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Abstract

In a hypergraph on 𝑛 vertices where 𝐷 is the maximum size of a hyperedge, there is a
weighted hypergraph spectral �-sparsifier with at most 𝑂(�−2 log(𝐷) · 𝑛 log 𝑛) hyperedges.
This improves over the bound of Kapralov, Krauthgamer, Tardos and Yoshida (2021) who
achieve 𝑂(�−4𝑛(log 𝑛)3), as well as the bound 𝑂(�−2𝐷3𝑛 log 𝑛) obtained by Bansal, Svensson,
and Trevisan (2019). The same sparsification result was obtained independently by Jambulapati,
Liu, and Sidford (2022).
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1 Introduction

Consider a weighted hypergraph 𝐻 = (𝑉, 𝐸, 𝑤) with 𝑤 ∈ ℝ𝐸
+ and the corresponding energy: For

𝑥 ∈ ℝ𝑉 ,
𝑄𝐻(𝑥) :=

∑
𝑒∈𝐸

𝑤𝑒 max
{𝑢,𝑣}∈(𝑒2)

(𝑥𝑢 − 𝑥𝑣)2

The problem of minimizing the energy 𝑄𝐻 over various convex bodies occurs in many applied
contexts, especially in machine learning; we refer to the discussion in [KKTY21a].
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In the graph case—when all the hyperedges have cardinality 2—this corresponds to the quadratic
form associated to the weighted Laplacian and carries a physical interpretation as the potential
energy of a family of springs indexed by {𝑢, 𝑣} ∈ 𝐸 whose respective endpoints are pinned at 𝑥𝑢
and 𝑥𝑣 . Let us mention the appealing analog for hypergraphs: If we stretch a rubber band around
vertices pinned at locations {𝑥𝑢 : 𝑢 ∈ 𝑒}, then max{𝑢,𝑣}∈(𝑒2)(𝑥𝑢 − 𝑥𝑣)

2 is proportional to its potential
energy. Here the weight 𝑤𝑒 represents the elasticity of the band.

For hypergraphs, the edge set 𝐸 could have cardinality as large 2|𝑉 |, and one can ask if there
is a substantially smaller hypergraph that approximates the energy for every configuration of
vertices. Soma and Yoshida [SY19] formalized the following notion of spectral sparsification
for hypergraphs, generalizing the well-studied notion for graphs [ST11]. Say that a weighted
hypergraph �̃� = (𝑉, �̃�, �̃�) is a spectral �-sparsifier for 𝐻 if �̃� ⊆ 𝐸, and

|𝑄𝐻(𝑥) −𝑄�̃�(𝑥)| ⩽ �𝑄𝐻(𝑥), ∀𝑥 ∈ ℝ𝑉 . (1.1)

We will use 𝑛 := |𝑉 | throughout. The authors [SY19] showed that one can always find a spectral
�-sparsifier �̃� with |�̃� | ⩽ 𝑂(𝑛3/�2). In [BST19], the authors established a bound of 𝑂(�−2𝐷3𝑛 log 𝑛),
where𝐷 := max{|𝑒 | : 𝑒 ∈ 𝐸} is often called the rank of𝐻, and subsequently the authors of [KKTY21b]
achieved an upper bound of 𝑛𝐷(�−1 log 𝑛)𝑂(1).

Finally, in a recent and remarkable breakthrough, the authors of [KKTY21a] show that one can
obtain a spectral sparsifier with at most 𝑂(𝑛(log 𝑛)3/�4) hyperedges, bypassing the polynomial
dependence on the rank, and coming within poly(�−1 log 𝑛) factors of the optimal bound. By
refining their approach via Talagrand’s powerful generic chaining theory, we obtain the following
improvement.

Theorem 1.1. For any 𝑛-vertex weighted hypergraph𝐻 = (𝑉, 𝐸, 𝑤) and � > 0, there is a spectral �-sparsifier
�̃� = (𝑉, �̃�, �̃�) for 𝐻 with

|�̃� | ⩽ 𝑂
(
log𝐷
�2 𝑛 log 𝑛

)
,

where 𝐷 := max𝑒∈𝐸 |𝑒 |.

As in many prior works, Theorem 1.1 is proved by defining a distribution on 𝐸 and then sampling
edges independently from this distribution. For approaches based on independent sampling, the
bound of Theorem 1.1 is tight up to a constant factor for every fixed 𝐷. In particular, this generalizes
the analysis of independent random sampling for graph sparsifiers [SS11] where 𝐷 = 2.

It should be noted that for cut sparsifiers, the log𝐷 factor can be removed [CKN20]. This
corresponds to the weaker notion where we only require that (1.1) holds for 𝑥 ∈ {−1, 1}𝑉 . Whether
the log𝐷 factor can be removed in general remains an intriguing open question.

Our proof of Theorem 1.1 entails an algorithm for constructing the sparsifier �̃� whose running
time is polynomial in the size of the input. But our sampling analysis can also be applied directly to
the faster algorithm presented in [KKTY21a] whose running time is |𝐸 |𝐷 poly(log |𝐸 |) + poly(𝑛).

Theorem 1.1 was proved independently and concurrently by Jambulapati, Liu, and Sidford
[JLS22], via a closely related approach. While their main chaining result is somewhat less general
than the one proved here (see (1.5) below), they also present a near-linear time algorithm for
generating suitable sampling probabilities {�𝑒 : 𝑒 ∈ 𝐸}. This improves the running time to
|𝐸 |𝐷 poly(log |𝐸 |).
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1.1 The random selector method and chaining for subgaussian processes

Suppose we have a probability distribution � ∈ ℝ𝐸
+ on hyperedges in 𝐻. We sample hyperedges

�̃� = {𝑒1 , 𝑒2 , . . . , 𝑒𝑀} independently according to �, and define the random weighted hypergraph
�̃� = (𝑉, �̃�, �̃�) so that

𝑄�̃�(𝑥) =
1
𝑀

𝑀∑
𝑘=1

𝑤𝑒𝑘
�𝑒𝑘

𝑄𝑒𝑘 (𝑥) ,

where we define
𝑄𝑒(𝑥) := max

{𝑖 , 𝑗}∈(𝑒2)
(𝑥𝑖 − 𝑥 𝑗)2 ,

and the edge weights

�̃�𝑒 :=
# {𝑘 ∈ [𝑀] : 𝑒𝑘 = 𝑒}

𝑀
· 𝑤𝑒
�𝑒

. (1.2)

In particular, this gives 𝔼[𝑄�̃�(𝑥)] = 𝑄𝐻(𝑥) for all 𝑥 ∈ ℝ𝑉 .
Now in order to find a spectral �-sparsifier, we want to choose 𝑀 sufficiently large so that

𝔼 max
𝑥:𝑄𝐻 (𝑥)⩽1

��𝑄𝐻(𝑥) −𝑄�̃�(𝑥)
�� ⩽ � .

To control concentration of 𝑄�̃�(𝑥) around its mean, it suffices to bound the average maximal
fluctuations. Thus by a standard sort of reduction (see Section 3.1 and also [Tal14, Lem 9.1.11] for a
general formulation), it suffices to prove that for any fixed hyperedges 𝑒1 , . . . , 𝑒𝑀 ∈ 𝐸,

𝔼 max
𝑥:𝑄𝐻 (𝑥)⩽1

𝑀∑
𝑘=1

�𝑘
𝑤𝑒𝑘
�𝑒𝑘

𝑄𝑒𝑘 (𝑥) ⩽ 𝑂(�𝑀) , (1.3)

where �1 , . . . , �𝑀 ∈ {−1, 1} are i.i.d. random signs.
Thus our task is now to control the left-hand side of (1.3). If we define the random variable

𝑉𝑥 :=
𝑀∑
𝑘=1

�𝑘
𝑤𝑒𝑘
�𝑒𝑘

𝑄𝑒𝑘 (𝑥) ,

then {𝑉𝑥 : 𝑥 ∈ ℝ𝑛} is a subgaussian process (defined in (2.1)) with respect to the (semi)metric

𝑑(𝑥, �̂�) :=

(
𝑀∑
𝑘=1

(
𝑤𝑒𝑘
�𝑒𝑘

)2 ��𝑄𝑒𝑘 (𝑥) −𝑄𝑒𝑘 (�̂�)
��2)1/2

.

There are well-developed tools for studying quantities like 𝔼max{𝑉𝑥 : 𝑄𝐻(𝑥) ⩽ 1}, but they rely
on an understanding of the geometry of the space (ℝ𝑛 , 𝑑), and a correct choice of distribution � is
essential for making this geometry well-behaved.

Importance sampling. For spectral graph sparsification, one chooses the sampling probability �𝑒
to be proportional to the effective resistance across 𝑒 [SS11]. In order to extend this to hypergraphs,
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the authors of [BST19] define sampling probabilities {�𝑒 : 𝑒 ∈ 𝐸} derived from the graph 𝐺 = (𝑉, 𝐹),
where 𝐹 :=

⋃
𝑒∈𝐸

(𝑒
2
)

is a union of cliques on every hyperedge. They take

�𝑒 ∝
∑

{𝑢,𝑣}∈(𝑒2)
R𝑢𝑣 ,

where R𝑢𝑣 denotes the effective resistance between a pair of vertices 𝑢, 𝑣 in 𝐺.
To remove the polynomial dependence on 𝐷, the authors of [KKTY21a] choose a weighted graph

𝐺 = (𝑉, 𝐹, 𝑐) and define
�𝑒 ∝ 𝑤𝑒 max

{
R𝑢𝑣 : {𝑢, 𝑣} ∈

(𝑒
2
)}
.

Now R𝑢𝑣 is the effective resistance in 𝐺, where edges {𝑢, 𝑣} ∈ 𝐹 have conductance 𝑐𝑢𝑣 .
Let 𝐿𝐺 denote the corresponding (weighted) graph Laplacian, and use 𝐿+

𝐺
to denote its pseu-

doinverse. Define 𝑇 := {𝑣 ∈ ℝ𝑛 : 𝑄𝐻(𝐿+/2
𝐺
𝑣) ⩽ 1}. This construction of the sampling probabilities

allows us to write

𝔼 max
𝑄𝐻 (𝑥)⩽1

𝑉𝑥 = 𝔼max
𝑣∈𝑇

𝑀∑
𝑘=1

�𝑘 max
{𝑖 , 𝑗}∈𝑒𝑘

⟨𝑣, 𝑦𝑒𝑘
𝑖 𝑗
⟩2 , (1.4)

for a family of vectors {𝑦𝑒𝑘
𝑖 𝑗
} that depends on our choice of edge conductances 𝑐 ∈ ℝ𝐹

+ in 𝐺.
A central component of this approach is the existence of conductances that ensure two key

properties:

1. 𝑇 ⊆ 𝐵𝑛2 := {𝑥 ∈ ℝ𝑛 : ∥𝑥∥ ⩽ 1},

2. ∥𝑦𝑒𝑘
𝑖 𝑗
∥ ⩽ 𝑂(

√
𝑛) for all 𝑘 = 1, . . . , 𝑀 and {𝑖 , 𝑗} ∈

(𝑒𝑘
2
)
.

We return to a discussion of these properties in a moment.

Chaining bounds. Note that the right-hand side of (1.4) can be written as

𝔼max
𝑣∈𝑇

𝑀∑
𝑘=1

�𝑘𝑁𝑘(𝑣)2 ,

where 𝑁𝑘 is an ℓ∞ norm on a subset of the coordinates of 𝐴𝑣, and 𝐴 is a matrix whose rows are the
vectors {𝑦𝑒𝑘

𝑖 𝑗
}. Thus in Section 2, we apply aspects of the generic chaining theory (see the extensive

reference [Tal14]) to the analysis of such expected maxima.
For readers familiar with the theory, let us note that a bound of |�̃� | ⩽ 𝑂(�−2𝑛(log 𝑛)3) in

Theorem 1.1 follows from applying Dudley’s entropy bound (cf. (2.4)) in a straightforward way. A
bound of |�̃� | ⩽ 𝑂(�−2𝑛(log 𝑛)2) follows from a deeper inequality of Talagrand (see Theorem 2.2
and Section 2.2) that exploits property (1) above, that 𝑇 is a subset of the Euclidean unit ball.

Finally, in order to achieve |�̃� | ⩽ 𝑂(�−2 log(𝐷) · 𝑛 log 𝑛), we need to exploit further structure of
the norms {𝑁𝑘} in a novel way. Our approach is modeled after Rudelson’s geometric argument
[Rud99a] which, roughly speaking, handles the case where each 𝑁𝑘 is a 1-dimensional norm, as
well as Talagrand’s method of chaining via growth functionals (see Section 2.3 and Section 2.4).

To state this bound, let us consider arbitrary norms 𝑁1 , . . . , 𝑁𝑀 on ℝ𝑛 . Define:

� := 𝔼 max
𝑘∈[𝑀]

𝑁𝑘(𝑔) ,

4



� := max
𝑘∈[𝑀]

(
𝔼[𝑁𝑘(𝑔)2]

)1/2
,

where 𝑔 is a standard 𝑛-dimensional Gaussian. In Section 2.4, we prove that for any 𝑇 ⊆ 𝐵𝑛2 ,

𝔼 sup
𝑥∈𝑇

𝑀∑
𝑘=1

�𝑘𝑁𝑘(𝑥)2 ≲ sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)4ª®¬
1/2

+
(
�
√

log 𝑛 + �
)
· sup
𝑥∈𝑇

(
𝑀∑
𝑘=1

𝑁𝑘(𝑥)2
)1/2

(1.5)

When 𝑀 = 𝑚, each 𝑁𝑘 is a 1-dimensional norm 𝑁𝑘(𝑥) := |⟨𝑥, 𝑎𝑘⟩| for some 𝑎𝑘 ∈ ℝ𝑛 , and
𝑇 = 𝐵𝑛2 , this lemma recovers Rudelson’s concentration bound for Bernoulli sums of rank-1 matrices
[Rud99b] (as mentioned there, the inequality we state next is a consequence of the noncommutative
Khintchine inequalities [LPP91]).

Observe that 𝑁𝑘(𝑥)2 = ⟨𝑥, 𝑎𝑘⟩2 = ⟨𝑥, 𝑎𝑘𝑎∗𝑘𝑥⟩, and using ∥ · ∥𝑜𝑝 to denote the operator norm, the
preceding bound asserts that

𝔼

 𝑚∑
𝑘=1

�𝑘𝑎𝑘𝑎
∗
𝑘


𝑜𝑝

= 𝔼max
𝑥∈𝐵𝑛2

〈
𝑥,

(
𝑚∑
𝑘=1

�𝑘𝑎𝑘𝑎
∗
𝑘

)
𝑥

〉
⩽ 𝑂(

√
log(𝑚 + 𝑛)) max

𝑘∈[𝑚]
∥𝑎𝑘 ∥ ·

 𝑚∑
𝑘=1

𝑎𝑘𝑎
∗
𝑘

1/2

𝑜𝑝

,

where we use � ⩽ 𝑂(1)max𝑘∈[𝑚] ∥𝑎𝑘 ∥ and � ⩽ 𝑂(
√

log𝑚)max𝑘∈[𝑚] ∥𝑎𝑘 ∥.
When applying (1.5) to hypergraph sparsification, one picks up an additional

√
log𝐷 factor

because each 𝑁𝑘 is an ℓ∞ norm on a subset of at most 𝐷 coordinates.

Remark 1.2. As far as we know, it is an open problem to replicate consequences of the noncom-
mutative Khintchine bound for higher-rank matrices using chaining, i.e., in the setting where
𝑁𝑘(𝑥) = ∥𝐴𝑘𝑥∥ for matrices 𝐴1 , . . . , 𝐴𝑀 .

Choosing good conductances. In order to satisfy properties (1) and (2) above, one chooses
nonnegative numbers {

𝑐𝑒𝑖𝑗 ⩾ 0 : {𝑖 , 𝑗} ∈
(𝑒
2
)
, 𝑒 ∈ 𝐸

}
for which ∑

{𝑖 , 𝑗}∈(𝑒2)
𝑐𝑒𝑖𝑗 = 𝑤𝑒 , ∀𝑒 ∈ 𝐸 . (1.6)

Define the edge conductances 𝑐𝑖 𝑗 :=
∑
𝑒∈𝐸:{𝑖 , 𝑗}∈(𝑒2) 𝑐

𝑒
𝑖𝑗
. As argued in Section 3.2, any such choice

satisfies property (1).
Let R𝑖 𝑗 denote the effective resistance between {𝑖 , 𝑗} ∈ 𝐹 in the weighted graph 𝐺 = (𝑉, 𝐹, 𝑐).

To satisfy property (2), it suffices that for all hyperedges 𝑒 ∈ 𝐸, the effective resistances R𝑖 𝑗 are the
same for all pairs {𝑖 , 𝑗} ∈

(𝑒
2
)

with 𝑐𝑒
𝑖𝑗
> 0. (This continues to hold even if the resistances are only

comparable up to universal constant factors.)
Let 𝐽 denote the all-ones matrix and consider maximizing the quantity

log det(𝐿𝐺 + 𝐽)

over all choices of (𝑐𝑒
𝑖𝑗
) satisfying (1.6). This quantity is a concave function of the conductances

(𝑐𝑒
𝑖𝑗
) and the KKT conditions for the maximizer establish the desired property for the effective

resistances. See Section 3.3.
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This is essentially a reformulation and simplification of the method used in [KKTY21a] for
establishing the existence of nice conductances 𝑐 : 𝐹 → ℝ+. It is also reminiscent of Barthe’s
method for analyzing the Gaussian maximizers of the Brascamp-Lieb (and reverse Brascamp-Lieb)
inequalities [Bar98] (see also the treatment in [HM13]).

1.2 Notation

For two expressions 𝐴 and 𝐵, we will use the equivalent notations 𝐴 ≲ 𝐵 and 𝐴 ⩽ 𝑂(𝐵) to denote
that there is a constant 𝐶 > 0 such that 𝐴 ⩽ 𝐶𝐵. If 𝐴 and 𝐵 depend on some parameters 𝛼1 , 𝛼2 , . . .,
we use the notation 𝐴 ≲𝛼1 ,𝛼2 ,... 𝐵 to denote that there is a number 𝐶 = 𝐶(𝛼1 , 𝛼2 , . . .) such that
𝐴 ⩽ 𝐶𝐵. We use 𝐴 ≍ 𝐵 to denote the conjunction of 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

A number of vector and matrix norms will appear in what follows. When 𝑥 ∈ ℝ𝑛 is a vector,
∥𝑥∥ will always refer to the standard Euclidean norm of 𝑥. For a positive integer 𝑀 ⩾ 1, we will
sometimes use the notation [𝑀] := {1, 2, . . . , 𝑀}.

2 Extrema of random processes

2.1 Background on generic chaining

A space (𝑇, 𝑑) is called a 𝐾-quasimetric if satisfies

1. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑇 .

2. 𝑑(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑇 .

3. There is a constant 𝐾 > 0 such that

𝑑(𝑥, 𝑦) ⩽ 𝐾 (𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)) , ∀𝑥, 𝑦, 𝑧 ∈ 𝑇 .

Say that (𝑇, 𝑑) is a quasimetric space if (𝑇, 𝑑) is a 𝐾-quasimetric for some 𝐾 > 0.
Consider a distance 𝑑 on 𝑇. A random process {𝑉𝑥 : 𝑥 ∈ 𝑇} is said to be subgaussian with respect

to 𝑑 if there is a number 𝛼 > 0 such that

ℙ
(
|𝑉𝑥 −𝑉𝑦 | > 𝑡

)
⩽ exp

(
−𝛼 𝑡2

𝑑(𝑥, 𝑦)2

)
, 𝑡 > 0 . (2.1)

The generic chaining functional. For a quasimetric space (𝑇, 𝑑), let us recall Talagrand’s generic
chaining functional [Tal14, Def. 2.2.19]. Define 𝑁ℎ := 22ℎ . Then

𝛾2(𝑇, 𝑑) := inf
{𝒜ℎ}

sup
𝑥∈𝑇

∞∑
ℎ=0

2ℎ/2diam𝑑(𝒜ℎ(𝑥)) , (2.2)

where the infimum runs over all sequences {𝒜ℎ : ℎ ⩾ 0} of partitions of 𝑇 satisfying |𝒜ℎ | ⩽ 𝑁ℎ

for each ℎ ⩾ 0. Note that we use the notation 𝒜ℎ(𝑥) for the unique set of 𝒜ℎ that contains 𝑥, and
diam𝑑(𝑆) := sup𝑥,𝑦∈𝑆 𝑑(𝑥, 𝑦) for 𝑆 ⊆ 𝑇. The next theorem constitutes the generic chaining upper
bound; see [Tal14, Thm 2.2.18].
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Theorem 2.1. If {𝑉𝑥 : 𝑥 ∈ 𝑇} is a centered subgaussian process satisfying (2.1) with respect to a
𝐾-quasimetric (𝑇, 𝑑), then

𝔼 sup
𝑥∈𝑇

𝑉𝑥 ≲𝐾,𝛼 𝛾2(𝑇, 𝑑) . (2.3)

Define the entropy numbers 𝑒ℎ(𝑇, 𝑑) := inf{sup𝑡∈𝑇 𝑑(𝑡 , 𝑇ℎ) : 𝑇ℎ ⊆ 𝑇, |𝑇ℎ | ⩽ 22ℎ }. This is the
infimum of numbers 𝑟 > 0 such that 𝑇 can be covered by at most 22ℎ balls of radius 𝑟. A classical
way of controlling 𝛾2(𝑇, 𝑑) is given by Dudley’s entropy bound (see, e.g., [Tal14, Prop 2.2.10]):

𝛾2(𝑇, 𝑑) ≲
∑
ℎ⩾0

2ℎ/2𝑒ℎ(𝑇, 𝑑) . (2.4)

But often additional structure of the space (𝑇, 𝑑) allows one to improve on (2.4). The next lemma
is a consequence of [Tal14, Thm 4.1.11 & (4.23)]. It actually holds whenever 𝑇 is the unit ball of a
uniformly 2-convex Banach space and 𝑑 is induced by some (possibly different) norm.
Theorem 2.2. Suppose that 𝑇 = 𝐵𝑛2 is the unit Euclidean ball in ℝ𝑛 and ∥ · ∥𝑋 is a norm on ℝ𝑛 . Then,

𝛾2(𝑇, ∥ · ∥𝑋) ≲
(∑
ℎ⩾0

(
2ℎ/2𝑒ℎ(𝑇, ∥ · ∥𝑋)

)2
)1/2

.

In order to bound the entropy numbers 𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝑋), we will use the following classical fact;
see, e.g., [LT11, (3.15)].
Lemma 2.3 (Dual Sudakov inequality). Let 𝐵𝑛2 denote the unit Euclidean ball, and suppose that ∥ · ∥𝑋 is a
norm on ℝ𝑛 . Then

𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝑋) ≲ 2−ℎ/2 𝔼 ∥𝑔∥𝑋 ,
where 𝑔 is a standard 𝑛-dimensional Gaussian.
Corollary 2.4. If ∥ · ∥𝑋 is a norm on ℝ𝑛 , then

𝛾2(𝐵𝑛2 , ∥ · ∥𝑋) ≲ diam(𝐵𝑛2 , ∥ · ∥𝑋) +
√

log 𝑛 𝔼 ∥𝑔∥𝑋 ,
where 𝑔 is a standard 𝑛-dimensional Gaussian.
Proof. A straightforward volume argument shows that any set of 𝛿-separated points in (𝐵𝑛2 , ∥ · ∥)
must have cardinality at most (4/𝛿)𝑛 , and therefore

𝑒ℎ(𝑇, ∥ · ∥) ⩽ 4 · 𝑁−1/𝑛
ℎ

= 4 · 2−2ℎ/𝑛 .

Taking 𝐿 := diam(𝐵𝑛2 , ∥ · ∥𝑋), we have 𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝑋) ⩽ 𝐿 · 𝑒ℎ(𝐵𝑛2 , ∥ · ∥), and therefore

𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝑋) ⩽ 4𝐿 · (2−2ℎ/𝑛).

Denote 𝑆 := supℎ⩾0 2ℎ/2𝑒ℎ(𝑇, ∥ · ∥𝑋). Applying Theorem 2.2 yields, for any ℎ0 ⩾ 0,

𝛾2(𝑇, 𝑑) ≲ 𝑆
√
ℎ0 + 4𝐿

(∑
ℎ⩾ℎ0

(2ℎ/22−2ℎ/𝑛)2
)1/2

.

Choosing ℎ0 ⩾ 2 log 𝑛 bounds the latter sum by 𝑂(1), yielding

𝛾2(𝑇, 𝑑) ≲ 𝑆
√

log 𝑛 + 𝐿 .
To conclude, use Lemma 2.3 to bound 𝑆. □
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2.2 Warm up

The next lemma will allow us to establish the existence of hypergraph spectral sparsifiers with at
most 𝑂(�−2𝑛(log 𝑛)2) hyperedges. It also provides a nice warm up for the more delicate arguments
in Section 2.4.

Let 𝐴 : ℝ𝑛 → ℝ𝑚 denote a linear operator. We use the notation

∥𝐴∥2→∞ := max
∥𝑥∥⩽1

∥𝐴𝑥∥∞ .

This is equal to the maximum ℓ2 norm of a row of 𝐴. Define the norm

∥𝑥∥𝐴 := ∥𝐴𝑥∥∞ ,

and let us observe the following.

Lemma 2.5. If 𝑔 is a standard 𝑛-dimensional Gaussian, it holds that

𝔼 ∥𝑔∥𝐴 ≲ ∥𝐴∥2→∞
√

log𝑚 .

In particular, Lemma 2.3 gives

𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝐴) ≲ 2−ℎ/2
√

log𝑚∥𝐴∥2→∞ .

Proof. If 𝑎1 , . . . , 𝑎𝑚 are the rows of 𝐴 and 𝑔 is an 𝑛-dimensional Gaussian, then

𝔼 ∥𝐴𝑔∥∞ = 𝔼max
𝑖∈[𝑚]

|⟨𝑔 , 𝑎𝑖⟩| ≲ max
𝑖∈[𝑚]

∥𝑎𝑖 ∥
√

log𝑚 = ∥𝐴∥2→∞
√

log𝑚 . □

Additionally, let 𝜑1 , 𝜑2 , . . . , 𝜑𝑀 : ℝ𝑚 → ℝ be arbitrary functions.

Lemma 2.6. For any subset 𝑇 ⊆ 𝐵𝑛2 , it holds that

𝔼 sup
𝑥∈𝑇

𝑀∑
𝑗=1

�𝑗𝜑 𝑗(𝐴𝑥)2 ≲
√

log𝑚 log 𝑛 ∥𝐴∥2→∞ · sup
𝑗∈[𝑀],

∥𝑧−𝑧′∥∞⩽1

|𝜑 𝑗(𝑧) − 𝜑 𝑗(𝑧′)| · sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝜑 𝑗(𝐴𝑥)2ª®¬
1/2

,

where �1 , . . . , �𝑀 are i.i.d. Bernoulli ±1 random variables.

Proof. Define

𝛼 := max
𝑗∈[𝑀]

sup
∥𝑧−𝑧′∥∞⩽1

|𝜑 𝑗(𝑧) − 𝜑 𝑗(𝑧′)| , (2.5)

𝛽 := sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝜑 𝑗(𝐴𝑥)2ª®¬
1/2

, (2.6)

𝑉𝑥 :=
𝑀∑
𝑗=1

�𝑗𝜑 𝑗(𝐴𝑥)2 ,
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and note that {𝑉𝑥 : 𝑥 ∈ ℝ𝑛} is a subgaussian process with respect to the distance

𝑑(𝑥, �̂�) := ©«
𝑀∑
𝑗=1

��𝜑 𝑗(𝐴𝑥)2 − 𝜑 𝑗(𝐴�̂�)2
��2ª®¬

1/2

.

Thus in light of (2.3), it suffices to prove that

𝛾2(𝑇, 𝑑) ≲
√

log𝑚 log 𝑛∥𝐴∥2→∞ · 𝛼𝛽 . (2.7)

Note that for 𝑥, �̂� ∈ 𝑇,

𝑑(𝑥, �̂�)2 =

𝑀∑
𝑗=1

(
𝜑 𝑗(𝐴𝑥) − 𝜑 𝑗(𝐴�̂�)

)2 (
𝜑 𝑗(𝐴𝑥) + 𝜑 𝑗(𝐴�̂�)

)2

⩽ 2
𝑀∑
𝑗=1

(
𝜑 𝑗(𝐴𝑥) − 𝜑 𝑗(𝐴�̂�)

)2
(
𝜑 𝑗(𝐴𝑥)2 + 𝜑 𝑗(𝐴�̂�)2

)
(2.5)
⩽ 2𝛼2 ∥𝐴(𝑥 − �̂�)∥2

∞

𝑀∑
𝑗=1

(
𝜑 𝑗(𝐴𝑥)2 + 𝜑 𝑗(𝐴�̂�)2

)
(2.6)
⩽ 4𝛼2𝛽2 ∥𝑥 − �̂�∥2

𝐴 . (2.8)

In particular, we have

𝛾2(𝑇, 𝑑) ⩽ 2𝛼𝛽 · 𝛾2(𝑇, ∥ · ∥𝐴) ⩽ 2𝛼𝛽 · 𝛾2(𝐵𝑛2 , ∥ · ∥𝐴), (2.9)

where the last inequality uses 𝑇 ⊆ 𝐵𝑛2 .
Noting that diam(𝐵𝑛2 , ∥ · ∥𝐴) ⩽ 2∥𝐴∥2→∞, we can thus apply Lemma 2.5 and Corollary 2.4 with

∥ · ∥𝑋 = ∥ · ∥𝐴 to conclude that

𝛾2(𝐵𝑛2 , ∥ · ∥𝐴) ≲ ∥𝐴∥2→∞
√

log𝑚 log 𝑛 .

Combining this with (2.9) completes our verification of (2.7). □

In Section 2.4, we will obtain an improved bound by using convexity in a stronger way. In
particular, we will assume that each of the functions 𝜑 𝑗 in Lemma 2.6 is a norm on ℝ𝑚 .

2.3 Growth functionals

Talagrand introduced a powerful way to control 𝛾2(𝑇, 𝑑) via the existence of certain growth
functionals. For 𝑥 ∈ 𝑇 and 𝜌 > 0, define the ball

𝐵𝑑(𝑥, 𝜌) := {𝑦 ∈ 𝑇 : 𝑑(𝑥, 𝑦) ⩽ 𝜌} . (2.10)

Definition 2.7 (Separated sets). Let (𝑇, 𝑑) denote a metric space and consider numbers 𝑎 > 0, 𝑟 ⩾ 4.
Say that subsets 𝐻1 , . . . , 𝐻𝑚 ⊆ 𝑇 are (𝑎, 𝑟)-separated if

𝐻ℓ ⊆ 𝐵𝑑(𝑥ℓ , 𝑎/𝑟), ℓ = 1, . . . , 𝑚 ,

where 𝑥1 , . . . , 𝑥𝑚 ∈ 𝑇 are points satisfying

𝑎 ⩽ 𝑑(𝑥ℓ , 𝑥ℓ ′) ⩽ 𝑎𝑟, ∀ℓ ≠ ℓ ′. (2.11)
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Definition 2.8 (The growth condition). Consider nonnegative functionals {𝐹ℎ : ℎ ⩾ 0} defined on
subsets of a metric space (𝑇, 𝑑) and which satisfy the following two conditions for every ℎ ⩾ 0:

𝐹ℎ(𝑆) ⩽ 𝐹ℎ(𝑆′), ∀𝑆 ⊆ 𝑆′ ⊆ 𝑇 ,
𝐹ℎ+1(𝑆) ⩽ 𝐹ℎ(𝑆), ∀ 𝑆 ⊆ 𝑇 .

Say that such functionals satisfy the growth condition with parameters 𝑟 ⩾ 4 and 𝑐∗ > 0 if for any
integer ℎ ⩾ 0 and 𝑎 > 0, the following holds true with 𝑚 = 𝑁ℎ+1: For each collection of subsets
𝐻1 , . . . , 𝐻𝑚 ⊆ 𝑇 that are (𝑎, 𝑟)-separated, we have

𝐹ℎ

(⋃
ℓ⩽𝑚

𝐻ℓ

)
⩾ 𝑐∗𝑎2ℎ/2 + min

ℓ⩽𝑚
𝐹ℎ+1(𝐻ℓ ) . (2.12)

Theorem 2.9 ([Tal14, Thm 2.3.16]). Let (𝑇, 𝑑) be a 𝐾-quasimetric space and consider a sequence of
functionals {𝐹ℎ} satisfying the growth condition (cf. Definition 2.8) with parameters 𝑟 ⩾ 4 and 𝑐∗ > 0.
Then,

𝛾2(𝑇, 𝑑) ≲𝐾
𝑟

𝑐∗
𝐹0(𝑇) + 𝑟 · diam𝑑(𝑇) .

Remark 2.10 (Packing/covering duality). For the reader encountering Definition 2.8 and Theorem 2.9
for the first time, the role of the functionals {𝐹ℎ} might appear mysterious. Some intuition can be
gained by considering the duality between covering and packing: A set 𝑆 in some metric space
can be covered by 𝑚 balls of radius 𝑟 > 0 if it is impossible to find 𝑚 points in 𝑆 that are pairwise
separated by distance 𝑟.

The quantity 𝛾2(𝑇, 𝑑) (cf. (2.2)) is a sort of multiscale covering functional. The growth functionals
{𝐹ℎ} measure the “size” of packings of various cardinalities, and (2.12) asserts a form of packing
impossibility. This makes Theorem 2.9 a multiscale analog of the simple packing/covering argument
recalled above.

Those familiar with convex optimization and duality may find the approach of [BDOS21]
instructive in this regard. It is shown that the corresponding fractional multiscale covering and
packing values are equal by convex duality, and then a rounding argument establishes that the
integral versions are equivalent up to constant factors.

We will use the following corollary of Theorem 2.9 that simplifies the construction of functionals
if we have a bound on the growth rate of nets in (𝑇, 𝑑).

Corollary 2.11. Let (𝑇, 𝑑) be a 𝐾-quasimetric and assume there are numbers 𝑘, 𝐿 ⩾ 1 and 𝑟 ⩾ 4 such that
that for every 𝑎 > 0,

𝐻1 , . . . , 𝐻𝑚 ⊆ 𝑇 are (𝑎, 𝑟)-separated =⇒ 𝑚 ⩽

(
𝐿

𝑎

) 𝑘
. (2.13)

Let ℎ0 be the largest integer ℎ ⩾ 0 such that

22ℎ ⩽ (2𝐿)𝑘(ℎ−1)/2 . (2.14)

Consider a sequence of functionals {𝐹0 , 𝐹1 , . . . , 𝐹ℎ0} satisfying the growth condition (2.12) with parameters
𝑟 and 𝑐∗ > 0. Then,

𝛾2(𝑇, 𝑑) ≲𝐾
𝑟

𝑐∗
𝐹0(𝑇) + 𝑟 · diam𝑑(𝑇) (2.15)
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Proof. Define the numbers

𝑐 𝑗 := 𝑐∗𝐿 · 2−2𝑗/𝑘2(𝑗−1)/2

𝐶0 :=
∞∑

𝑗=ℎ0+1
𝑐 𝑗 ,

and note that 𝐶0 ≲ 𝑐∗, since (2.14) is violated for every ℎ ⩾ ℎ0 + 1.
Define a new family of functionals {�̃�ℎ : ℎ ⩾ 0} so that for every 𝑆 ⊆ 𝑇,

�̃�ℎ(𝑆) := 𝐹ℎ(𝑆) + 𝐶0 , ℎ = 0, 1, . . . , ℎ0 ,

�̃�ℎ(𝑆) := 𝐹ℎ0(𝑆) + 𝐶0 −
ℎ∑

𝑗=ℎ0+1
𝑐 𝑗 , ℎ > ℎ0 .

By construction, these satisfy the growth condition Definition 2.8 since for ℎ ⩾ ℎ0, if𝐻1 , . . . , 𝐻𝑚 ⊆ 𝑇
are (𝑎, 𝑟)-separated sets with 𝑚 = 22ℎ+1 , then

�̃�ℎ+1

(⋃
ℓ⩽𝑚

𝐻ℓ

)
⩾ 𝑐ℎ+1 + �̃�ℎ

(⋃
ℓ⩽𝑚

𝐻ℓ

)
⩾ 𝑐ℎ+1 + min

ℓ⩽𝑚
�̃�ℎ (𝐻ℓ ) ⩾ 𝑐∗𝑎2ℎ/2 + min

ℓ⩽𝑚
�̃�ℎ (𝐻ℓ ) ,

where the last inequality uses the fact that 𝑎 ⩽ 𝐿2−2ℎ+1/𝑘 from (2.13). Moreover, we have

�̃�0(𝑇) = 𝐹0(𝑇) + 𝐶0 ⩽ 𝐹0(𝑇) + 𝑂(𝑐∗) ,

and therefore we can apply Theorem 2.9 to {�̃�ℎ} to complete the proof. □

2.4 Further exploiting convexity

We will now use the growth functional approach (cf. Section 2.3) to prove a more elaborate upper
bound under the additional assumption that our summands are derived from norms. This will
allow us in Section 3 to find spectral �-sparsifiers with 𝑂

(
log𝐷
�2 𝑛 log 𝑛

)
hyperedges.

Let 𝑁1 , 𝑁2 , . . . , 𝑁𝑀 be norms on ℝ𝑛 and define

� := 𝔼 max
𝑗∈[𝑀]

𝑁𝑗(𝑔) ,

� := max
𝑗∈[𝑀]

(
𝔼[𝑁𝑗(𝑔)2]

)1/2
,

where 𝑔 is a standard 𝑛-dimensional Gaussian.

Lemma 2.12. For any 𝑇 ⊆ 𝐵𝑛2 , it holds that

𝔼 sup
𝑥∈𝑇

𝑀∑
𝑗=1

�𝑗𝑁𝑗(𝑥)2 ≲ sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)4ª®¬
1/2

+
(
�
√

log 𝑛 + �
)
· sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)2ª®¬
1/2

,

where �1 , . . . , �𝑀 are i.i.d. Bernoulli ±1 random variables.
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Before proving the lemma, let us illustrate a corollary that we will use to construct hypergraph
sparsifiers. Consider a linear operator 𝐴 : ℝ𝑛 → ℝ𝑚 , and suppose that each 𝑁𝑖 is a (weighted) ℓ∞
norm on some subset 𝑆𝑖 ⊆ [𝑚] of the coordinates:

𝑁𝑖(𝑧) = max
𝑗∈𝑆𝑖

𝑤 𝑗 |(𝐴𝑧)𝑗 | , 𝑤 ∈ [0, 1]𝑆𝑖 . (2.16)

Let 𝑎1 , . . . , 𝑎𝑚 denote the rows of 𝐴, and observe that (𝐴𝑔)𝑗 = ⟨𝑎 𝑗 , 𝑔⟩ is a normal random variable
with variance ∥𝑎 𝑗 ∥2, and therefore

𝔼[𝑁𝑖(𝑔)]2 = max
𝑗∈𝑆𝑖

𝑤2
𝑗 |⟨𝑎 𝑗 , 𝑔⟩|

2 ≲ max
𝑗∈𝑆𝑖

∥𝑎 𝑗 ∥2 ·
√

log |𝑆𝑖 | .

Similarly, we have

� = 𝔼 max
𝑖∈[𝑀]

max
𝑗∈𝑆𝑖

𝑤 𝑗 |⟨𝑎 𝑗 , 𝑔⟩| ⩽ 𝔼max
𝑖∈[𝑚]

|⟨𝑎𝑖 , 𝑔⟩| ≲ ∥𝐴∥2→∞
√

log𝑚 ,

and
𝑀∑
𝑗=1

𝑁𝑗(𝑥)4 ⩽ ∥𝐴∥2
2→∞

𝑀∑
𝑗=1

𝑁𝑗(𝑥)2 ,

yielding the following.

Corollary 2.13. If the norms 𝑁1 , . . . , 𝑁𝑀 are of the form (2.16) for some 𝐴 : ℝ𝑛 → ℝ𝑚 and subsets
𝑆1 , . . . , 𝑆𝑀 ⊆ [𝑚] with max𝑖∈[𝑀] |𝑆𝑖 | ⩽ 𝐷, then for any 𝑇 ⊆ 𝐵𝑛2 , it holds that

𝔼 sup
𝑥∈𝑇

𝑀∑
𝑗=1

�𝑗𝑁𝑗(𝑥)2 ≲ ∥𝐴∥2→∞

√
log(𝑚 + 𝑛) log𝐷 · sup

𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)2ª®¬
1/2

,

where �1 , . . . , �𝑀 are i.i.d. Bernoulli ±1 random variables.

The proof of Lemma 2.12 is modeled after arguments of Rudelson [Rud99a] and Talagrand;
see [Tal14, §16.7] and the historical notes in [Tal14, §16.10]. A version of the latter argument
first appeared in [Rud99a], as a simplification of Rudelson’s original construction of an explicit
majorizing measure. In the proof of [Tal14, Prop 16.7.4], one encounters growth functionals of the
form 𝐹(𝑆) = 1 − inf{∥𝑢∥ : 𝑢 ∈ conv(𝑆)}, where ∥ · ∥ is a uniformly 2-convex norm. We recall this
definition.

Definition 2.14 (Uniform 𝑝-convexity). A Banach space 𝑍 is called uniformly 𝑝-convex if there is a
number � > 0 such that for all 𝑥, 𝑦 ∈ 𝑍 with ∥𝑥∥𝑍 , ∥𝑦∥𝑍 ⩽ 1,𝑥 + 𝑦2


𝑍
⩽ 1 − �∥𝑥 − 𝑦∥𝑝

𝑍
.

We remark that the statement of Lemma 2.12 actually holds when 𝑇 is a subset of the unit ball
of any uniformly 2-convex norm on ℝ𝑛 (with an implicit constant that depends on �).
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We will instead employ functionals of the form

𝐹(𝑆) = 2 − inf
∥𝑢∥2 +

𝑀∑
𝑗=1

𝑁𝑗(𝑢)2 : 𝑢 ∈ conv(𝑆)
 .

Problematically, the norm 𝑢 ↦→
(
∥𝑢∥2 +∑𝑀

𝑗=1 𝑁𝑗(𝑢)2
)1/2

is potentially very far from uniformly
2-convex, thus we have to be careful in using only 2-convexity of the Euclidean norm, along
with 2-convexity of the “outer” ℓ2 norm of the 𝑁𝑗’s. This requires application of the inequality
|𝑁𝑗(𝑥)−𝑁𝑗(�̂�)| ⩽ 𝑁𝑗(𝑥− �̂�) only at judiciously chosen points in the argument. We offer some further
explanation in Remark 2.21 after the proof.

Proof of Lemma 2.12. For a set 𝑆 ⊆ ℝ𝑛 , let conv(𝑆) denote the closed convex hull of 𝑆. Note that by
convexity,

sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)2ª®¬
1/2

= sup
𝑥∈conv(𝑇)

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)2ª®¬
1/2

.

Therefore we may replace 𝑇 by conv(𝑇) and henceforth assume that 𝑇 is compact and convex.
By scaling {𝑁𝑗}, we may assume that

sup
𝑥∈𝑇

𝑀∑
𝑗=1

𝑁𝑗(𝑥)2 = 1 . (2.17)

Define 𝑉𝑥 :=
∑𝑀
𝑗=1 �𝑗𝑁𝑗(𝑥)2. Then {𝑉𝑥 : 𝑥 ∈ ℝ𝑛} is a subgaussian process with respect to the

metric

�̃�(𝑥, �̂�) := ©«
𝑀∑
𝑗=1

|𝑁𝑗(𝑥)2 − 𝑁𝑗(�̂�)2 |2ª®¬
1/2

,

therefore from (2.3), we have
𝔼 sup

𝑥∈𝑇
𝑉𝑥 ≲ 𝛾2(𝑇, �̃�) . (2.18)

Passing to a nicer distance. Define the related distance

𝑑(𝑥, �̂�) := ©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − �̂�)2
(
𝑁𝑗(𝑥)2 + 𝑁𝑗(�̂�)2

)ª®¬
1/2

,

and note that for all 𝑥, �̂� ∈ ℝ𝑛 ,

�̃�(𝑥, �̂�)2 =

𝑀∑
𝑗=1

(
𝑁𝑗(𝑥) − 𝑁𝑗(�̂�)

)2 (
𝑁𝑗(𝑥) + 𝑁𝑗(�̂�)

)2

⩽ 2
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − �̂�)2
(
𝑁𝑗(𝑥)2 + 𝑁𝑗(�̂�)2

)
= 2 𝑑(𝑥, �̂�)2 .
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We will observe momentarily that

𝑑(𝑥, �̂�) ⩽ 2
√

2 (𝑑(𝑥, 𝑦) + 𝑑(𝑦, �̂�)) , ∀𝑥, �̂�, 𝑦 ∈ ℝ𝑛 . (2.19)

Since �̃� ⩽
√

2𝑑 and 𝑑 is a quasimetric, (2.3) gives

𝔼 sup
𝑥∈𝑇

𝑉𝑥 ≲ 𝛾2(𝑇, 𝑑) ,

and thus our goal is to establish that

𝛾2(𝑇, 𝑑) ≲ �
√

log 𝑛 + � + diam𝑑(𝑇) . (2.20)

Indeed, note that

diam𝑑(𝑇) ≲ sup
𝑥∈𝑇

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)4ª®¬
1/2

,

and therefore (2.20) yields our main claim.

Lemma 2.15. For any metric space (𝑋, 𝐷) and 𝑥0 ∈ 𝑋, it holds that the distance

�̃�(𝑥, �̂�) := 𝐷(𝑥, �̂�) (𝐷(𝑥, 𝑥0) + 𝐷(�̂� , 𝑥0))

is a 2-quasimetric.

Proof. Define 𝜓(𝑥) := 𝐷(𝑥, 𝑥0) and consider 𝑥, �̂�, 𝑦 ∈ 𝑋. Then,

�̃�(𝑥, �̂�) ⩽ (𝐷(𝑥, 𝑦) + 𝐷(�̂� , 𝑦)) (𝜓(𝑥) + 𝜓(�̂�))
⩽ 𝐷(𝑥, 𝑦) (𝜓(𝑥) + 𝜓(𝑦) + 𝐷(�̂� , 𝑦)) + 𝐷(�̂� , 𝑦) (𝜓(�̂�) + 𝜓(𝑦) + 𝐷(𝑥, 𝑦))
⩽ �̃�(𝑥, 𝑦) + �̃�(�̂� , 𝑦) + 2𝐷(𝑥, 𝑦)𝐷(�̂� , 𝑦) .

Now use 2𝐷(𝑥, 𝑦)𝐷(�̂� , 𝑦) ⩽ 𝐷(𝑥, 𝑦)2 + 𝐷(�̂� , 𝑦)2 ⩽ �̃�(𝑥, 𝑦) + �̃�(�̂� , 𝑦), completing the proof. □

Applying the preceding lemma with 𝐷(𝑥, �̂�) = 𝑁𝑗(𝑥 − �̂�) and 𝑥0 = 0 shows that the distance
(𝑥, �̂�) ↦→ 𝑁𝑗(𝑥 − �̂�)(𝑁𝑗(𝑥) + 𝑁𝑗(�̂�)2)1/2 is a 2

√
2-quasimetric for each 𝑗 = 1, . . . , 𝑀, and therefore 𝑑 is

a 2
√

2-quasimetric on ℝ𝑛 , verifying (2.19).

Balls in (ℝ𝑛 , 𝑑) are approximately convex. Recall the definition of the balls 𝐵𝑑(𝑥, 𝜌) from (2.10).

Lemma 2.16. For any 𝑥 ∈ ℝ𝑛 and 𝜌 > 0, it holds that

conv(𝐵𝑑(𝑥, 𝜌)) ⊆ 𝐵𝑑(𝑥, 4𝜌) .

Proof. For 𝑦 ∈ 𝐵𝑑(𝑥, 𝜌), we have

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)2𝑁𝑗(𝑥)2ª®¬
1/2

⩽ 𝜌 , (2.21)
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as well as

√
𝜌 ⩾ 𝑑(𝑥, 𝑦)1/2 =

©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)2
(
𝑁𝑗(𝑥)2 + 𝑁𝑗(𝑦)2

)ª®¬
1/4

⩾
©«1

2

𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)4ª®¬
1/4

, (2.22)

where the final inequality uses 𝑁𝑗(𝑥 − 𝑦) ⩽ 𝑁𝑗(𝑥) + 𝑁𝑗(𝑦). Since the left-hand side of (2.21) and
the right-hand side of (2.22) are both convex functions of 𝑦, these inequalities remain true for all
𝑦 ∈ conv(𝐵𝑑(𝑥, 𝜌)).

In particular, for any 𝑦 ∈ conv(𝐵𝑑(𝑥, 𝜌)), we can use 𝑎2 + 𝑏2 ⩽ 4𝑎2 + 2(𝑎 − 𝑏)2 to write

𝑑(𝑥, 𝑦) ⩽ ©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)2
(
4𝑁𝑗(𝑥)2 + 2(𝑁𝑗(𝑥) − 𝑁𝑗(𝑦))2

)ª®¬
1/2

⩽ 2 ©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)2𝑁𝑗(𝑥)2ª®¬
1/2

+
√

2 ©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − 𝑦)4ª®¬
1/2

⩽ 4𝜌 . □

Covering estimates. Define now the following norms on ℝ𝑛 :

∥𝑥∥𝒩 := max
𝑗∈[𝑀]

𝑁𝑗(𝑥) ,

∥𝑥∥ℰ(𝑢) := ©«
𝑀∑
𝑗=1

𝑁𝑗(𝑥)2𝑁𝑗(𝑢)2ª®¬
1/2

, 𝑢 ∈ ℝ𝑛 .

Lemma 2.17. For all 𝑥, �̂�, 𝑢 ∈ ℝ𝑛 ,

𝑑(𝑥, �̂�)2 ⩽ 2 ∥𝑥 − �̂�∥2
𝒩

©«
𝑀∑
𝑗=1

(
𝑁𝑗(𝑥) − 𝑁𝑗(𝑢)

)2 +
𝑀∑
𝑗=1

(
𝑁𝑗(�̂�) − 𝑁𝑗(𝑢)

)2ª®¬ + 4∥𝑥 − �̂�∥2
ℰ(𝑢) .

Proof. Use the inequalities

𝑁𝑗(𝑥)2 ⩽ 2(𝑁𝑗(𝑥) − 𝑁𝑗(𝑢))2 + 2𝑁𝑗(𝑢)2 , 𝑥, 𝑢 ∈ ℝ𝑛

to write
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − �̂�)2𝑁𝑗(𝑥)2 ⩽ 2∥𝑥 − �̂�∥2
𝒩

𝑀∑
𝑗=1

(
𝑁𝑗(𝑥) − 𝑁𝑗(𝑢)

)2 + 2
𝑀∑
𝑗=1

𝑁𝑗(𝑥 − �̂�)2𝑁𝑗(𝑢)2

= 2∥𝑥 − �̂�∥2
𝒩

𝑀∑
𝑗=1

(
𝑁𝑗(𝑥) − 𝑁𝑗(𝑢)

)2 + 2∥𝑥 − �̂�∥2
ℰ(𝑢) . □

Lemma 2.18. It holds that

𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝒩 ) ≲ 2−ℎ/2� ,

𝑒ℎ(𝐵𝑛2 , ∥ · ∥ℰ(𝑢)) ≲ 2−ℎ/2� , ∀𝑢 ∈ 𝑇 .
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Proof. Both inequalities follow readily from Lemma 2.3: If 𝑔 is a standard 𝑛-dimensional Gaussian,
then

𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝒩 ) ≲ 2−ℎ/2 𝔼 ∥𝑔∥𝒩 = 2−ℎ/2�,

by the definition of �. For the second inequality,

𝑒ℎ(𝐵𝑛2 , ∥ · ∥ℰ(𝑢)) ≲ 2−ℎ/2 𝔼 ∥𝑔∥ℰ(𝑢) .

Now use convexity of the square to bound

(
𝔼 ∥𝑔∥ℰ(𝑢)

)2
⩽ 𝔼 ∥𝑔∥2

ℰ(𝑢) =
𝑀∑
𝑗=1

𝑁𝑗(𝑢)2 𝔼[𝑁𝑗(𝑔)2] ⩽ �2 ,

where the final line uses the definition of � and
∑𝑀
𝑗=1 𝑁𝑗(𝑢)2 ⩽ 1 by (2.17), because 𝑢 ∈ 𝑇. □

We also need a basic estimate that we will use to apply Corollary 2.11. Observe that for 𝑥, �̂� ∈ 𝑇,

𝑑(𝑥, �̂�)
(2.17)
⩽

√
2∥𝑥 − �̂�∥𝒩 ⩽

√
2 (∥𝑥∥𝒩 + ∥ �̂�∥𝒩 ) ⩽ 2

√
2 , (2.23)

where the last inequality uses ∥𝑥∥𝒩 ⩽ (∑𝑀
𝑗=1 𝑁𝑗(𝑥)2)1/2 ⩽ 1 for 𝑥 ∈ 𝑇, by (2.17).

Lemma 2.19. For any 𝑎 > 0, if 𝑥1 , . . . , 𝑥𝐾 ∈ 𝑇 satisfy 𝑑(𝑥𝑖 , 𝑥 𝑗) ⩾ 𝑎 for 𝑖 ≠ 𝑗, then, 𝐾 ⩽
( 6
𝑎

)𝑛 .

Proof. As noted above, we have ∥𝑥∥𝒩 ⩽ 1 for 𝑥 ∈ 𝑇, and (2.23) gives ∥𝑥𝑖 − 𝑥 𝑗 ∥𝒩 ⩾ 𝑎/
√

2 for 𝑖 ≠ 𝑗.
Therefore by a simple volume argument (valid for any norm on ℝ𝑛):

𝐾 ⩽

(
1 + 2

√
2
𝑎

)𝑛
⩽

(
6
𝑎

)𝑛
,

where the last inequality follows because if 𝐾 ⩾ 2, then (2.23) implies 𝑎 ⩽ 2
√

2. □

The growth functionals. Define a norm on ℝ𝑛 by

|||𝑢 ||| := ©«∥𝑢∥2 +
𝑀∑
𝑗=1

𝑁𝑗(𝑢)2ª®¬
1/2

. (2.24)

Denote 𝑟 := 64. Let ℎ0 be the largest integer so that 22ℎ0 ⩽ (12)𝑛(ℎ−1)/2, and note that ℎ0 ⩽ 𝑂(log 𝑛).
Define

𝐹ℎ(𝑆) := 2 − inf
{
|||𝑢 |||2 : 𝑢 ∈ conv(𝑆)

}
+ max(ℎ0 + 1 − ℎ, 0)

log 𝑛 , ℎ = 0, 1, . . . , ℎ0 . (2.25)

Recall that 𝑇 ⊆ 𝐵𝑛2 and, along with (2.17), this gives max𝑢∈𝑇 |||𝑢 |||2 ⩽ 2. Since ℎ0 ⩽ 𝑂(log 𝑛), we have
𝐹0(𝑇) ⩽ 𝑂(1).
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From Lemma 2.19, it holds that the packing assumption (2.13) is satisfied with 𝐿 ⩽ 𝑂(1) and
𝑘 = 𝑛. Therefore if we can verify that our functionals satisfy the growth conditions (2.12) for
ℎ = 0, 1, . . . , ℎ0, then we will conclude from (2.15) that

𝛾2(𝑇, 𝑑) ≲
1
𝑐∗

+ diam𝑑(𝑇) . (2.26)

Consideration of (𝑎, 𝑟)-separated sets. Define 𝐾 := 𝑁ℎ+1 and consider points {𝑥1 , . . . , 𝑥𝐾} ⊆ 𝑇

such that 𝑑(𝑥ℓ , 𝑥ℓ ′) ⩾ 𝑎 whenever ℓ ≠ ℓ ′, along with sets 𝐻ℓ ⊆ 𝑇 ∩ 𝐵𝑑(𝑥ℓ , 𝑎/𝑟) for ℓ = 1, . . . , 𝐾.

Let 𝑧0 be a minimizer of |||𝑢 |||2 over 𝑢 ∈ conv(⋃ℓ⩽𝐾 𝐻ℓ ), and note that 𝑧0 ∈ 𝑇 since 𝑇 is closed
and convex. Define �0 := |||𝑧0 |||2 and

� := max
ℓ⩽𝐾

min
{
|||𝑢 |||2 : 𝑢 ∈ conv(𝐻ℓ )

}
,

and for each ℓ ∈ [𝐾], let 𝑧ℓ ∈ conv(𝐻ℓ ) be such that |||𝑧ℓ |||2 ⩽ �.
Note that conv(𝐻ℓ ) ⊆ conv(𝐵𝑑(𝑥ℓ , 𝑎/𝑟)) ⊆ 𝐵𝑑(𝑥ℓ , 4𝑎/𝑟), where the latter inclusion follows from

Lemma 2.16. Since 𝑧ℓ ∈ conv(𝐻ℓ ), we have 𝑑(𝑥ℓ , 𝑧ℓ ) ⩽ 4𝑎/𝑟 for all ℓ ∈ {1, . . . , 𝐾}. In particular for
ℓ , ℓ ′ ∈ {1, . . . , 𝐾} with ℓ ≠ ℓ ′, we can use the quasimetric inequalities (2.19) to write

𝑎 ⩽ 𝑑(𝑥ℓ , 𝑥ℓ ′) ⩽ 2
√

2 (𝑑(𝑥ℓ , 𝑧ℓ ) + 𝑑(𝑧ℓ , 𝑥ℓ ′))

⩽ 2
√

2 4𝑎
𝑟

+ 8 (𝑑(𝑧ℓ , 𝑧ℓ ′) + 𝑑(𝑧ℓ ′ , 𝑥ℓ ′)) ⩽ (8 + 2
√

2)4𝑎
𝑟

+ 8 𝑑(𝑧ℓ , 𝑧ℓ ′).

Using our choice 𝑟 = 64, we conclude that that for ℓ ≠ ℓ ′,

𝑑(𝑧ℓ , 𝑧ℓ ′) ⩾
𝑎

32 . (2.27)

Observe that

𝐹ℎ

(⋃
ℓ⩽𝑚

𝐻ℓ

)
− min

ℓ⩽𝐾
𝐹ℎ+1(𝐻ℓ ) = (2 − �0) − (2 − �) + 1

log 𝑛 = � − �0 +
1

log 𝑛 ,

thus to verify that the growth condition Definition 2.8 holds for {𝐹ℎ}, our goal is to show that

� − �0 +
1

log 𝑛 ≳
2ℎ/2𝑎

� + �
√

log 𝑛
, ℎ = 0, 1, . . . , ℎ0 . (2.28)

This will confirm the growth condition with 𝑐∗ ≍
(
�
√

log 𝑛 + �
)−1

, and therefore (2.26) yields our
desired goal (2.20).

The next lemma exploits 2-uniform convexity of the ℓ2 distance. Note that the claimed inequality
would fail (in general) if the left-hand side were replaced by the larger quantity |||𝑧0 − 𝑧ℓ |||2, as |||·|||
is not necessarily 2-convex.

Lemma 2.20. For every ℓ = 1, . . . , 𝐾, it holds that

∥𝑧0 − 𝑧ℓ ∥2 +
𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) − 𝑁𝑗(𝑧ℓ )

)2
⩽ 2(� − �0) .
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Proof. Let us use (
𝑎 − 𝑏

2

)2
=

1
2 𝑎

2 + 1
2𝑏

2 −
(
𝑎 + 𝑏

2

)2
.

to write 𝑧0 − 𝑧ℓ
2

2
+

𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) − 𝑁𝑗(𝑧ℓ )

2

)2

=
1
2
©«∥𝑧ℓ ∥2 +

𝑀∑
𝑗=1

𝑁𝑗(𝑧ℓ )2ª®¬ + 1
2
©«∥𝑧0∥2 +

𝑀∑
𝑗=1

𝑁𝑗(𝑧0)2ª®¬
−

 𝑧0 + 𝑧ℓ
2

2
−

𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) + 𝑁𝑗(𝑧ℓ )

2

)2

.

By convexity of the norm 𝑁𝑗 , we have 1
2 (𝑁𝑗(𝑧0) +𝑁𝑗(𝑧ℓ )) ⩾ 𝑁𝑗( 𝑧0+𝑧ℓ

2 ), so the preceding identity gives 𝑧0 − 𝑧ℓ
2

2
+

𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) − 𝑁𝑗(𝑧ℓ )

2

)2

⩽
1
2 |||𝑧ℓ |||

2 + 1
2 |||𝑧0 |||2 −

������ 𝑧0+𝑧ℓ
2

������2
⩽ |||𝑧ℓ |||2 −

������ 𝑧0+𝑧ℓ
2

������2
⩽ � − �0 ,

where the inequality
������ 𝑧0+𝑧ℓ

2
������2 ⩾ �0 follows from 𝑧0+𝑧ℓ

2 ∈ conv(⋃ℓ⩽𝐾 𝐻ℓ ), since 𝑧0 ∈ conv(⋃ℓ⩽𝐾 𝐻ℓ )
and 𝑧ℓ ∈ conv(𝐻ℓ ). □

Define 𝜌 := � − �0. One consequence of Lemma 2.20 is that

𝑧1 , . . . , 𝑧𝐾 ∈ 𝑧0 +
√

2𝜌𝐵𝑛2 .

We can cover 𝑧0 +
√

2𝜌𝐵𝑛2 by 𝑁ℎ sets that have ∥ · ∥𝒩 -diameter bounded by 2𝑒ℎ(
√

2𝜌𝐵𝑛2 , ∥ · ∥𝒩 ). Since
we have 𝐾 = 𝑁ℎ+1 = 𝑁2

ℎ
points 𝑧1 , . . . , 𝑧𝐾 , at least 𝑁ℎ of them 𝑧𝑖1 , . . . , 𝑧𝑖𝑁ℎ must lie in the same set

of the cover. And by definition, these points cannot all have pairwise ∥ · ∥ℰ(𝑧0) distance greater than
𝑒ℎ(

√
2𝜌𝐵𝑛2 , ∥ · ∥ℰ(𝑧0)). Therefore we must have at least two points 𝑧ℓ and 𝑧ℓ ′ with ℓ ≠ ℓ ′ and ℓ , ℓ ′ ⩾ 1,

and such that

∥𝑧ℓ − 𝑧ℓ ′∥𝒩 ⩽ 2𝑒ℎ(
√

2𝜌𝐵𝑛2 , ∥ · ∥𝒩 ) ≲ 2−ℎ/2�
√
𝜌 ,

∥𝑧ℓ − 𝑧ℓ ′∥ℰ(𝑧0) ⩽ 𝑒ℎ(
√

2𝜌𝐵𝑛2 , ∥ · ∥ℰ(𝑧0)) ≲ 2−ℎ/2�
√
𝜌 ,

where the latter two estimates follow from Lemma 2.5 and Lemma 2.18, respectively.
Let us also note a second consequence of Lemma 2.20, that

𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) − 𝑁𝑗(𝑧ℓ )

)2 +
𝑀∑
𝑗=1

(
𝑁𝑗(𝑧0) − 𝑁𝑗(𝑧ℓ ′)

)2
⩽ 4𝜌 .

Using the three preceding inequalities in Lemma 2.17 yields

𝑎2 (2.27)
≲ 𝑑(𝑧ℓ , 𝑧ℓ ′)2 ≲ 2−ℎ𝜌2�2 + 2−ℎ𝜌�2 ⩽ max

(
2−ℎ�2𝜌2 , 2−ℎ�2𝜌

)
.
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This implies

𝜌 ≳ min
(
2ℎ/2𝑎

�
,
2ℎ𝑎2

�2

)
.

Since it holds that
2ℎ𝑎2

�2 + 1
log 𝑛 ⩾

2ℎ/2𝑎

�
√

log 𝑛
,

we conclude that

𝜌 + 1
log 𝑛 ≳ min

(
2ℎ/2𝑎

�
,

2ℎ/2𝑎

�
√

log 𝑛

)
≳

2ℎ/2𝑎

�
√

log 𝑛 + �
.

Recalling that 𝜌 = � − �0, we have established (2.28), completing the proof. □

Remark 2.21 (Discussion of the implicit partitioning). It is often more intuitive to think about
bounding 𝛾2(𝑇, 𝑑) by explicitly constructing the sequence of partitions {𝒜ℎ} (recall (2.2)). This is a
technical process that is aided significantly by Theorem 2.9, whose proof involves the construction
of partitions from growth functionals.

Recall the norm |||·||| from (2.24) and for a subset 𝑆 ⊆ 𝐵𝑛2 , define the quantity

𝜑(𝑆) := 2 − min
{
|||𝑥 |||2 : 𝑥 ∈ conv(𝑆)

}
.

Then 𝜑(𝑆) can be considered as an approximate measure of the “size” of 𝑆, where sets of larger
𝜑(𝑆) value tend to have a larger 𝔼 sup𝑥∈𝑆

∑𝑀
𝑗=1 �𝑗𝑁𝑗(𝑥)2 value.

Recall that 𝑟 := 64. Consider a ball 𝐵𝑑(𝑥0 , �), and let 𝑧0 ∈ 𝐵𝑑(𝑥0 , 4�) be such that 𝜑(𝐵𝑑(𝑥0 , �)) =
2 − |||𝑧0 |||2. Let us think of 𝑧0 as the “analytic center” of the ball 𝐵𝑑(𝑥0 , �). (We have to take
𝑧0 ∈ 𝐵𝑑(𝑥0 , 4�) because the ball 𝐵𝑑(𝑥0 , �) is only approximately convex.)

Define the distance

Δ(𝑥, 𝑦) := ©«∥𝑥 − 𝑦∥2 +
𝑀∑
𝑗=1

(𝑁𝑗(𝑥) − 𝑁𝑗(𝑦))2ª®¬
1/2

, 𝑥, 𝑦 ∈ ℝ𝑛 .

For 𝑥 ∈ 𝐵𝑑(𝑥0 , �), let �̂� ∈ 𝐵𝑑(𝑥, 4�/𝑟2) denote a point satisfying 𝜑(𝐵𝑑(𝑥, �/𝑟2)) = 2 − |||�̂� |||2. Then
Lemma 2.20 gives

Δ(𝑧0 , �̂�)2 ≲ 𝜑 (𝐵𝑑(𝑥0 , �)) − 𝜑
(
𝐵𝑑(𝑥, �/𝑟2)

)
. (2.29)

In other words, either the 𝜑-value of 𝐵𝑑(𝑥, �/𝑟2) is significantly smaller than that of 𝐵𝑑(𝑥0 , �), or �̂�
is close (in the distance Δ) to the analytic center 𝑧0.

The second part of the argument involves bounding the number of centers that can be within a
certain distance of 𝑧0. Consider now any points 𝑥1 , . . . , 𝑥𝑀 ∈ 𝐵𝑑(𝑥0 , �) with 𝑑(𝑥𝑖 , 𝑥 𝑗) > �/𝑟 for 𝑖 ≠ 𝑗.
Lemma 2.17 and the covering estimates on 𝑒ℎ(𝐵𝑛2 , ∥ · ∥ℰ(𝑧0)) and 𝑒ℎ(𝐵𝑛2 , ∥ · ∥𝒩 ) together give that for
some constant 𝐶 > 0,

#
{
𝑖 ⩾ 1 : Δ(𝑧0 , �̂�𝑖)2 ⩽ 𝜌

}
⩽ exp

(
𝐶

�2

(
�2𝜌2 + �2𝜌

))
. (2.30)
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Now (2.29) and (2.30) imply that for any 𝛿 > 0,

#
{
𝑖 ⩾ 1 : 𝜑

(
𝐵𝑑(𝑥𝑖 , �/𝑟2)

)
⩾ 𝜑 (𝐵𝑑(𝑥0 , �)) − 𝛿

}
⩽ exp

(
𝐶

�2

(
�2𝛿2 + �2𝛿

))
. (2.31)

This is the key tradeoff occuring in the argument: A bound on the number of pairwise separated
“children” 𝐵𝑑(𝑥𝑖 , �/𝑟2) of 𝐵𝑑(𝑥0 , �) that do not experience a significant reduction in their 𝜑-value.

Employing this bound repeatedly, in a sufficiently careful manner, allows one to construct a
sequence of partitions {𝒜ℎ} that yields the desired upper bound on 𝛾2(𝑇, 𝑑). The role of Theorem 2.9
is to automate this process.

3 Hypergraph sparsification

Suppose 𝐻 = (𝑉, 𝐸, 𝑤) is a weighted hypergraph and denote 𝑛 := |𝑉 |. For a single hyperedge 𝑒 ∈ 𝐸,
let us recall the definitions

𝑄𝑒(𝑥) := max
{𝑢,𝑣}∈(𝑒2)

(𝑥𝑢 − 𝑥𝑣)2 ,

as well as the energy
𝑄𝐻(𝑥) :=

∑
𝑒∈𝐸

𝑤𝑒𝑄𝑒(𝑥) .

3.1 Sampling

Suppose we have a probability distribution � ∈ ℝ𝐸
+ on hyperedges in 𝐻. Let us sample hyperedges

�̃� = {𝑒1 , 𝑒2 , . . . , 𝑒𝑀} independently according to �. The weighted hypergraph �̃� = (𝑉, �̃�, �̃�) is
defined so that

𝑄�̃�(𝑥) =
1
𝑀

𝑀∑
𝑘=1

𝑤𝑒𝑘
�𝑒𝑘

𝑄𝑒𝑘 (𝑥) ,

In particular, 𝔼[𝑄�̃�(𝑥)] = 𝑄𝐻(𝑥) for all 𝑥 ∈ ℝ𝑉 . Recall that the hyperedge weights in �̃� are given by
(1.2). To help us choose the distribution �, we now introduce a Laplacian on an auxiliary graph.

An auxiliary Laplacian. Define the edge set 𝐹 :=
⋃
𝑒∈𝐸

(𝑒
2
)
, and let 𝐺 = (𝑉, 𝐹, 𝑐) be a weighted

graph, where we will choose the edge conductances 𝑐 ∈ ℝ𝐹
+ later. Denote by 𝐿𝐺 : ℝ𝑉 → ℝ𝑉 the

weighted Laplacian
𝐿𝐺 :=

∑
{𝑖 , 𝑗}∈𝐹

𝑐𝑖 𝑗(𝜒𝑖 − 𝜒𝑗)(𝜒𝑖 − 𝜒𝑗)∗ , (3.1)

where 𝜒1 , . . . , 𝜒𝑛 is the standard basis of ℝ𝑛 . Let 𝐿+
𝐺

denote its Moore-Penrose pseudoinverse and
define

R𝑖 𝑗 := ∥𝐿+/2
𝐺

(𝜒𝑖 − 𝜒𝑗)∥2 , {𝑖 , 𝑗} ∈ 𝐹 ,
Rmax(𝑒) := max

{
R𝑖 𝑗 : {𝑖 , 𝑗} ∈

(𝑒
2
)}
, 𝑒 ∈ 𝐸 ,

𝑍 :=
∑
𝑒∈𝐸

𝑤𝑒Rmax(𝑒) ,

�𝑒 := 𝑤𝑒Rmax(𝑒)
𝑍

, 𝑒 ∈ 𝐸 . (3.2)
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Lemma 3.1. Suppose it holds that

∥𝑥∥2 ⩽ 𝑄𝐻(𝐿+/2
𝐺
𝑥) , ∀𝑥 ∈ ℝ𝑛 . (3.3)

Then for any � ∈ (0, 1), there is a number

𝑀0 ≲
log𝐷
�2 𝑍 log 𝑛

such that for 𝑀 ⩾ 𝑀0, with probability at least 1/2, the hypergraph �̃� is a spectral �-sparsifier for 𝐻.

Proof. By convexity,

𝔼
�̃�

max
𝑣:𝑄𝐻 (𝑣)⩽1

��𝑄𝐻(𝑣) −𝑄�̃�(𝑣)
�� ⩽ 𝔼

�̃�,�̂�
max

𝑣:𝑄𝐻 (𝑣)⩽1
|𝑄�̃�(𝑣) −𝑄�̂�(𝑣)| , (3.4)

where �̂� is an independent copy of �̃�.
The latter quantity can be written as

𝔼
𝑒 ,𝑒

max
𝑣:𝑄𝐻 (𝑣)⩽1

����� 1
𝑀

𝑀∑
𝑖=1

𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝑣) −
1
𝑀

𝑀∑
𝑖=1

𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝑣)
�����

= 𝔼
�
𝔼
𝑒 ,𝑒

max
𝑣:𝑄𝐻 (𝑣)⩽1

����� 1
𝑀

𝑀∑
𝑖=1

�𝑖

(
𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝑣) −
𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝑣)
)����� (3.5)

⩽ 2𝔼
�̃�
𝔼
�

max
𝑣:𝑄𝐻 (𝑣)⩽1

����� 1
𝑀

𝑀∑
𝑖=1

�𝑖
𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝑣)
����� , (3.6)

where �1 , . . . , �𝑀 are i.i.d. Bernoulli ±1 random variables. Note that we can introduce signs in (3.5)
because the distribution of 𝑤𝑒𝑖

�𝑒𝑖
𝑄𝑒𝑖 (𝑣) −

𝑤𝑒𝑖
�𝑒𝑖
𝑄𝑒𝑖 (𝑣) is symmetric.

For 𝑒 ∈ 𝐸 and {𝑖 , 𝑗} ∈
(𝑒
2
)
, define the vectors

𝑦𝑖 𝑗 := 𝐿
+/2
𝐺

(𝜒𝑖 − 𝜒𝑗)

𝑦𝑒𝑖𝑗 :=
√
𝑤𝑒

�𝑒
𝑦𝑖 𝑗 =

√
𝑍

Rmax(𝑒)
𝑦𝑖 𝑗 .

Then we have
𝑤𝑒

�𝑒
𝑄𝑒(𝐿+/2

𝐺
𝑥) = 𝑤𝑒

�𝑒
max

{𝑖 , 𝑗}∈(𝑒2)
|⟨𝐿+/2

𝐺
𝑥, 𝜒𝑖 − 𝜒𝑗⟩|2 = max

{𝑖 , 𝑗}∈(𝑒2)
⟨𝑥, 𝑦𝑒𝑖𝑗⟩

2 . (3.7)

Define the values
𝑆𝑖 𝑗 := max

𝑒∈𝐸:{𝑖 , 𝑗}∈(𝑒2)
∥𝑦𝑒𝑖𝑗 ∥ , {𝑖 , 𝑗} ∈ 𝐹,

and the linear map 𝐴 : ℝ𝑛 → ℝ𝐹 by (𝐴𝑥){𝑖 , 𝑗} := 𝑆𝑖 𝑗 ⟨𝑥, 𝑦𝑖 𝑗/∥𝑦𝑖 𝑗 ∥⟩.
For 𝑘 = 1, . . . , 𝑀, define the weighted ℓ∞ norms

𝑁𝑘(𝑧) := max

{��(𝐴𝑧){𝑖 , 𝑗}�� ∥𝑦𝑒𝑘𝑖 𝑗 ∥
𝑆𝑖 𝑗

: {𝑖 , 𝑗} ∈
(
𝑒𝑘
2

)
, 𝑆𝑖 𝑗 > 0

}
.
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It holds that
𝑁𝑘(𝑥) = max

{𝑖 , 𝑗}∈𝑒𝑘
|⟨𝑥, 𝑦𝑒𝑘

𝑖 𝑗
⟩| ,

so from (3.7), we have

𝑄�̃�(𝐿
+/2
𝐺
𝑥) = 1

𝑀

𝑀∑
𝑖=1

𝑁𝑖(𝑥)2 , (3.8)

1
𝑀

𝑀∑
𝑖=1

�𝑖
𝑤𝑒𝑖
�𝑒𝑖

𝑄𝑒𝑖 (𝐿
+/2
𝐺
𝑥) = 1

𝑀

𝑀∑
𝑖=1

�𝑖𝑁𝑖(𝑥)2 . (3.9)

Thus we can write the quantity (3.6) as

2𝔼
�̃�
𝔼
�

max
𝑥:𝑄𝐻 (𝐿+/2

𝐺
𝑥)⩽1

����� 1
𝑀

𝑀∑
𝑖=1

�𝑖𝑁𝑖(𝑥)2
����� ⩽ 4𝔼

�̃�
𝔼
�

max
𝑥:𝑄𝐻 (𝐿+/2

𝐺
𝑥)⩽1

1
𝑀

𝑀∑
𝑖=1

�𝑖𝑁𝑖(𝑥)2 ,

Define 𝑇 := {𝑥 ∈ ℝ𝑛 : 𝑄𝐻(𝐿+/2
𝐺
𝑥) ⩽ 1} and note that from (3.3), we have 𝑇 ⊆ 𝐵𝑛2 . Now apply

Corollary 2.13 to bound

𝔼
�

max
𝑥∈𝑇

1
𝑀

𝑀∑
𝑖=1

�𝑖𝑁𝑖(𝑥)2 ≲
∥𝐴∥2→∞

√
log 𝑛 log𝐷

𝑀1/2
max
𝑥∈𝑇

(
1
𝑀

𝑀∑
𝑖=1

𝑁𝑖(𝑥)2
)1/2

. (3.10)

Note also that

max
𝑥∈𝑇

1
𝑀

𝑀∑
𝑖=1

𝑁𝑖(𝑥)2 = max
𝑣:𝑄𝐻 (𝑣)⩽1

1
𝑀

𝑀∑
𝑖=1

𝑁𝑖

(
𝐿

1/2
𝐺
𝑣
)2

= max
𝑣:𝑄𝐻 (𝑣)⩽1

𝑄�̃�(𝑣) .

where the first equality follows from the fact that 𝑄𝐻(𝑥) = 𝑄𝐻(�̂�) when 𝑥 − �̂� ∈ ker(𝐿𝐺), and the
second inequality uses this and an application of (3.8) with 𝑥 = 𝐿

1/2
𝐺
𝑣.

Recalling our starting point (3.4), it follows that for some universal constant 𝐶 > 0,

𝜏 := 𝔼
�̃�

max
𝑣:𝑄𝐻 (𝑣)⩽1

��𝑄𝐻(𝑣) −𝑄�̃�(𝑣)
�� ⩽ 𝐶 ∥𝐴∥2→∞

√
log 𝑛 log𝐷

𝑀1/2
𝔼
�̃�

(
max

𝑣:𝑄𝐻 (𝑣)⩽1
𝑄�̃�(𝑣)

)1/2

⩽ 𝐶
∥𝐴∥2→∞

√
log 𝑛 log𝐷

𝑀1/2

(
𝔼
�̃�

max
𝑣:𝑄𝐻 (𝑣)⩽1

𝑄�̃�(𝑣)
)1/2

,

where the last inequality is by concavity of the square root.
Observe that

max
𝑣:𝑄𝐻 (𝑣)⩽1

𝑄�̃�(𝑣) ⩽ max
𝑣:𝑄𝐻 (𝑣)⩽1

(��𝑄𝐻(𝑣) −𝑄�̃�(𝑣)
�� +𝑄𝐻(𝑣)

)
⩽ 1 + max

𝑣:𝑄𝐻 (𝑣)⩽1
|𝑄𝐻(𝑣) −𝑄�̃�(𝑣)| ,

and therefore we have

𝜏 ⩽ 𝐶
∥𝐴∥2→∞

√
log 𝑛 log𝐷

𝑀1/2 (1 + 𝜏)1/2 .
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It follows that if 𝑀 ⩾ (2𝐶∥𝐴∥2→∞
√

log 𝑛 log𝐷)2, then 𝜏 ⩽ 4𝐶 ∥𝐴∥2→∞
√

log 𝑛 log𝐷
𝑀1/2 .

For 0 < � < 1, choosing

𝑀 :=
4𝐶2 log𝐷

�2 ∥𝐴∥2
2→∞ log 𝑛

gives
𝔼
�̃�

max
𝑣:𝑄𝐻 (𝑣)⩽1

��𝑄𝐻(𝑣) −𝑄�̃�(𝑣)
�� = 𝜏 ⩽ � .

The proof is complete once we observe that

∥𝐴∥2
2→∞ = max

{𝑖 , 𝑗}∈𝐹
𝑆2
𝑖 𝑗 = max

𝑒∈𝐸,{𝑖 , 𝑗}∈(𝑒2)
∥𝑦𝑒𝑖𝑗 ∥

2 = 𝑍 max
{𝑖 , 𝑗}∈(𝑒2)

R𝑖 𝑗

Rmax(𝑒)
⩽ 𝑍 . □

3.2 Choosing conductances

We are therefore left to find edge conductances in the graph 𝐺 = (𝑉, 𝐹, 𝑐) so that (3.3) holds and 𝑍
is small. To this end, let us choose nonnegative numbers{

𝑐𝑒𝑖𝑗 ⩾ 0 : {𝑖 , 𝑗} ∈
(
𝑒

2

)
, 𝑒 ∈ 𝐸

}
such that ∑

{𝑖 , 𝑗}∈(𝑒2)
𝑐𝑒𝑖𝑗 = 𝑤𝑒 , ∀𝑒 ∈ 𝐸 . (3.11)

For {𝑖 , 𝑗} ∈ 𝐹, we then define our edge conductance

𝑐𝑖 𝑗 :=
∑

𝑒∈𝐸:{𝑖 , 𝑗}∈(𝑒2)
𝑐𝑒𝑖𝑗 . (3.12)

In this case,

∥𝐿1/2
𝐺
𝑣∥2 = ⟨𝑣, 𝐿𝐺𝑣⟩ =

∑
{𝑖 , 𝑗}∈𝐹

𝑐𝑖 𝑗(𝑣𝑖 − 𝑣 𝑗)2

=
∑
𝑒∈𝐸

∑
{𝑖 , 𝑗}∈(𝑒2)

𝑐𝑒𝑖𝑗(𝑣𝑖 − 𝑣 𝑗)
2

⩽
∑
𝑒∈𝐸

∑
{𝑖 , 𝑗}∈(𝑒2)

𝑐𝑒𝑖𝑗 max
{𝑖 , 𝑗}∈(𝑒2)

(𝑣𝑖 − 𝑣 𝑗)2

(3.11)
⩽

∑
𝑒∈𝐸

𝑤𝑒 max
{𝑖 , 𝑗}∈(𝑒2)

(𝑣𝑖 − 𝑣 𝑗)2 = 𝑄𝐻(𝑣) .

Taking 𝑣 = 𝐿
+/2
𝐺
𝑥 gives

∥𝑥∥2 ⩽ 𝑄𝐻(𝐿+/2
𝐺
𝑥),

verifying (3.3).

Lemma 3.2 (Foster’s Network Theorem). It holds that
∑

{𝑖 , 𝑗}∈𝐹 𝑐𝑖 𝑗R𝑖 𝑗 ⩽ 𝑛 − 1.
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Proof. Recall that R𝑖 𝑗 = ⟨𝜒𝑖 − 𝜒𝑗 , 𝐿+𝐺(𝜒𝑖 − 𝜒𝑗)⟩ and 𝐿𝐺 =
∑

{𝑖 , 𝑗}∈𝐹 𝑐𝑖 𝑗(𝜒𝑖 − 𝜒𝑗)(𝜒𝑖 − 𝜒𝑗)∗. It follows that∑
{𝑖 , 𝑗}∈𝐹

𝑐𝑖 𝑗R𝑖 𝑗 =
∑

{𝑖 , 𝑗}∈𝐹
tr(𝑐𝑖 𝑗(𝜒𝑖 − 𝜒𝑗)(𝜒𝑖 − 𝜒𝑗)∗𝐿+𝐺) = tr(𝐿𝐺𝐿+𝐺) ⩽ 𝑛 − 1 ,

since rank(𝐿𝐺) ⩽ 𝑛 − 1. □

Define
𝐾 := max

𝑒∈𝐸
max

{𝑖 , 𝑗}∈(𝑒2)
Rmax(𝑒)

R𝑖 𝑗
𝟙{𝑐𝑒

𝑖𝑗
>0} (3.13)

so that
𝑍 =

∑
𝑒∈𝐸

𝑤𝑒Rmax(𝑒) =
∑
𝑒∈𝐸

∑
{𝑖 , 𝑗}∈(𝑒2)

𝑐𝑒𝑖𝑗Rmax(𝑒) ⩽ 𝐾
∑
𝑒∈𝐸

∑
{𝑖 , 𝑗}∈(𝑒2)

𝑐𝑒𝑖𝑗R𝑖 𝑗 ⩽ 𝐾(𝑛 − 1) ,

where the last inequality uses (3.12) and Lemma 3.2. In conjunction with Lemma 3.1, we have
proved the following.

Lemma 3.3. Suppose there is a choice of conductances so that (3.11) holds. Then for any � > 0, there is a
spectral �-sparsifier for 𝐻 with at most 𝑂(𝐾 log𝐷

�2 𝑛 log 𝑛) hyperedges, where 𝐾 is defined in (3.13).

3.3 Balanced effective resistances

We will exhibit conductances satisfying (3.11) and (3.13) with𝐾 ⩽ 1. To this end, we may assume that
the weighted hypergraph 𝐻 = (𝑉, 𝐸, 𝑤) has strictly positive edge weights and that the (unweighted)
graph 𝐺0 = (𝑉, 𝐹) is connected.

Define �̂� := {(𝑒 , {𝑖 , 𝑗}) : 𝑒 ∈ 𝐸, {𝑖 , 𝑗} ∈
(𝑒
2
)
}, and consider vectors

(
𝑐𝑒
𝑖𝑗

: 𝑒 ∈ 𝐸, {𝑖 , 𝑗} ∈
(𝑒
2
) )

∈ ℝ�̂�
+.

Define the convex set

K := ℝ�̂�
+ ∩


∑

{𝑖 , 𝑗}∈(𝑒2)
𝑐𝑒𝑖𝑗 = 𝑤𝑒 : 𝑒 ∈ 𝐸

 .
We use 𝒮𝑛

+ and 𝒮𝑛
++ for the cones of positive semidefinite (resp., positive definite) 𝑛 × 𝑛 matrices.

Define 𝑐𝑖 𝑗 :=
∑
𝑒:{𝑖 , 𝑗}∈(𝑒2) 𝑐

𝑒
𝑖𝑗

and denote the linear function 𝐿𝐺 : ℝ𝐹
+ → 𝒮𝑛

+ by

𝐿𝐺
(
(𝑐𝑖 𝑗)

)
:=

∑
{𝑖 , 𝑗}∈𝐹

𝑐𝑖 𝑗(𝜒𝑖 − 𝜒𝑗)(𝜒𝑖 − 𝜒𝑗)∗ .

Let 𝐽 be the all-ones matrix and consider the objective

Φ
(
(𝑐𝑖 𝑗)

)
:= − log det

(
𝐿𝐺

(
(𝑐𝑖 𝑗)

)
+ 𝐽

)
.

Note that 𝑋 ↦→ − log det(𝑋) is a convex function on the cone 𝒮𝑛
+ of 𝑛 × 𝑛 positive semidefinite

matrices (see, e.g., [BV04, §3.1]) and takes the value +∞ on 𝒮𝑛
+ \ 𝒮𝑛

++. Consider finally the convex
optimization problem:

min
{
Φ

(
(𝑐𝑖 𝑗)

)
: (𝑐𝑒𝑖𝑗) ∈ K

}
. (3.14)

Since 𝐺0 is connected, it holds that if
(
𝑐𝑖 𝑗

)
∈ ℝ𝐹

++, then ker(𝐿𝐺) is the span of (1, 1, . . . , 1), and
therefore 𝐿𝐺

(
(𝑐𝑖 𝑗)

)
+ 𝐽 ∈ 𝒮𝑛

++. Therefore Φ is finite on the strictly positive orthant ℝ𝐹
++.
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Lemma 3.4. The value of (3.14) is finite and there is a feasible point in the relative interior of K.

Proof. It is straightforward to check that the maximum of eigenvalue of 𝐿𝐺 is bounded by
2
∑

{𝑖 , 𝑗}∈(𝑒2) 𝑐𝑖 𝑗 = 2
∑
𝑒∈𝐸 𝑤𝑒 , hence the value of (3.14) is finite. Moreover, the vector defined by

𝑐𝑒
𝑖𝑗

:= 1
|(𝑒2)|

𝑤𝑒 is feasible and lies in ℝ�̂�
++ since the weights 𝑤𝑒 are strictly positive. □

We can write the corresponding Lagrangian as

𝑔
(
(𝑐𝑒𝑖𝑗); 𝛼, 𝛽

)
= − log det

(
𝐿𝐺

(
(𝑐𝑖 𝑗)

)
+ 𝐽

)
+

∑
𝑒∈𝐸

𝛼𝑒
©«

∑
{𝑖 , 𝑗}∈(𝑒2)

𝑐𝑒𝑖𝑗 − 𝑤𝑒
ª®®¬ −

∑
𝑒∈𝐸

∑
{𝑖 , 𝑗}∈(𝑒2)

𝛽𝑒𝑖𝑗𝑐
𝑒
𝑖𝑗

Lemma 3.4 allows one to conclude that there are vectors (𝑐𝑒
𝑖𝑗
), �̂�, �̂� with �̂� ⩾ 0 and such that the

KKT conditions hold; see [Roc70, Thm 28.2]. In particular, for all 𝑒 ∈ 𝐸 and {𝑖 , 𝑗} ∈
(𝑒
2
)
, we have

𝜕𝑐𝑒
𝑖𝑗
𝑔
(
(𝑐𝑒𝑖𝑗); �̂�, �̂�

)
= 0 , (3.15)

�̂�𝑒𝑖𝑗 > 0 =⇒ 𝑐𝑒𝑖𝑗 = 0 . (3.16)

By the rank-one update formula for the determinant, we have

𝜕𝑐𝑒
𝑖𝑗

log det(𝐿𝐺 + 𝐽) = ⟨𝜒𝑖 − 𝜒𝑗 , (𝐿𝐺 + 𝐽)−1(𝜒𝑖 − 𝜒𝑗)⟩ .

Define �̂�𝐺 := 𝐿𝐺
(
(𝑐𝑖 𝑗)

)
. Define R̂𝑖 𝑗 := ⟨𝜒𝑖 − 𝜒𝑗 , �̂�+𝐺(𝜒𝑖 − 𝜒𝑗)⟩. Taking the derivative of 𝑔 with respect

to each 𝑐𝑒
𝑖𝑗

and using (3.15) gives

R̂𝑖 𝑗 = ⟨𝜒𝑖 − 𝜒𝑗 , (�̂�𝐺 + 𝐽)−1(𝜒𝑖 − 𝜒𝑗)⟩ = �̂�𝑒 − �̂�𝑒𝑖𝑗 , ∀𝑒 ∈ 𝐸, {𝑖 , 𝑗} ∈
(
𝑒

2

)
,

where the first equality uses the fact that the eigenvectors of �̂�𝐺 and 𝐽 are orthogonal and
𝜒𝑖 − 𝜒𝑗 ∈ ker 𝐽.

Note that since �̂� ⩾ 0 coordinate-wise, this implies that

R̂max(𝑒) := max
{𝑖 , 𝑗}∈(𝑒2)

R̂𝑖 𝑗 ⩽ �̂�𝑒 .

Moreover, if 𝑐𝑒
𝑖𝑗
> 0, then �̂�𝑒

𝑖𝑗
= 0 (cf. (3.16)), and in that case R̂𝑖 𝑗 = �̂�𝑒 = R̂max(𝑒).

We conclude that the edge conductances 𝑐𝑒
𝑖𝑗

yield 𝐾 ⩽ 1 in (3.13), and therefore Lemma 3.3 gives

a sparsifier with 𝑂( log𝐷
�2 𝑛 log 𝑛) edges, completing the proof of Theorem 1.1.
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