min
�
r : Mi j � Tr(AiB j) for some A1 , . . . ,Am , B1 , . . . , Bn ∈ S

r
+

	
.

The following theorem was independently proved by Fiorini-Massar-Pokutta-Tiwari-de Wolf and
Gouveia-Parrilo-Thomas. The proof is a direct analog of Yannakakis’ proof for non-negative rank.
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Theorem 3.3. For every polytope P, it holds that γ̄sdp(P) � rankpsd(M) for any slack matrix M of P.

Recall the class QML+
n of non-negative quadratic multi-linear functions that are positive on {0, 1}n

and the matrixMn : QML+
n × {0, 1}n

→ �+ given by

Mn( f , x) � f (x) .

We saw previously thatMn is a submatrix of some slack matrix of CUTn . Thus our goal is to prove
a lower bound on rankpsd(Mn).

3.3 Sum-of-squares certi�cates

Just as in the setting of non-negativematrix factorization, we can think of a lowpsd rank factorization
ofMn as a small set of “axioms” that can prove the non-negativity of every function in QML+

n . But
now our proof system is considerably more powerful.

For a subspace of functionsU ⊆ L2({0, 1}n), let us de�ne the cone
sos(U) � cone

�
q2 : q ∈ U

�
.

This is the cone of squares of functions inU . We will think ofU as a set of axioms of size dim(U)
that is able to assert non-negativity of every f ∈ sos(U) by writing

f �

k∑
i�1

q2i

for some q1 , . . . , qk ∈ sos(U).
Fix a subspaceU and let r � dim(U). Fix also a basis q1 , . . . , qr : {0, 1}n

→ � forU .

De�ne B : {0, 1}n
→ S

r
+ by setting B(x)i j � qi(x)q j(x). Note that B(x) is PSD for every x because

B(x) � ~q(x)~q(x)T where ~q(x) � (q1(x), . . . , qr(x)).
We can write every p ∈ U as p �

∑r
i�1 λi qi . De�ning Λ(p2) ∈ Sr

+ by Λ(p2)i j � λiλ j , we see that

Tr(Λ(p2)Q(x)) �
∑
i , j

λiλ j qi(x)q j(x) � p(x)2 .

Now every f ∈ sos(U) can be written as
∑k

i�1 ci p2
i for some k > 0 and {ci > 0}. Therefore if we

de�ne Λ( f ) � ∑k
i�1 ciΛ(p2

i ), we arrive at the representation

f (x) � Tr(Λ( f )Q(x)) .

In conclusion, if QMLn
+ ⊆ sos(U), then rankpsd(Mn) 6 dim(sos(U)).

Exercise 3.4. Show that an approximate converse holds: dim(sos(U)) 6 rankpsd(Mn)2.
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3.4 The canonical axioms

And just as d-juntaswere the canonical axioms for ourNMFproof system, there is a similar canonical
family in the SDP setting: Let Qd be the subspace of all degree-d multi-linear polynomials on �n .
We have

dim(Qd) 6
d∑

k�0

(
n
k

)
6 1 + nd . (3.1)

For a function f : {0, 1}n
→ �+, one de�nes

degsos( f ) � min{d : f ∈ sos(Qd)} .
(One could debate whether the de�nition of sum-of-squares degree should have d/2 or d. The most
convincing arguments suggest that we should use membership in the cone of squares over Qbd/2c
so that the sos-degree will be at least the real-degree of the function.)

On the other hand, our choice has the following nice property.

Lemma 3.5. For every f : {0, 1}n
→ �, we have degsos( f ) 6 degJ( f ).

Proof. If q is a non-negative d-junta, then √q is also a non-negative d-junta. It is elementary to see
that every d-junta on {0, 1}n has a multi-linear polynomial representation of degree at most d, thus
q is the square of a multi-linear polynomial of degree at most d. �

3.5 The dual cone

As with junta-degree, there is a simple characterization of sos-degree in terms of separating func-
tionals. Say that a functional ϕ : {0, 1}n

→ � is degree-d pseudo-positive if

〈ϕ, q2〉 � �
x∈{0,1}n

ϕ(x)q(x)2 > 0

whenever q : {0, 1}n
→ � satis�es deg(q) 6 d (and by deg here, we mean degree as a multi-linear

polynomial on {0, 1}n).

Again, since sos(Qd) is a convex set, these separating functionals are the only way of exhibiting
non-membership. The following characterization is elementary.

Lemma 3.6. For every f : {0, 1}n
→ �+, it holds that degsos( f ) > d if and only if there is a degree-d

pseudo-positive functional ϕ : {0, 1}n
→ � such that 〈ϕ, f 〉 < 0.

3.6 The connection to psd rank

Following the analogy with non-negative rank, we have two objectives left: (1) to exhibit a function
f ∈ QML+

n with degsos( f ) large, and (ii) to give a connection between the sum-of-squares of f and
the psd rank of an associated matrix.

Notice that the function 1(x) � (1−∑m
i�1 xi)2 we used for junta-degree has degsos(1) � 1, making it a

poor candidate. In fact, this implies that rankpsd(M1

n) 6 O(n), while we have seen that rank+(M1

n) >
Ω((n/ log n)m−1) as n →∞.

Fortunately, Grigoriev has shown that the knapsack polynomial (from Exercise 1.18) has large sos-
degree.
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Theorem 3.7. For every odd m > 1, the function

f (x) � *
,

m
2 −

m∑
i�1

xi+
-

2

−
1
4

has degsos( f ) > bm/2c.
Observe that this f is non-negative over {0, 1}m (because m is odd), but it is manifestly not non-
negative on �m .

Finally, we recall the submatrices ofMn de�ned as follows. Fix some integer m > 1 and a function
1 : {0, 1}m

→ �+. Then M1

n :
�[n]

m

�
× {0, 1}n

→ �+ is given by

M1

n(S, x) � 1(x |S) .

Our goal now is to sketch the following analog of Theorem 1.20.

Theorem 3.8 (Lee-Raghavendra-Steurer 2015). For every m > 1 and 1 : {0, 1}m
→ �+, there exists a

constant C(1) such that the following holds. For every n > 2m,

1 + nd/2 > rankpsd(M1

n) > C
(

n
log n

)d/2

,

where d � degsos(1).
Note that the upper bound is from (3.1) and the non-trivial content is contained in the lower bound.

3.7 Exercise: Proving a lower bound on degsos

[This exercise follows an elegant argument of J. Kaniewski, T. Lee, and R. de Wolf (2014).]

You will prove a lower bound on the sum-of-squares degree of the function f : {0, 1}n
→ �+ given

by
f (x) � (|x | − 1)(|x | − 2) , (3.2)

where we use |x | � ∑n
i�1 xi for the hamming weight of x ∈ {0, 1}n .

Suppose that we can write

f (x) �
N∑

i�1
pi(x)2 ,

where deg(pi) 6 d for every i ∈ [N]. De�ne the function qi : [n]→ � by

qi(k) � �
x∈{0,1}n :|x |�k

�
pi(x)� .

The �rst step can be accomplished using the Fourier representation of functions on {0, 1}n , or using
an appropriate averaging procedure.

(a) Show that there is a function q̃i : �→ � that agrees with qi on [n] and such that deg(q̃i) 6 d.

Now let us de�ne Q(t) � ∑N
i�1 q̃i(t)2, which is a polynomial of degree at most 2d. We also have

Q(1) � Q(2) � 0 since f (x) � 0 for |x | ∈ {1, 2}. The zeroes of a non-negative real polynomial must
have multiplicity at least 2, thus we can write

Q(t) � (t − 1)2(t − 2)2q(t)
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for some polynomial q with deg(q) 6 2d − 4.

(b) Your goal now is to prove a lower bound deg(q) > Ω(√n), implying that degsos( f ) > Ω(√n).
[Note that plugging this into Theorem 3.8 is enough to show that γ̄sdp(CUTn)must grow faster than
any polynomial.]

You should be able to do this using the following oft-employed lemma of A. A. Markov.

Lemma 3.9. If q : �→ � is a polynomial, then for every T > 0,

deg(q) >
√

T
2
maxx∈[0,T] |q′(x)|
maxx∈[0,T] |q(x)| .

3.8 Finite-dimensional operator norms

Let H denote a �nite-dimensional Euclidean space over � equipped with inner product 〈·, ·〉 and
norm | · |. For a linear operator A : H → H, we de�ne the operator, trace, and Frobenius norms by

‖A‖ � max
x,0

|Ax |
x
, ‖A‖∗ � Tr(√ATA), ‖A‖F �

√
Tr(ATA) .

LetM(H) denote the set of self-adjoint linear operators on H. Note that for A ∈ M(H), the preceding
three norms are precisely the `∞, `1, and `2 norms of the eigenvalues of A. For A, B ∈ M(H), we
use A � 0 to denote that A is positive semi-de�nite and A � B for A−B � 0. We useD(H) ⊆ M(H)
for the set of density operators: Those A ∈ M(H) with A � 0 and Tr(A) � 1.

One should recall that Tr(AT B) is an inner product on the space of linear operators, and we have
the operator analogs of the Hölder inequalities: Tr(AT B) 6 ‖A‖ · ‖B‖∗ and Tr(AT B) 6 ‖A‖F‖B‖F.

3.9 John’s theorem and factorization rescaling

As in the case of non-negative rank, consider �nite sets X and Y and a matrix M : X × Y → �+. For
the purposes of proving a lower bound on the psd rank of some matrix, we would like to have a
nice analytic description.

To that end, suppose we have a rank-r psd factorization

M(x , y) � Tr(A(x)B(y))
where A : X → Sr

+ and B : Y → Sr
+. The following result of Briët, Dadush and Pokutta (2013) gives

us a way to “scale” the factorization so that it becomes nicer analytically. (The improved bound
stated here is from an article of Fawzi, Gouveia, Parrilo, Robinson, and Thomas, and we follow their
proof.)

Lemma 3.10. Every M with rankpsd(M) 6 r admits a factorization M(x , y) � Tr(P(x)Q(y)) where
P : X → Sr

+ and Q : Y → Sr
+ and, moreover,

max{‖P(x)‖ · ‖Q(y)‖ : x ∈ X, y ∈ Y} 6 r‖M‖∞ ,
where ‖M‖∞ � maxx∈X,y∈Y M(x , y).
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Proof. Start with a rank-r psd factorization M(x , y) � Tr(A(x)B(y)). Observe that there is a degree
of freedom here, because for any invertible operator J, we get another psd factorization M(x , y) �
Tr

��
JA(x)JT�

·
�(J−1)T B(y)J−1��

.

Let U � {u ∈ �r : ∃x ∈ X A(x) � uuT} and V � {v ∈ �r : ∃y ∈ X B(y) � vvT}. Set ∆ � ‖M‖∞.
We may assume that U and V both span �r (else we can obtain a lower-rank psd factorization).
Both sets are bounded by �niteness of X and Y.

Let C � conv(U) and note that C is centrally symmetric and contains the origin. Now John’s theorem
tells us there exists a linear operator J : �r

→ �r such that

B`2 ⊆ JC ⊆
√

rB`2 , (3.3)

where B`2 denotes the unit ball in the Euclidean norm. Let us now set P(x) � JA(x)JT and Q(y) �
(J−1)T B(y)J−1.
Eigenvalues of P(x):. Let w be an eigenvector of P(x) normalized so the corresponding eigenvalue
is ‖w‖22 . Then P(x) � wwT , implying that J−1w ∈ U (here we use that A � 0 �⇒ SAST

� 0 for any
S). Since w � J(J−1w), (3.3) implies that ‖w‖2 6 √r. We conclude that every eigenvalue of P(x) is at
most r.

Eigenvalues of Q(y):. Let w be an eigenvector of Q(y) normalized so that the corresponding
eigenvalue is ‖w‖22 . Then as before, we have Q(y) � wwT and this implies JT w ∈ V . Now, on the
one hand we have

max
z∈ JC

〈z , w〉 > ‖w‖2 (3.4)

since JC ⊇ B`2 .

On the other hand:
max
z∈ JC

〈z , w〉2 � max
z∈C

〈Jz ,w〉2 � max
z∈C

〈z , JT w〉2 . (3.5)

Finally, observe that for any u ∈ U and v ∈ V , we have

〈u , v〉2 � 〈uuT , vvT〉 6 max
x∈X,y∈Y

〈A(x), B(y)〉 6 ∆ .

By convexity, this implies that maxz∈C 〈z , v〉2 6 ∆ for all v ∈ V , bounding the right-hand side of
(3.5) by ∆. Combining this with (3.4) yields ‖w‖22 6 ∆. We conclude that all the eigenvalues of Q(y)
are at most ∆. �

3.10 Analytic psd rank

Again, in analogywith the non-negative rank setting, we can de�ne an “analytic psd rank” parameter
for matrices N : X × Y → �+:

αpsd(N) � min
{
α | ∃A : X → Sk

+ , B : Y → Sk
+ ,

�
x∈X

[A(x)] � I ,

‖B(y)‖ 6 α
k
�

y∈Y
[Tr(B(y))] ∀y ∈ Y

‖A(x)‖ 6 α ∀x ∈ X
}
.
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Note that we have implicit equipped X and Y with the uniform measure. The main point here is
that k can be arbitrary. One can verify that for every c > 0, the set {N : αpsd(N) 6 c} is convex.
And there is a corresponding approximation lemma. We use ‖N‖∞ � maxx ,y |N(x , y)| and ‖N‖1 �
�x ,y |N(x , y)|.
Lemma 3.11. For every non-negative matrix M : X × Y → �+ and every η ∈ (0, 1], there is a matrix N
such that ‖M − N‖∞ 6 η‖M‖∞ and

αpsd(N) 6 O(rankpsd(M)) 1
η

‖M‖∞
‖M‖1 .

Using Lemma 3.10 in a straightforward way, it is not particularly di�cult to construct the approxi-
mator N . The condition �x[A(x)] � I poses a slight di�culty that requires adding a small multiple
of the identity to the LHS of the factorization (to avoid a poor condition number), but this has a
correspondingly small a�ect on the approximation quality.

3.11 Quantum entropy maximization

Given a density matrix P ∈ D(H), we de�ne the quantum relative entropy by

S(P) � Tr(P logP) .
(Strictly speaking, this is the relative entropy between P and the maximally mixed stateU �

Id
Tr(Id) .)

Note that S(P) � ∑
i λi log λi where {λi} are the eigenvalues of P. In analogy with the classical

case, S is a convex function onD(H).
Let us now suppose that αpsd(M1

n) 6 α, meaning that we can write

M1

n(S, x) � Tr(A(S)B(x)) (3.6)

for some A :
�[n]

m

�
→ S

k
+ and B : {0, 1}n

→ S
k
+ with �S A(S) � Id and

‖B(y)‖ 6 α
k
�
x
Tr(B(x)) ∀y ∈ {0, 1}n (3.7)

‖A(S)‖ 6 α ∀S ∈
([n]

m

)
. (3.8)

Note that since �S AS � Id, we have

‖1‖1 � �
S,x

M1

n(S, x) � �
S,x

Tr(B(x)A(S)) � �
x
Tr(B(x)) .

Let us de�ne K � �x Tr(B(x)) and rescale so that

�
x
Tr(B(x)) � 1 , (3.9)

�
S

A(S) � K · Id , (3.10)

‖A(S)‖ 6 K · α . (3.11)

Recall for later that K is a constant depending only on 1.
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As in the setting of non-negative rank, we would like to approximate B by a simpler mapping with
respect to a set of test functionals. Let ϕ : {0, 1}m

→ � be a degree-d pseudo-positive functional
such that 〈ϕ, 1〉 < 0. For S ∈

�[n]
m

�
, denote ϕS(x) � ϕ(x |S).

Suppose, for a moment, that

deg(√B) def
� max

i , j
deg

(
x 7→

√
B(x)i j

)
6 d .

In that case, we would have

�
S,x
[ϕS(x)Tr(A(S)B(x))] � �

S
�
x


ϕS(x)

∑
i , j

A(S)i j

(√
B(x)i j

)2
> 0 ,

since ϕS is a degree-d pseudo-positive functional. On the other hand,

�
S,x
[ϕS(x)1(x |S)] � �

x
[ϕ(x)1(x)] < 0 .

We would thus arrive at a contradiction to our assumed factorization (3.6). So our goal will be to
approximate B by a low-degree square.

Let us now imagine encoding a matrix-valued function P : {0, 1}n
→ S

k
+ as both a function and

a (k2n) × (k2n) block-diagonal matrix: P � 2−n ∑
x∈{0,1}n P(x) ⊗ ex eT

x for some set of orthonormal
vectors {ex} orthogonal to Sk

+ (in some enlarged Hilbert space). Observe that when the function B
is considered as a matrix in this way, we have Tr(B) � 1.

Consider the convex optimization:

minimize S(P)
subject to Tr(P) � 1 (3.12)

P � 0 (3.13)
�
S,x
[ϕS(x)Tr(A(S)B(x))] 6 �

S,x
[ϕS(x)Tr(A(S)P(x))] + ε . (3.14)

Standard optimality conditions (the KKT conditions) tell us that the (unique) optimal solution P∗ is
of the form

P∗(x) � e−λ�S ϕS(x)A(S)

Tr
�
e−λ�S ϕS(x)A(S)� , (3.15)

and
λ 6

S(B)
ε2
6

log α
ε2

, (3.16)

where the �rst inequality uses the fact that B is a feasible solution (thereby bounding the optimal
value of the dual), and the second inequality uses (3.9).

Now we will try to approximate P∗ by the square of a low-degree multi-linear polynomial in x. For
a matrix valued function P : {0, 1}n

→ �, let us de�ne deg(P) to be the maximum degree of the
entries, i.e. the maximum degree of x 7→ P(x)i j as i , j ranges over the dimensions of P.

We will use the fact that the Taylor expansion of e t �
∑
∞

k�0
tk

k! converges fast. More speci�cally, e t is
well-approximated on the interval [−τ, τ] by a polynomial of degree O(r). This also implies that
e t/2 is well-approximated by the square of a low-degree polynomial. A similar fact is true for the
matrix exponential eZ when Z is a real-symmetric matrix, and we are concerned with matrices Z
for which ‖Z‖ ∈ [−τ, τ]. Speci�cally, the following holds.
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Lemma 3.12. Let δ ∈ (0, 12 ] be given. For every real, symmetric matrix Z ∈ M(H), there is a number
k 6 3e

(‖Z‖ + log(1/ε)
log log(1/ε)

)
and a univariate degree-k polynomial p with non-negative coe�cients such that







eZ

Tr(eZ) −
p(Z)2

Tr(p(Z)2)





∗
6 δ .

Given the preceding lemma and the form of P∗ from (3.15), we should now estimate the operator
norm:

sup
x∈{0,1}n





�S ϕS(x)A(S)



 6 ‖ϕS‖∞ 



�S A(S)




(3.10)
� K · ‖ϕ‖∞ ,

and recall that ‖ϕ‖∞ and K depend only on 1.

Putting all this together with (3.16), we see that P∗ is well-approximated (in the trace norm) by a
function of the form

P∗(x) ≈ p
(
�
S
ϕS(x)A(S)

)2
where p is a polynomial of degree O

( log α
ε2

)
. Moreover, deg(ϕS) � deg(ϕ) 6 m (since ϕ is a function

on m bits).

If we set Q(x) � p
�
�S ϕS(x)A(S)�2, then

deg(Q) 6 O
(
log α
ε2

)
m ,

where the implicit constant depends on the function 1.

Just as with our bound (2.8) in the setting of non-negative factorizations, this bound is not nearly
good enough since certainly we will have d 6 m (since 1 : {0, 1}m

→ �+).

But again random restriction is the key (and the way we employ the bound (3.11) on the A-side of
the psd factorization).

Note that

�
S,x

�
ϕS(x)Tr(A(S)Q(x))� � �

S
�

y∈{0,1}S

[
ϕ(y)Tr

(
A(S) �

x∈{0,1}n :x |S�y
Q(x)

)]
.

Just as in Section 2.5, it turns out that with high probability over the choice of |S| � m, it holds that

y 7→ �
x∈{0,1}n :x |S�y

Q(x)

is well-approximated by the square of a much lower degree polynomial. The averaging over all
bits outside of S again achieves a drastic reduction in the “simplicity” of the hypothesis. The
quantitative calculation essentially parallels that in Section 2.5, with the added complication that
we are averaging outside the square (recall that Q � p(·)2). This can be handled using a bit of Fourier
analysis.
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