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Abstract

We present an O((log k)2)-competitive randomized algorithm for the k-server problem on
hierarchically separated trees (HSTs). This is the first o(k)-competitive randomized algorithm
for which the competitive ratio is independent of the size of the underlying HST. Our algorithm
is designed in the framework of online mirror descent where the mirror map is a multiscale
entropy. When combined with Bartal’s static HST embedding reduction, this leads to an
O((log k)2 log n)-competitive algorithm on any n-point metric space. We give a new dynamic
HST embedding that yields an O((log k)3 log∆)-competitive algorithm on any metric space
where the ratio of the largest to smallest non-zero distance is at most ∆.
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1 Introduction

Perhaps the most widely-studied problem in the field of online algorithms and competitive analysis
is the k-server problem, introduced in [MMS90] to generalize and abstract a number of related
problems arising in the study of paging and caching. The problem has been the object of intensive
study since its inception, motivated largely by two long-standing conjectures about the competitive
ratios that can be achieved by deterministic and randomized algorithms, respectively.

We recall the problem briefly; see Section 1.2 for a formal definition of the model. Fix a metric
space (X, d) and k > 1, as well as an initial placement ρ0 ∈ Xk of k servers in X. An online k-server
algorithm operates as follows. At each time step, a request rt ∈ X comes online, and the algorithm
must respond to this request by moving one of the servers to rt (unless there is already a server
there). The cost of the algorithm is the total distance moved by all the servers over the course of
the request sequence. An offline algorithm operates in the same manner, but is allowed access to
the entire request sequence in advance. An online algorithm has competitive ratio α if, for every
request sequence, its movement cost per unit time step is within an α factor of that achieved by the
optimal offline algorithm.

Randomization. The authors of [MMS90] stated the k-server conjecture: On any metric space with at
least k + 1 points, the best competitive ratio achieved by deterministic online algorithms is precisely
k. They showed that the ratio is always at least k. While the conjecture is still open in general,
Koutsoupias and Papadimitriou resolved it within a factor of two: The work function algorithm
obtains a competitive ratio of 2k − 1 on any metric space [KP95]. We refer the reader to the book
[BE98] for further background on online algorithms and the k-server problem.

In the context of the k-paging problem, which is the special case of k-server on a metric space
with all distances in the set {0, 1}, it was observed that randomness can help an online algorithm
dramatically: It is known that the competitive ratio for k-paging is precisely the kth harmonic
number Hk for every k > 1 [FKL+91, MS91].

Hierarchically separated trees. There is another class of metric spaces on which one can prove
lower bounds on the competitive ratio even for randomized algorithms. Consider a finite, rooted
tree T � (V, E) with vertex weights w : V → R+ that are non-increasing along every root-leaf path.
Let L ⊆ V denote the set of leaves and define the metric

dw(`, `′) :� wlca(`,`′) ∀`, `′ ∈ L .

In this case, dw is an ultrametric (in fact, all finite ultrametrics are of this form). If wv 6 wu/τ
whenever v is a child of u, then one says that (T ,w) is a τ-hierarchically separated tree (τ-HST) and
the metric space (L , dw) is referred to as a τ-HST metric.

Lower bounds on the competitive ratio were established for any sufficiently large metric space
[KRR94, BKRS00]. Following this framework, the authors of [BBM06] demonstrate a lower bound
for every HST metric; showng that every large metric space contains a large subset that is close to an
HST (and using the bounds from [BLMN05]) establishes that the competitive ratio for randomized
algorithms is at least Ω

( log k
log log k

)
on every metric space with more than k points.

A lack of further lower bounds motivates the folklore “Randomized k-server conjecture” (see,
e.g., [BBK99]) that the randomized competitive ratio is (log k)O(1) on every metric space, or even
O(log k), matching the lower bound for k-paging. One can also consult the survey [Kou09] (in
particular, Conjecture 2 and the surrounding discussion).

Since the seminal work of Bartal on probabilistic embeddings of finite metric spaces into HSTs
[Bar96, Bar98], it has been understood that obtaining upper bounds on the competitive ratio for
HSTs is of central importance. Indeed, the competitive ratio for n-point metric spaces is at most an
O(log n) factor larger than the competitive ratio for n-point HST metrics. This bound follows from
Bartal’s approach combined with the optimal distortion estimate of [FRT04].
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The authors of [CMP08] give an O(D)-competitive randomized algorithm on binary 2-HSTs
with combinatorial depth at most D, and in [BBMN15], a major breakthrough was achieved when
the authors exhibited an (log n)O(1)-competitive algorithm for general n-vertex HSTs. In the present
work, we obtain a competitive ratio independent of the size of the underlying HST, thereby verifying
a long-held belief.

Theorem 1.1. For every k > 2, there is an O((log k)2)-competitive randomized algorithm for the k-server
problem on any HST.

As mentioned previously, this yields an O((log k)2 log n)-competitive randomized algorithm for
every n-point metric space, via probabilistic embeddings of finite metric spaces into distributions
over HSTs. The embedding underlying this reduction is oblivious to the request sequence. While
this is a very convenient feature for the analysis, oblivious embeddings cannot avoid losing an
Ω(log n) factor in the competitive ratio. We show that in certain cases, this can be circumvented via
the use of dynamic HST embeddings where the embedding is allowed to depend on the request
sequence.

Theorem 1.2. For every k > 2 and every finite metric space (X, d), there is an O
�(log k)3 log(1 +AX)�-

competitive randomized algorithm for the k-server problem on (X, d), where

AX :�
maxx ,y∈X d(x , y)
minx,y∈X d(x , y) .

An amusing aspect of the dynamic embedding1 is that it can be combined with known methods
for trees (namely, the Double-Coverage algorithm [CKPV91, CL91]) to obtain a randomized
algorithm for any finite metric space (X, d) that is poly(k)-competitive and which responds to a
request in time poly(n , k), where n � |X |. It seems that this is the first such algorithm; e.g., the work
function algorithm of [KP95] requires nO(k) time to respond to a request.

1.1 Mirror descent and entropic regularization

Our algorithm is most naturally stated in the framework of continuous-time mirror descent. This
framework was originally introduced for convex optimization in [NY83] (see also [Bub15]), and
recently it has played a key role in online decision making; see, e.g., [Haz16] for the online learning
setting, and [ABBS10, BCN14] for applications to metrical task systems. Typically an entropy
functional is used as a mirror map, and a key contribution of our work is to propose an appropriate
multiscale entropy functional.

We establish some properties of a general setup in Section 2 and, as a warmup application,
present in Section 2.2 an O(log k)-competitive algorithm for the (fractional) weighted paging
problem that is closely related to the algorithm of [BBN12]. This already exhibits a couple key ideas
in a simplified setting, including the natural use of the Bregman divergence as a potential function,
and the utility of using k + ε servers for some ε < 1. In Section 3, we begin transferring these
ideas to the setting of the k-server problem on trees. Notably, the polytope underlying our state
representation is the one derived from the fractional allocation problem as employed in [CMP08]
and [BBMN15]. In Section 3.4, we introduce the crucial idea of an auxilliary potential function that
tracks the weighted depth of the underlying fractional server measure, and in Section 3.4.3 we show
how using a time-varying weight can be leveraged to obtain an O((log k)2) competitive ratio.

1This was pointed out by Yair Bartal.
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1.2 Preliminaries

We use the notationsR+ :� [0,∞) andZ+ � Z∩R+. If X and Y are twometric spaces and F : X → Y
is Lipschitz, we use ‖F‖lip to denote the Lipschitz constant of F. Consider a bounded, complete
metric space (X, d) and two Borel probability measures µ and ν on X. We useW1

X(µ, ν) to denote
the L1-transportation distance between µ and ν (sometimes called the Earthmover metric):

W1
X(µ, ν) :� inf� [d(Y,Y′)] ,

where the infimum is over all jointly distributed random variables (Y,Y′) such that Y has marginal
µ and Y′ has marginal ν. The definition is extended in the natural way to any two Borel measures
satisfying µ(X) � ν(X).
Online algorithms and the competitive ratio. Let (X, d) be a metric space and fix k > 1. We now
describe the k-server problem more formally. The input is a sequence 〈σt ∈ X : t > 1〉 of requests. At
every time t, an online algorithm maintains a state ρt ∈ Xk which can be thought of as the location
of k servers in the space X. At time t, the algorithm is required to have a server at the requested site
rt ∈ X. In other words, a feasible state ρt is one that services rt :

rt ∈
��
ρt

�
1 , . . . ,

�
ρt

�
k

	
.

Formally, an online algorithm is a sequence of mappings ρ � 〈ρ1 , ρ2 , . . . , 〉 where, for every t > 1,
ρt : X t

→ Xk maps a request sequence 〈r1 , . . . , rt〉 to a k-server state that services rt . In general,
ρ0 ∈ Xk will denote some initial state of the algorithm.

The cost of the algorithm ρ in servicing r � 〈rt : t > 1〉 is defined as the sum of the movements of
all the servers:

costρ(r ; k) :�
∑
t>1

dXk
�
ρt(r1 , . . . , rt), ρt−1(r1 , . . . , rt−1)� ,

where

dXk
�(x1 , . . . , xk), (y1 , . . . , yk)� :�

k∑
i�1

dX(xi , yi) ∀x1 , . . . , xk , y1 , . . . , yk ∈ X ,

and ρ0 ∈ Xk is some fixed initial configuration.
For a given request sequence r � 〈rt : t > 1〉, denote the cost of the offline optimum by

cost∗(r ; k) :� inf〈ρ1 ,ρ2 ,...〉
∑
t>1

dXk
�
ρt , ρt−1

�
,

where the infimum is over all sequences 〈ρ1 , ρ2 , . . .〉 such that ρt services rt for each t > 1.
A randomized online algorithm ρ is a random online algorithm that is feasible with probability

one. Such an algorithm is said to be α-competitive if for every ρ0 ∈ Xk , there is a constant c > 0 such
that for all r :

�
�
costρ(r ; k)� 6 α · cost∗(r ; k) + c .

2 Traversing a convex body online

Suppose that K ⊆ Rn is a closed convex set and f : R+ × K → Rn is a time-varying vector field
defined on K. It is very natural to consider the projected dynamical system:

x′(t) � ΠK
�
x(t), f (t , x(t))� (2.1)

x(0) � x0 ,
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where
ΠK(x , v) :� lim

ε→0

PK(x + εv) − x
ε

,

and
PK(y) :� argmin

�‖y − z‖2 : z ∈ K
	
.

One can interpret this as trying to “flow” along the vector field in direction f (t , x(t)) while
being confined to remain in the convex body K. But since projection is a discontinuous operation
(imagine hitting the boundary of a polytope, for instance), the classical theory of existence and
uniqueness of ODEs no longer applies. Fortunately, there is now a well-established theory for
projected dynamical systems.

Mirror descent. For our applications, we will want to consider a projected dynamical system
with respect to a non-Euclidean geometry on K. The resulting dynamics will correspond to
continuous-time mirror descent.

Let Φ : K→ R denote a strongly convex function. For those familiar with mirror descent, it is
natural to define an analogous Bregman projection operator

P̃ΦK (x) :� argmin {DΦ(x; z) : z ∈ K} ,
where

DΦ(x; z) :� Φ(x) −Φ(z) − 〈∇Φ(z), x − z〉 (2.2)

is the Bregman divergence corresponding to Φ.
Problematically, this is not well-defined if x < K. Instead, we should do projection in the local

norm at x induced by ∇2Φ:

PΦK (y , x) :� argmin
{‖y − z‖2

Φ,x : z ∈ K
}
,

where
‖w‖2

Φ,x :�


w ,∇2Φ(x)w�

(2.3)

is the local norm at x (formally, a norm on the tangent space Tx). We can then sensibly define
ΠΦK : K ×Rn

→ Rn as before:

ΠΦK (x , v) :� lim
ε→0

PΦK (x + εv , x) − x
ε

.

This leads to a projected dynamical system corresponding to continuous-time mirror descent:

x′(t) � ΠΦK
�
x(t), f (t , x(t))�

x(0) � x0 .

It turns out that under mild regularity assumptions, one can establish existence and uniqueness of
these dynamics.

Let us denote the normal cone to K at x by

NK(x) :�
�
p ∈ Rn : 〈p , y − x〉 6 0 for all y ∈ K

	
.

If K is a polyhedron, then the normal cone to K at x is the cone spanned by the normals of the tight
constraints at x.

Lemma 2.1. Given any matrix A ∈ Rm×n and b ∈ Rm , consider the polyhedron K :� {x ∈ Rn : Ax 6 b}.
For any x ∈ K, it holds that

NK(x) � �
AT y : y > 0 and yT(b − Ax) � 0

	
.
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The following theorem is proved in Section 5.

Theorem 2.2. Consider a compact convex set K ⊆ Rn , a strongly convex function Φ : K → R, and a
continuous function f : [0,∞) × K→ Rn . Suppose furthermore that ∇2Φ(x)−1 is continuous. Then for any
x0 ∈ K, there is an absolutely continuous solution x : [0,∞)→ K satisfying

x′(t) ∈ ∇2Φ(x(t))−1 �
f (t , x(t)) − NK(x(t))� , (2.4)

x(0) � x0.

If we further assume that ∇2Φ(x) is Lipschitz and f is locally Lipschitz, then the solution is unique.

Note that the right-hand side of (2.4) is a set, and a solution is one that satisfies the inclusion.
(This is known as a differential inclusion and is discussed in Section 5.) To understand the intuition
behind (2.4), consider the following. If we considered the Euclidean projected dynamics (2.1), it
wouldmake sense that x′(t) � f (t , x(t))−λ(t), where λ(t) ∈ NK(x(t)): The dynamics are attempting
to flow in the direction f (t , x(t)), and λ(t) represents a set of forces in directions perpendicular
to the tight constraints that are keeping x(t) inside the body K. The inclusion (2.4) is analogous,
except that “perpendicular” is a notion that now depends on the local geometry induced by ∇2Φ at
x(t) (cf. (2.3)).

2.1 Evolution of the Bregman divergence

Recall that the Bregman divergence associated to Φ : K → R is given by (2.2). We will use DΦ as
a potential function to track the “discrepancy” between our algorithm and the optimal offline
algorithm. In fact, it will be slightly easier to work with the function

D̂Φ(y; x) :� −Φ(x) − 〈∇Φ(x), y − x〉 .
Suppose now that x(t) is an absolutely continuous solution to the differential inclusion (2.4)

and write
∇

2Φ(x(t))∂t x(t) � f (t , x(t)) − λ(t)
with λ(t) ∈ NK(x(t)). One concludes immediately that for y ∈ K:

∂t D̂Φ(y; x(t)) � 〈∇2Φ(x(t))∂t x(t), x(t) − y〉
�



f (t , x(t)) − λ(t), x(t) − y

�
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f (t , x(t)) , x(t) − y
�
, (2.5)

where in the last inequality we have used that 〈λ(t), y − x(t)〉 6 0 since λ(t) ∈ NK(x(t)).

2.2 Application: Fractional weighted paging

Fix k > 1. Consider the fractional weighted paging problem on pages in [n]with a cache of size k
and positive weights {wi > 0 : i ∈ [n]}. For z ∈ Rn , define the weighted `1 norm:

‖z‖`1(w) :�
n∑

i�1
wi |zi | ,

and the dual norm:
‖z‖`∞(1/w) :� max

{ |zi |
wi

: i ∈ [n]
}
.
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Note that if z(t) ∈ Rn is an online algorithm for t ∈ [0, T], then the movement cost is precisely∫ T

0
‖∂t z(t)‖`1(w) dt .

Moreover, up to a factor of two, we can charge our algorithm only for the cost of moving fractional
mass into a node, i.e., ∫ T

0

�(∂t z(t))+
�
`1(w) dt , (2.6)

where for z ∈ Rn , we denote (z)+ :� (max(0, z1), . . . ,max(0, zn)).

2.2.1 Entropy-regularized dynamics

Define the fractional k-antipaging polytope

P :�



x ∈ [0, 1]n :
n∑

i�1
xi � n − k



.

Here, we think of 1 − xi as the fractional amount of page i that sits in the cache (hence xi is the
amount of fractional “antipage”). Define also the entropic regularizer

Φ(x) :�
n∑

i�1
wi xi log xi .

Suppose the current state of the cache is described by a point x ∈ P such that xi(0) > 0 for all
i ∈ [n]. When a request r ∈ {1, . . . , n} is received, we need to decrease xr to 0. To this end, we use
the (constant) control function:

f (t , x(t)) :� −er ∀t > 0 .

Now the intended trajectory is given by the differential inclusion:

∇
2Φ(x(t))∂t x(t) ∈ −er − NP(x(t)) .

Let us analyze the dynamics which are described by

∇
2Φ(x(t))∂t x(t) � −er − λ(t) , (2.7)

where λ(t) ∈ NP(x(t)). From Lemma 2.1, it is an exercise to compute that

λ(t) �
n∑

i�1
λi(t)ei − µ(t)1 (2.8)

for some {λi(t) > 0} such that λi(t) > 0 �⇒ xi(t) < 1.
Here, the {λi} functions are the Lagrangian multipliers for the constraints {xi 6 1} of P, and

µ is the multiplier for
∑n

i�1 xi � n − k. The fact that xi(t) > 0 for t > 0 is implicitly enforced by
Φ (assuming some boundedness on the control f ). Since ‖∇Φ(x)‖2 → ∞ as x approaches the
boundary of the positive orthant, Φ acts as a barrier preventing the evolution from leaving R+.
We do not stress this point formally at the moment since we will soon need to maintain a more
restrictive condition.
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Let x̂ ∈ {0, 1}n
∩ P denote an integral antipaging point with x̂r � 0 (i.e., a state which has

satisfied the request). Then (2.5) immediately yields

∂t D̂Φ (x̂; x(t)) 6 〈er , x̂ − x(t)〉 � −xr(t) . (2.9)

Moreover, from (2.7) and (2.8), one easily calculates:

∂t xi(t) � xi(t)
wi

�
−er(i) − λi(t) + µ(t)� , (2.10)

where

λi(t) �



0 xi(t) < 1
µ(t) otherwise.

.

Using ∂t
∑n

i�1 xi(t) � 0 yields

µ(t) � xr(t)/wr∑
i:xi(t)<1 xi(t)/wi

. (2.11)

In particular, if xr(t) < 1 then µ(t) 6 1, hence from (2.10), the instantaneous movement cost (recall
(2.6)) is bounded by

wr |∂t xr(t)| 6 xr(t) .
Thus the potential change (2.9) compensates for the movement cost.

Now we have to address convergence, and here we run into a problem: D̂Φ(x̂; x(t)) could be
infinite! Therefore (2.9) does not show that xr(t)→ 0 as t →∞.

2.2.2 Moving in the interior

Our solution to this problem will be to shift the variables away from the boundary of R+. For δ > 0,
define

Pδ :� P ∩ [δ, 1]n
�




x ∈ [δ, 1]n :
n∑

i�1
xi � n − k



.

Clearly we cannot remain in this polytope and still service a request r by moving to a point with
xr � 0. Instead, we will allow our algorithm to satisfy the weaker constraint xr � δ, and then
afterward show that any such algorithm can be transformed—in an online manner—to a valid
fractional paging algorithm, as long as δ is chosen small enough. Furthermore, we can easily ensure
that our dynamics remain inside Pδ by simplying stopping when xr(T) � δ (if we can ensure that
there is a time T at which this occurs).

Now note that
sup
x∈Pδ

‖∇Φ(x)‖`∞(1/w) 6 O
(
log 1

δ

)
. (2.12)

Thus if we ensure that x(t) ∈ Pδ, then (2.9) implies that xr(T) � δ occurs after some finite time T.
We are left to analyze how the potential changes when OPT moves. But from the definition and

(2.12), we have
∂t D̂Φ(y(t); x) � 〈∇Φ(x),−∂t y(t)〉 6 O(log 1

δ )‖∂t y(t)‖`1(w) .

Thus we obtain an O(log 1
δ )-competitive algorithm, where δ is the largest constant such that we can

round (online) a fractional k
1−δ -paging algorithm to a genuine fractional k-paging algorithm. As we

will see now, this can be done when δ �
1

2k .
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Transforming to a valid fractional paging algorithm. Consider a request sequence ~r �

(r1 , r2 , . . . , rM), and a differentiable map x : [0, T]→ Pδ that services ~r in the sense that there are
times t1 < t2 < · · · < tM such that xri (ti) � δ.

Define
z(t) :�

1 − x(t)
1 − δ

∀t ∈ [0, T] .
Then zri (ti) � 1, so z represents a trajectory on measures that services ~r, but problematically we
have ‖z(t)‖1 �

k
1−δ for t ∈ [0, T].

We fix this as follows: Let ε :� δk
1−δ and define σ : R+ → R+ so that σ|[`,`+ε] � ` for every ` ∈ Z+

and σ is extended affinely to the rest of R+. For z ∈ Rn
+, define σ(z) :� (σ(z1), . . . , σ(zn)), and

consider the trajectory σ(z(t)) for t ∈ [0, T]. Observe first that∫ T

0
‖∂tσ(z(t))‖`1(w) dt 6 ‖σ‖lip

∫ T

0
‖∂t z(t)‖`1(w) dt 6

1
1 − ε

∫ T

0
‖∂t z(t)‖`1(w) dt .

Thus for δ �
1

2k , the movement cost has increased under σ by only an O(1) factor.
Because σ is superadditive, it also holds that for every t ∈ [0, T],

n∑
i�1

σ(zi(t)) 6 σ *
,

n∑
i�1

zi(t)+
-
� σ (k + ε) � k .

Therefore we use at most k fractional server mass at any point in time. We are left to show that, at
no additional movement cost, this can be transformed into an algorithm that maintains fractional
server mass exactly k.

To that end, we may assume that ‖σ(z(0))‖1 � k. It will be easiest to think of a weighted star
metric on vertices V � {1, 2, . . . , n} ∪ {0}, where 0 is the center of the star and the edge (0, i) has
length wi . When 〈∂tσ(z(t)), ei〉 < 0 for some i ∈ [n], the instantaneous movement cost of σ(z(t)) in
direction ei is −〈∂tσ(z(t)), ei〉. Instead of deleting this mass, we can move it to 0 for the same cost.
Similarly, when 〈∂tσ(z(t)), ei〉 > 0, the instantaneous movement cost in direction ei is 〈∂tσ(z(t)), ei〉.
Instead of creating mass, we can move this mass from 0 to i for the same cost.

3 k-server on trees

Consider a rooted tree T � (V, E) with root r ∈ V and leaves L ⊆ V . Let {wv > 0 : v ∈ V} be a
collection of nonnegative weights on V with wr � 0. We will suppose that every leaf ` ∈ L is at the
same combinatorial distance from the root.

For v ∈ V , let L(v) ⊆ L denote the set of leaves beneath v. For u ∈ V \ {r}, let p(u) ∈ V denote
the parent of u, and write ~E � {~e : e ∈ E} �

�(p(u), u) : u ∈ V \ {r}	
for the set of edges directed

away from the root. For (u , v) ∈ ~E, define lenw(u , v) :� wv . Let distw(x , y) denote the weighted
path distance between x , y ∈ V , where an edge e ∈ E is given weight lenw(~e). We say that the pair
(T , w) is a τ-adic HST if for every v ∈ V \ {r}, it holds that wv � τ j for some j ∈ Z and, moreover, if
(u , v) ∈ ~E then wv � wu/τ.

For z ∈ RV and w ∈ RV
+ , denote

‖z‖`1(w) :�
∑
v∈V

wv |zv | .
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Leaf measures, internal measures, and supermeasures. A leaf measure is a point z ∈ RL+ . The
mass of a leaf measure is defined as the quantity

∑
`∈L z` . An internal supermeasure is a point z ∈ RV

+

such that
zu >

∑
v:(u ,v)∈~E

zv ∀u ∈ V . (3.1)

The mass of an internal supermeasure is the quantity zr . We say that z ∈ RV
+ is an internal measure if

(3.1) is satisfied with equality.
For a leaf measure z ∈ RL+ , we define its lifting to an internal measure by

ẑv :�
∑
`∈L(v)

z` ∀v ∈ V .

Let M̂ denote the set of internal measures on V . It is straightforward to see that this is precisely the
class of lifted leaf measures.

Lemma 3.1. For leaf measures y , z ∈ RL+ with ‖y‖1 � ‖z‖1, it holds that

W1
w(y , z) �

�
ŷ − ẑ

�
`1(w) .

A fractional k-server algorithm for (L , distw) is an online sequence
〈
z(t) ∈ RL+ : t � 0, 1, 2, . . .

〉
of

leaf measures of mass k such that for every t > 1: z(t)`t
> 1 if `t is the requested leaf at time t. We

also require that z(0) is integral. The cost of such an algorithm is defined by∑
t>0

W1
w

(
z(t) , z(t+1)) .

Lemma 3.2 ([BBMN15, §5.2]). The following holds for all τ > 5. If (X, dX) is a τ-HST metric and there
is a fractional online k-server algorithm for (X, dX), then there is a randomized integral online k-server
algorithm whose expected cost is at most O(1) times larger.

3.1 k + ε fractional servers

For the remainder of the proof, we will work with continuous time trajectories z : [0, T] → RL+
whose movement cost is measured by ∫ T

0
‖∂t ẑt ‖`1(w) dt ,

in light of Lemma 3.1. Obviously such a trajectory can be mapped to a discrete-time algorithm by
choosing times T1 > T2 > · · · that correspond to discrete times t � 1, 2, . . ..

Lemma 3.3. If y : [0, T]→ RV
+ is a trajectory taking values in internal supermeasures of mass k, then there

is an (adapted) trajectory z : [0, T]→ RL+ taking values in leaf measures of mass k such that:

1. For every leaf ` ∈ L: zt(`) > yt(`), and
2. W1

w(z(0), z(T)) 6
∫ T

0 ‖∂t y(t)‖`1(w) dt.

Proof. This lemma follows from a more general principle: If (X, d) is a metric space and X′ ⊆ X,
then an online (fractional) k-server algorithm on (X, d) servicing a sequence of requests in X′ can
be converted to an online (fractional) k-server algorithm on (X′, d |X′×X′) without increasing the
movement cost. This is a straightforward consequence of the triangle inequality.
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Now observe that we can envision every trajectory on internal supermeasures y(t) ∈ RV
+ with

t ∈ [0, T] as a trajectory on genuine measures ỹ(t) ∈ RV
+ defined by

ỹu(t) :� yu(t) −
∑

v:(u ,v)∈~E
yu(t) ∀u ∈ V .

And moreover,

W1
w( ỹ(0), ỹ(T)) 6

∫ T

0
‖∂t y(t)‖`1(w) .

Since (L , distw) is a subspace of (V, distw), this completes the proof by our earlier observation. �

Lemma 3.4. For every 0 6 ε < 1, a fractional online (k+ ε)-server algorithm on (L , distw) can be converted
to a fractional online k-server algorithm so that the movement cost increases by a factor of at most 1

1−ε .

Proof. The proof is similar to the case for fractional paging. Define σ : R+ → R+ so that σ|[`,`+ε] � `
for every ` ∈ Z+ and σ is extended affinely to the rest of R+. For y ∈ RV

+ , define σ(y) :� (σ(yv))v∈V .
Consider a trajectory z : [0, T]→ RL+ taking values in leaf measures of mass k + ε. Then since σ

is superadditive, it holds that σ(ẑ(t)) is an internal supermeasure for every t ∈ [0, T]. Moreover,
σ(ẑr (t)) � σ(k + ε) � k, so σ(ẑ(t)) is an internal supermeasure of mass k.

Finally, note that∫ T

0
‖∂tσ(ẑ(t))‖`1(w) dt 6 ‖σ‖lip

∫ T

0
‖∂t ẑ(t)‖`1(w) dt 6

1
1 − ε

∫ T

0
‖∂t ẑ(t)‖`1(w) dt .

Now applying Lemma 3.3 to the internal supermeasures σ(ẑ(t)) completes the proof. �

In light of the preceding lemma, it suffices to construct a competitive fractional (k + ε)-server
algorithm with ε < 1 for any request sequence on (L , distw).

3.2 The allocation polytope and multiscale entropy

For u ∈ V , write
χ(u) :�

{(v , j) : (u , v) ∈ ~E, j ∈ [Nu]
}

where Nu is the number of leaves in the subtree rooted at u. Denote

Λ :�
{(r , i) : i ∈ [Nr ]

}
∪

⋃
u∈V

χ(u) .

With a slight abuse of notation, we sometimes write
∑

i>1 f (xu ,i) instead of
∑

i∈[Nu] f (xu ,i). The
allocation polytope on T is defined by

A :�
{

x ∈ [0, 1]Λ :
∑
i6|S|

xu ,i 6
∑

(v , j)∈S

xv , j ∀u ∈ V, S ⊆ χ(u) ,

xr ,i � 1{i>k} ∀i > 1
}
.

Remark 3.5 (Interpretation of A). In order to give an intuitive meaning to the variables of A, it
makes sense to first consider their complements: yu ,i � 1− xu ,i . The variable yu ,i can be interpreted
as “the probability there are at least i servers in the subtree rooted at u.”

If {yu ,i : i > 1} corresponds to a distribution over k-server configurations, then we should
clearly have the constraints yu ,1 > yu ,2 > · · ·. We could add those constraints to A, but it turns out
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they would be superfluous (i.e., there would exist a dynamics for which they are never active). See
Lemma 3.8 below.

Moreover, there is a natural set of constraints between {yu ,i : i > 1} and the child variables
{yv , j : (v , j) ∈ χ(u)} which enforces that some joint distribution on k-server configurations is
consistent with the variables. This is naturally phrased as a bipartite flow problem between the
u-variables and the v-variables as v ranges over children of u.

The constraints in the definition of A correspond to one side of those constraints: That there is
enough flow from the u-variables to the v-variables. But they allow for the possibility that there is
an excess of flow (i.e., there are possibly more fractional servers at u than the sum of servers at the
children). The other side of the constraints (which ensure there is no excess) is enforced implicitly
by the dynamics. See Lemma 3.10.

Even if all the constraints were present, a point of A does not represent a distribution over
k-server configurations in T . For instance, if u , u′ are siblings in T , then the “covariances” between
the children of u and u′ are completely unspecified.

Example 3.6. An example helps in understanding the utility of the allocation variables. We will use
the complement variables {yu ,i} from Remark 3.5. Consider a node u with three children a , b , c,
and suppose that ya � yb � yc � ( 1

3 , 0, 0, . . . , 0). Let (ka , kb , kc) denote the number of servers at
a , b , c. We now examine three situations and how they encode the joint distribution of (ka , kb , kc).

1. yu � ( 1
3 ,

1
3 ,

1
3 , . . . , 0)

This corresponds to (ka , kb , kc) � (1, 1, 1) with probability 1/3, and (ka , kb , kc) � (0, 0, 0)
otherwise.

2. yu � (1, 0, . . . , 0)
This corresponds to (ka , kb , kc) being each of (1, 0, 0), (0, 1, 0), (0, 0, 1) with equal probability.

3. yu �
�
1 − (1 − p)3 , 3

2 p2(1 − p) + p3 , p3 , 0, . . . , 0
�
where p �

1
3 .

This corresponds to ka , kb , kc being i.i.d. random variables, each equal to one with probability
1/3.

The relevance to k-server is as follows: Situation (2) is a strong signal that there should always be at
least one server in Tu , the subtree rooted at u. If there is only one server there, we will be reluctant
to use that server to service requests elsewhere. Situation (1), on the other hand, suggests that three
servers are needed in Tu , but only 1/3 of the time. Thus we will be more likely to “borrow” server
mass sitting there, knowing that we can send it back when it is needed again.

Fix some δ > 0 and define the shifted multiscale entropy by

Φ(x) :�
∑
u∈V

wu

∑
i>1

(xu ,i + δ) log(xu ,i + δ) .

For ` ∈ L, denote x` :� x`,1. Finally, for u ∈ V and x ∈ A, define the associated server measure z ∈ RV
+

by

zu :� 1
1 − δ

∑
i>1

(1 − xu ,i) .

Suppose we receive a request at ` ∈ L. Let x : [0,∞)→ A be an absolutely continuous trajectory
satisfying

∂t x(t) � ∇2Φ(x(t))−1(−e`,1 − λ(t)) (3.2)

with λ(t) ∈ NA(x(t)) for almost every t > 0. Denote

T � inf {t > 0 : x`(t) < δ} .
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By construction, as long as T < ∞ (see Lemma 3.14 below), it holds that {zu(t) : t ∈ [0, T]} is a
fractional k

1−δ -server trajectory that services the request at `. Now set δ :� 1
2k so that k

1−δ < k + 1 for
k > 2.

3.3 Dynamics

We now describe in detail the dynamics of x(t) on [0, T]. We allow (momentarily) for the possibility
that T � +∞. Our main goal is to establish that ∂t z(t) is a flow from the non-requested leaves to the
requested leaf and that T < ∞.

Lemma 3.7. Suppose that x`,1(0) > δ. The continuous trajectory x(t) defined in (3.2) exists uniquely for
t ∈ [0, T] and satisfies x`,1(t) > δ for all t ∈ [0, T]. Furthermore, x(t) is absolutely continuous and its
derivative is given by

∂t xu ,i(t) � xu ,i(t) + δ
wu

�
−1{(u ,i)�(`,1)} − λu ,i(t)� , (3.3)

for all u ∈ V \ {r} and all i > 1, and

λu ,i(t) �
∑

S⊆χ(u):
i6|S|

λS(t) −
∑

S⊆χ(p(u)):
(u ,i)∈S

λS(t) , (3.4)

where λS(t) > 0 are the Lagrangian multipliers for the constraints {∑i6|S| xu ,i(t) 6 ∑
(v , j)∈S xv , j(t)}. Also,

we have that
λS(t) > 0 �⇒

∑
i6|S|

xu ,i(t) �
∑

(v , j)∈S

xv , j(t) . (3.5)

Remark. We will establish that T < ∞ in Lemma 3.14.

Proof. Since the allocation polytope A is compact and convex, Φ is strongly convex and smooth,
the existence and the uniqueness of the path x(t) defined in (3.2) follows from Theorem 5.7 with
f (t , x) � −e`,1. In particular, using the formula for Φ, we have that

∂t x(t) � xu ,i(t) + δ
wu

(−e`,1 − λ(t)) (3.6)

with λ(t) ∈ NA(x(t)).
To calculate NA(x(t)), we note that the constraints {xu ,i(t) > 0} are redundant, as they can be

expressed by the constraints {∑i6|S| xu ,i(t) 6 ∑
(v , j)∈S xv , j(t)} and xr ,1(t) � 0 using the sequence of

singleton sets S � (u , i), (p(u), 1), (p(p(u)), 1), · · ·. Hence, we can ignore the constraints {xu ,i(t) > 0}
from the polytope.

Using the definition of the allocation polytope A, Lemma 2.1 asserts that

NA(x(t))

�




∑
u∈V,S⊆χ(u)

λS(t) *.
,

∑
i6|S|

eu ,i −
∑

(v , j)∈S

ev , j
+/
-
+

∑
i>1

µi(t)er ,i +
∑

u∈V,i>1
ηu ,i(t)eu ,i

where λS(t), ηu ,i(t) > 0, µi(t) ∈ R, ηu ,i(t) · (1 − xu ,i(t)) � 0,

and λS(t) · *.
,

∑
i6|S|

xu ,i(t) −
∑

(v , j)∈S

xv , j(t)+/
-
� 0



.
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Rearranging the terms in (3.6) and NA(x(t)), and ignoring the terms for the root r , we see that it
only remains to show that one can take ηu ,i(t) (the Lagrange multiplier for {xu ,i(t) 6 1}) to be 0.

Let Ã be the polytope just as A, except with [0, 1] replaced by [0, 2]. Assume now that x(t) is
defined with A replaced by Ã. We will show that one has xu ,i(t) 6 1. This implies that the Lagrange
multipliers for the path defined on Ã are valid Lagrange multipliers for the path on A, and in
particular one can take ηu ,i(t) � 0.

Toward deriving a contradiction, let us assume that there exists a time t > 0, u ∈ Vh , and i > 1
such that xu ,i(t) > 1 and ∂t xu ,i(t) > 0. We prove by induction on h that this impossible.

For h � 0 this follows from the equality constraints at the root. Now consider h > 1 and
observe that by (3.3) and (3.4), one must have λS(t) , 0 for some S ⊆ χ(p(u)), which means that∑

i6|S| xp(u),i(t) � ∑
(v , j)∈S xv , j(t). However, the induction hypothesis implies that for any j > 1,

xp(u), j(t) 6 1, and thus the constraint corresponding to S \ {(u , i)} is violated for x(t), yielding a a
contradiction. �

We now prove several lemmas giving a more refined understanding of the dynamics (3.3). The
reader is encouraged to skip these arguments upon a first reading. The main technical property we
need to establish is that z(t) ∈ M̂ for all times t ∈ [0, T], i.e., the mass per level remains constant.
This is proved in Lemma 3.10.

For h > 0, let Vh denote the set of vertices with a simple path to the root using h edges. Define
C(t) ⊇ {S : λS(t) , 0} to be the set of active constraints:

C(t) :�



S ⊆ χ(u) : u ∈ V and
∑
i6|S|

xu ,i(t) �
∑

(v , j)∈S

xv , j(t)


.

Lemma 3.8. For any t > 0, u ∈ V , and i > j > 1, it holds that xu ,i(t) > xu , j(t).
Proof. We will show that xu ,i(t) > xu ,i+1(t) implies ∂t xu ,i(t) 6 ∂t xu ,i+1(t). Recalling (3.3) and (3.4),
it is enough to show that ∑

S⊆χ(p(u)):
(u ,i+1)∈S

λS(t) >
∑

S⊆χ(p(u)):
(u ,i)∈S

λS(t) .

Let us show that if (u , i) ∈ S and (u , i + 1) < S then λS(t) � 0, yielding the desired conclusion.
Using the constraint for S ∪ {(u , i + 1)} \ {(u , i)} gives∑

(v , j)∈S

xv , j(t) >
∑

(v , j)∈S∪{(u ,i+1)}\{(u ,i)}
xv , j(t) >

∑
i6|S|

xp(u),i(t) ,

implying that λS(t) � 0. �

Lemma 3.9. Consider u ∈ V and S, S′ ⊆ χ(u) such that S, S′ ∈ C(t). Then S ∪ S′ ∈ C(t) as well.
Proof. First we claim that MS :� max(v , j)∈S xv , j(t) and MS′ :� max(v , j)∈S′ xv , j(t) are equal. Let
(v∗ , j∗) denote some pair for which xv , j(t) is maximal among (v , j) ∈ S. If MS > MS′, then for any
(v′, j′) ∈ S′, the constraint corresponding to S ∪ {(v′, j′)} \ {(v∗ , j∗)} is violated because S, S′ ∈ C(t).
Let us denote M :� MS � MS′.

Suppose that |S| > |S′|. The same argument shows that for any (v , j) ∈ S \S′, one has xv , j(t) � M.
Using the constraint for S \ {(v∗ , j∗)} and the fact that S ∈ C(t) shows that xu ,|S|(t) > M, and thus
by Lemma 3.8, one has xu ,|S|+m(t) > M for any m > 0. This implies:∑

i6|S∪S′ |
xu ,i(t) >

∑
i6|S|

xu ,i(t) + M · |S \ S′| �
∑

(v , j)∈S

xv , j(t) + M · |S \ S′| �
∑

(v , j)∈S∪S′
xv , j(t) .
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Furthermore, since x(t) ∈ A it also holds that
∑

i6|S∪S′ | xu ,i(t) 6 ∑
(v , j)∈S∪S′ xv , j(t), demonstrating

that S ∪ S′ ∈ C(t). �

Lemma 3.10. Suppose that z(0) ∈ M̂. Then z(t) ∈ M̂ for t > 0.

Proof. For u ∈ V , let Su(t) be the maximum (w.r.t. inclusion) active set at time t in χ(u) (cf.
Lemma 3.9). Since ∂t x(t) ∈ NA(x(t))⊥ (Lemma 5.8), one has∑

i6|Su(t)|
∂t xu ,i(t) �

∑
(v , j)∈Su(t)

∂t xv , j(t) ,

which in turns gives, for any h > 1,∑
u∈Vh ,i6|Su(t)|

∂t xu ,i(t) �
∑

(v , j)∈∪u∈Vh Su(t)
∂t xv , j(t) . (3.7)

Thus to compare the derivatives of the mass at two adjacent levels, it remains to establish that∑
u∈Vh ,i>|Su(t)|

∂t xu ,i(t) >
∑

(v , j)<∪u∈Vh Su(t):v∈Vh+1

∂t xv , j(t) .

We show that every term in the first sum is nonnegative and every term in the second sum is
nonpositive. In particular, since ∂t xr ,i(t) � 0 for all i > 1, this will imply by induction that∑

v∈Vh+1 , j>1
∂t xv , j(t) 6

∑
u∈Vh ,i>1

∂t xu ,i(t) 6 0 ,

yielding
∑

u∈Vh
∂t zu(t) > 0. Then the proof is concluded using z(0) ∈ M̂ and z(t) ∈ A for all t > 0.

Thus it remains to show that ∂t xu ,i(t) > 0 for all i > |Su | and u < L, and ∂t xv , j(t) 6 0 for all
(v , j) < ∪u∈Vh Su(t). For u � r , one has ∂t xu ,i(t) � 0, and for u , r we have thanks to (3.3) and
Lemma 3.7:

∂t xu ,i(t) � −xu ,i(t) + δ
wu

λu ,i(t) .
Since i > |Su(t)| and Su(t) is the maximum active set in χ(u), it holds that λS(t) � 0 for any S ⊆ χ(u)
with |S| > i. Thus from (3.4), we see that λu ,i(t) 6 0, and in turn ∂t xu ,i(t) > 0. On the other hand
for (v , j) ∈ χ(u) one has

∂t xv , j(t) 6 −xv , j(t) + δ
wv

λv , j(t) .
Assume (v , j) < Su(t). Then since Su(t) is the maximum active set in χ(u), it holds that λS(t) � 0
for any S with (v , j) ∈ S. Using (3.4), we see that λv , j(t) > 0, concluding the proof �

We have established that z(t) is an internal measure for every t > 0, and thus ∂t z(t) is a flow.
We now we show that ∂t z(t) is a flow directed toward the request `.

Lemma 3.11. It holds that ∂t zu(t) > 0 if u is an ancestor of the request `, and ∂t zu(t) 6 0 otherwise.

Proof. Since z(t) ∈ M̂ (Lemma 3.10), it suffices to show that for any leaf `′ , `, one has ∂t z`′(t) 6 0.
Indeed by preservation of mass at every node (i.e., ∂t zu(t) � ∑

v:(u ,v)∈~E ∂t zv(t)), this implies that
∂t zu(t) 6 0 for any u which is not an ancestor of `. Furthermore, by preservation of mass per level
(i.e.,

∑
u∈Vh

∂t zu(t) � 0), and the fact that there is a single ancestor of ` per level, this also gives
∂t zu(t) > 0 for any ancestor u of `.

Notice that ∂t z`′(t) � −
1

1−δ
∑

i>1 ∂t x`′,i(t), and thus it suffices to show that for any i > 1,
∂t x`′,i(t) > 0. The latter inequality is straightforward from (3.3) and (3.4) since χ(`′) � ∅. �
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The next lemma follows immediately from Lemma 3.11 since ∂t x`′(t) > 0 for all `′ , `.

Lemma 3.12. If x`′(0) > δ for all `′ ∈ L, then x`′(T) > δ for all `′ ∈ L.
Let us extend the definition of ‖ · ‖`1(w) to x ∈ RΛ by

‖x‖`1(w) :�
∑
u∈V

wu

∑
i>1

|xu ,i | .

Observe that
sup
x∈A

‖∇Φ(x)‖`∞(1/w) 6 O(log 1
δ ) .

This yields the following.

Lemma 3.13. It holds that for every x ∈ A and {y(t)} ⊆ A differentiable:

∂t D̂Φ(y(t); x) 6 ‖∂t y(t)‖`1(w)O(log 1
δ ) .

The next lemma is an immediate consequence of (2.5).

Lemma 3.14. If y ∈ A satisfies y` � 0, then

∂t D̂Φ(y; x(t)) 6 −x`,1(t) .
In particular, we have that T < ∞ and hence x`,1(T) � δ.
Proof. Thefirst conclusion follows from (2.5) using y` � 0 and f (t , x(t)) � −e`,1. Since the divergence
is nonnegative and it is decreasing with rate at least δ whenever x`,1(t) > δ, the trajectory ends in
finite time. �

3.4 The weighted depth potential

We now define an auxiliary potential functionΨt . We relate it to the dynamics, and then present
applications in Section 3.4.1–Section 3.4.3, culminating in the assertion that our algorithm is
O((log k)2)-competitive.

Consider a differentiable functionΨ(t) such that

∂tΨ(t) �
∑

u∈V\{r}
wu

�
∆u(t) + ∆p(u)(t)

� ∑
i>1

∂t xu ,i(t) (3.8)

for some functions {∆u(t) > 0 : u ∈ V} satisfying ∆u(t) 6 ∆v(t) for all (u , v) ∈ ~E as well as ∆r (t) ≡ 0.
Note that an important special case is simply when

Ψ(t) �
∑

u∈V\{r}
wu(∆u + ∆p(u))

∑
i>1

xu ,i(t)

where {∆u : u ∈ V} are independent of t. For an edge (u , v) ∈ ~E, define
qt(v) :� ∆v(t) − ∆u(t) . (3.9)

Lemma 3.15. The following holds for almost every t ∈ [0, T]:
‖∂t x(t)‖`1(qt w) 6 3∆`(t)(x`(t) + δ) + ∂tΨ(t) . (3.10)
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Before proving the lemma, let us explain the intuition. We are bounding, not the true movement
cost, but the movement cost with weights given by qt w. We know that the requested leaf ` is the
unique sink for server flow, and by (3.3), the instantaneous w-weighted cost of the flow entering `
is at most x`(t) + δ. Therefore the qt w-weighted cost of server mass “descending to `” is bounded
by O(∆`(t)(x`(t) + δ)), and this accounts for the first term in (3.10). The rest of the movement is
due to mass moving “up” the tree (toward the root), and this is accounted for by ∂tΨ(t), sinceΨ
can be thought of as the average weighted depth of the server mass (plus some additive constant).
The proof is now a technical verification of this description.

Proof of Lemma 3.15. Note that from Lemma 3.7, for every u ∈ V \ {r}, we have:

∂t xu ,i(t) � xu ,i(t) + δ
wu

�
−1{(u ,i)�(`,1)} − λu ,i(t)� , (3.11)

where
λu ,i(t) �

∑
S⊆χ(u):

i6|S|

λS(t) −
∑

S⊆χ(p(u)):
(u ,i)∈S

λS(t) . (3.12)

Recalling that ∆r (t) � 0 for all t ∈ [0, T], we calculate:

∂tΨ(t) + 2∆`(t)(x`(t) + δ)
> ∂tΨ(t) +

�
∆`(t) + ∆p(`)(t)

� (x`(t) + δ)
�

�
∆`(t) + ∆p(`)(t)

� (x`(t) + δ) +
∑

u∈V\{r}
wu

�
∆u(t) + ∆p(u)(t)

� ∑
i>1

∂t xu ,i(t)

�

∑
u∈V\{r}

∑
S⊆χ(u)

λS(t) *.
,

∑
(v , j)∈S

�
∆v(t) + ∆p(v)(t)

� (xv , j(t) + δ) − �
∆u(t) + ∆p(u)(t)

� ∑
i6|S|

(xu ,i(t) + δ)+/
-

+

∑
S⊆χ(r )

λS(t)
∑

(v , j)∈S

∆v(t)(xv , j(t) + δ)

�

∑
u∈V\{r}

∑
S⊆χ(u)

λS(t) *.
,

∑
(v , j)∈S

�(∆v(t) − ∆u(t)) + �
∆p(v)(t) − ∆p(u)(t)

�� (xv , j(t) + δ)+/
-

+

∑
S⊆χ(r )

λS(t)
∑

(v , j)∈S

∆v(t)(xv , j(t) + δ)

�

∑
u∈V\{r}

∑
S⊆χ(u)

λS(t) *.
,

∑
(v , j)∈S

�
qt(v) + qt(u)� (xv , j(t) + δ)+/

-
+

∑
S⊆χ(r )

λS(t)
∑

(v , j)∈S

∆v(t)(xv , j(t) + δ) ,

where in the penultimate equality we have used that for S ⊆ χ(u),
λS(t) > 0 �⇒

∑
i6|S|

xu ,i(t) �
∑

(v , j)∈S

xv , j(t) . (3.13)

On the other hand, the qt · w-movement cost is equal to∑
u∈V\{r}

∑
i>1

qt(u)wu
�
∂t xu ,i(t)� �

∑
u∈V\{r}

∑
i>1

qt(u)wu (∂t xu ,i(t))+ −
∑

u∈V\{r}
qt(u)wu (∂t xu ,i(t))− .
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Using (3.11) and (3.12) gives∑
u∈V\{r}

∑
i>1

wu qt(u) (∂t xu ,i(t))+ 6
∑
u∈V

∑
S⊆χ(u)

λS(t)
∑

(v , j)∈S

qt(v)(xv , j(t) + δ)

and

−

∑
u∈V\{r}

∑
i>1

wu qt(u) (∂t xu ,i(t))− 6 qt(`)(x`(t) + δ) +
∑

u∈V\{r}

∑
S⊆χ(u)

λS(t)qt(u)
∑
i6|S|

(xu ,i(t) + δ)

Using qt(`) 6 ∆t(`) and (3.13) again (as well as qt(v) � ∆v(t) for (v , j) ∈ S ⊆ χ(r )), we have∑
u∈V\{r}

∑
i>1

qt(u)wu
�
∂t xu ,i(t)� 6 ∆t(`)(x`(t) + δ) +

∑
u∈V\{r}

∑
S⊆χ(u)

λS(t)
∑

(v , j)∈S

�
qt(u) + qt(v)� (xv , j(t) + δ)

+

∑
S⊆χ(r )

λS(t)
∑

(v , j)∈S

∆v(t)(xv , j(t) + δ) ,

yielding the desired result. �

Note that ‖∂t x(t)‖`1(qt w) � (1 − δ)‖∂t z(t)‖`1(qt w). Thus combining Lemma 3.15 with Lemma 3.14
and using x`(t) > δ for t ∈ [0, T] yields the following.

Corollary 3.16. For almost every t ∈ [0, T], if y ∈ A satisfies y` � 0, then

(1 − δ) ‖∂t z(t)‖`1(qt w) 6 3∆`(t)(x`(t) + δ) + ∂tΨ(t) 6 ∂tΨ(t) − 6∆`(t)∂t D̂Φ(y; x(t)) .
For a function f : V → R+, define f̂ : V \ L → R+ by

f̂ (u) :� min
{

f (v) + f (v′) : v , v′, (u , v), (u , v′) ∈ ~E}
.

For concreteness, let us define f̂ (u) :� 0 if u has only one child.

Lemma 3.17. For almost every t ∈ [0, T], the following holds. Suppose that (T , w) is a τ-adic HST for
τ > 2, and there is some c > 0 such that

q̂t(v) > c ∀v ∈ V \ L .

If y ∈ A satisfies y` � 0, then

c(1 − δ)
4

‖∂t z(t)‖`1(w) 6 ∂tΨ(t) − 6∆`(t)∂t D̂Φ(y; x(t)) .
Proof. From Lemma 3.10, it holds that z(t) is an internal measure for all t ∈ [0, T], and moreover
∂t z(t) is a flow towards ` (cf. Lemma 3.11). Therefore we can decompose

∂t z(t) �
∑
`′∈L

y(`′)(t) ,

where y(`′)(t) is a flow on the unique `′-` path in T .
Let us use |y(`′)(t)| to denote the magnitude of the corresponding flow. Since ∂t z(t) is a flow

towards `, we have

‖∂t z(t)‖`1(qt w) >
1
τ

∑
`′∈L\{`}

q̂t(lca(`, `′))wlca(`,`′) ���y
(`′)(t)��� (3.14)

>
c
τ

∑
`′∈L\{`}

wlca(`,`′) ���y
(`′)(t)��� >

c
4
‖∂t z(t)‖`1(w) ,

where the first and last inequality use the fact that w is τ-adic. �
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3.4.1 Combinatorial depth for general trees

Let distT denote the unweighted shortest-path metric on T . Define ∆u(t) :� ∆u � distT (r , u), and
Ψ(t) :�

∑
u∈V\{r}

wu
�
∆u + ∆p(u)

� ∑
i>1

xu ,i(t) ,

Note that qt (cf. (3.9)) satisfies qt ≡ 1 for all t ∈ [0, T]. Therefore applying Corollary 3.16 yields

(1 − δ) ‖∂t z(t)‖`1(w) 6 ∂tΨ(t) − 6 distT (r , `) · ∂t D̂Φ(y; x(t)) . (3.15)

Combined with Lemma 3.13, this gives the following result.

Corollary 3.18. For any tree metric with combinatorial depth D, there is an O(D log k)-competitive
fractional k-server algorithm.

Proof. Consider any trajectory {y(t) ∈ RV
+ : t ∈ [0, T]} where y(t) services a request sequence σ,

and such that y(t) is almost surely an internal server measure for all t ∈ [0, T]. Let z(t) denote our
algorithm for servicing σ. Combining Lemma 3.13 and (3.15), we see that

D̂Φ(y(T); z(T)) − D̂Φ(y(0); z(0))
�

∫ T

0
∂t D̂Φ(y(t); z(t)) dt

6 O(log k)
∫ T

0
‖∂t y(t)‖`1(w) dt +

1
6D

(
[Ψ(T) −Ψ(0)] − (1 − δ)

∫ T

0
‖∂t z(t)‖`1(w) dt

)
.

Rearranging yields∫ T

0
‖∂t z(t)‖`1(w) dt 6 O(D log k)

∫ T

0
‖∂t y(t)‖`1(w) dt

+ O(1) [Ψ(T) −Ψ(0)] + O(D) �
D̂Φ(y(T); z(T)) − D̂Φ(y(0); z(0))� .

To conclude, observe that |D̂Φ(·; ·)| is uniformly bounded by diam(T )O(k log k), and |Ψ(T)−Ψ(0)| 6
diam(T )O(k). �

Note that, as opposed to the situation for HSTs, it is not known how to round online a fractional
k-server algorithm on a tree to a random integral algorithm while losing only an O(1) factor in the
competitive ratio.

3.4.2 Cardinality for an HST

Assume now that (T , w) is a τ-adic HST for some τ > 2. Recall that Nu is number of leaves in the
subtree rooted at u and define ∆u(t) :� ∆u � log

(
n

Nu

)
, and

Ψ(t) :�
∑

u∈V\{r}
wu

�
∆u + ∆p(u)

� ∑
i>1

xu ,i(t) .

Define q � qt as in (3.9). Then for every u ∈ V :

q(u) � log
Np(u)
Nu

.
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In particular, for any two children v , v′ of u:

q̂(u) > log Nu

Nv
+ log Nu

Nv′
> log 2 .

Applying Lemma 3.17 with c :� log 2 yields

(1 − δ) log 2
4

‖∂t z(t)‖`1(w) 6 ∂tΨ(t) − 6 log(n) · ∂t D̂Φ(y; x(t)) .
Combined with Lemma 3.13, this gives the following consequence, as in the proof of Corollary 3.18.

Corollary 3.19. If (T ,w) is a τ-adic HST for some τ > 2, then there is an O(log(k) log(n))-competitive
online fractional k-server algorithm on (L , distw).

The preceding construction motivates our approach to obtaining an O((log k)2) competitive
ratio: Try to replace Nu by the fractional server mass in the subtree beneath u.

3.4.3 Fractional server-weighted depth

Finally, let us establish the O((log k)2) bound. Suppose now that (T , w) is a τ-adic HST. Define:

Ψ(t) :�
∑

u∈V\{r}
wu

��
zu(t) + �

1 + τ−11{u<L}
�
ε

�
log(zu(t) + ε) + zu(t) log(zp(u)(t) + ε)

�
.

Consider some node u ∈ V \ {r}, and the terms in ∂tΨ(t) corresponding to ∂t zu(t):

wu∂t zu(t) *..
,
1 + log (zu(t) + ε) + log

�
zp(u)(t) + ε

�
+
τ−1ε1{u<L}

zu(t) + ε + τ−11{u<L}
∑

v:(u ,v)∈~E

zv(t)
zu(t) + ε

+//
-

� wu∂t zu(t)
(
1 + log (zu(t) + ε) + log

�
zp(u)(t) + ε

�
+ 1{u<L}τ−1

)
,

where in the last equality we used that z(t) ∈ M̂.
Since z(t) ∈ M̂ and (T , w) is a τ-adic HST, it holds that for every j ∈ Z:∑

u∈V :
wu�τ j

∂t zu(t) � 0 ,

and therefore we conclude that

∂tΨ(t) �
∑

u∈V\{r}
wu∂t zu(t) �

log (zu(t) + ε) + log
�
zp(u)(t) + ε

��

� −

∑
u∈V\{r}

wu∂t zu(t)
[
log k + 2ε

zu(t) + ε + log k + 2ε
zp(u)(t) + ε

]

�
1

1 − δ

∑
u∈V\{r}

wu

[
log k + 2ε

zu(t) + ε + log k + 2ε
zp(u)(t) + ε

] ∑
i>1

∂t xu ,i(t) .

Therefore (3.8) holds with

∆u(t) � 1
1 − δ

log k + 2ε
zu(t) + ε ,

and in this case:

qt(u) � 1
1 − δ

log
zp(u)(t) + ε
zu(t) + ε .

Now we can prove the main technical theorem of this section.
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Theorem 3.20. The trajectory σ(z(t)) for t ∈ [0, T] is an internal supermeasure of mass k that services the
request at ` ∈ L. Moreover, if y ∈ A satisfies y` � 0, then for almost every t ∈ [0, T]:

1 − ε
4

log 4
3 ‖∂tσ(z(t))‖`1(w) 6 (1 − δ)∂tΨ(t) − 6 log(2 + k/ε) · ∂t D̂Φ(y; x(t)) .

Proof. First, note that if u ∈ V \ L and zu(t) > ε, then for any children v , v′ of u:

(1 − δ)q̂t(u) > log
zu(t) + ε
zv(t) + ε + log

zu(t) + ε
zv′(t) + ε > log 4

3
,

and therefore

q̂t(u) >
log 4

3
1 − δ

1{zu(t)>ε} . (3.16)

Let y(`′)(t) be as in the proof of Lemma 3.17. Partition L \ {`} �
⋃

v∈V\L Lv , where Lv is the set of
leaves `′ with v � lca(`, `′), and define

y(v)(t) :�
∑
`′∈Lv

y(`′)(t) .

Note that by Lemma 3.11, ∂t z(t) is a flow towards `, and thus there are no cancellations in the
preceding sum.

Now use inequality (3.14) and (3.16) to write

‖∂t z(t)‖`1(qt w) >
log 4

3
(1 − δ)τ

∑
`′∈L\{`}

wlca(`,`′)1{zlca(`,`′)(t)>ε}
���y

(`′)(t)���

�
log 4

3
(1 − δ)τ

∑
v∈V\L

wv1{zv(t)>ε}
���y

(v)(t)���

>
1 − ε
1 − δ

log 4
3 ‖∂tσ(z(t))‖`1(w) ,

where in the final line we have used the fact that σ is 1
1−ε -Lipschitz and σ(zv(t)) � 0 when zv(t) < ε.

Combined with Corollary 3.16, this yields the desired result, noting that for any leaf ` ∈ L:

∆`(t) 6 1
1 − δ

log k + 2ε
ε

. �

Using Lemma 3.13 and Lemma 3.3 (as in the proof of Corollary 3.18), this yields an O((log k)2)-
competitive online fractional k-server algorithm for any HST metric. (It is not difficult to see that
every HST metric embeds with O(1) distortion into the metric of a 2-adic HST.)

4 Dynamic HST embeddings

Consider a discrete metric space (X, d). Denote the aspect ratio of (X, d) by

AX :�
maxx ,y∈X d(x , y)
minx,y∈X d(x , y) .

Theorem 4.1. If there is an α-competitive algorithm for k-server on HSTs, then there is an
O(α log(AX) log k)-competitive algorithm on any metric space (X, d).
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We use R(X) :� X� to denote the space of request sequences. For σ ∈ R(X) and s 6 t, denote
σ[s ,t] :� 〈σs , σs+1 , . . . , σt〉. We will consider sequences of random variables that are implicitly
functions of σ ∈ R(X). Say that such a sequence Z � 〈Zt : t > 0〉 is adapted if Zt is a function of σ[1,t]
for every t > 1.

This allows one to encode state that depends on the underlying request sequence σ in a
time-dependent way. For instance, to count the number of requests that fall into a subset X′ ⊆ X,
one would set Z � 0. Then given that σt arrives at time t, we would update Z :� Z + 1X′(σt). The
meaning is: Z0 � 0 and Zt :� Zt−1 + 1X′(σt) for all t > 1.

An online algorithm for k-server on X is an adapted sequence A � 〈A1 ,A2 , . . .〉 where for every
t > 1: At ∈ Xk and σt ∈ {(At)1 , . . . , (At)k}. For a function f with domain X, write f ⊗k for the
function with domain Xk given by f ⊗k(x1 , . . . , xk) :� ( f (x1), . . . , f (xk)).

For an algorithm A and a request sequence σ, we write costX(A(σ)) for the total movement
cost incurred in servicing σ. We denote by optX : R(X)→ (Xk)� an optimal offline algorithm and
cost∗X(σ) :� costX(optX(σ)) the optimal offline movement cost.

4.1 Hierarchical partitions and canonical HSTs

Let us suppose that diam(X, d) � 1 and AX < ∞. Let τ :� 4 be a scale parameter, and let M ∈ �
denote the smallest number for which τ−M < d(x , y) for all x , y ∈ X.

A sequence of subsets ξ � (ξ0 , ξ1 , . . . , ξ`) of X for 0 6 ` 6 M is a chain if ξ0 � X and

ξ0 ⊇ ξ1 ⊇ · · · ⊇ ξ` .

Define the length of such a chain by len(ξ) :� `. Denote min(ξ) :� ξlen(ξ). A chain is complete if it has
length M and |ξM | � 1. Let CX denote the set of chains in X and let C̄X denote the set of complete
chains.

Define a rooted tree structure on CX as follows. The root of CX is X. For two chains ξ, ξ′ ∈ CX :
ξ′ is a child of ξ if and only if ξ is a prefix of ξ′ and len(ξ′) � len(ξ) + 1. For ξ, ξ′ ∈ CX , let
lca(ξ, ξ′) ∈ CX denote their least common ancestor. Define a τ-HST metric on C̄X by

dτ(ξ, ξ′) :� τ−len(lca(ξ,ξ′)) ξ , ξ′ .

Embedding into complete chains. For a partition P of X we write P(x) for the unique set S ∈ P
containing x. A τ-stack P of X is a sequence P � (P0 , P1 , . . . , PM) of partitions of X such that:
P0 � {X} and for all j � 1, 2, . . . ,M, it holds that

S ∈ P j
�⇒ diam(S) 6 τ− j .

Note that PM(x) � {x} because diam(S) 6 τ−M implies |S| 6 1. Every τ-stack P induces a canonical
mapping FP : X → C̄X into the set of complete chains on X as follows. First define the forced
refinement P̂ �

�
P̂0 , P̂1 , . . . , P̂M�

inductively by P̂0 :� P0 and P̂ j :�
�
S ∩ S′ : S ∈ P j , S′ ∈ P j−1	

for
j � 1, 2, . . . ,M. Next define FP by

FP(x) :�
�
P̂0(x), P̂1(x), . . . , P̂M(x)� .

The following two lemmas will help to estimate the distortion of the embedding FP .

Lemma 4.2. For any τ-stack P, the map FP : X → (C̄X , dτ) is non-contracting.
Proof. Consider x , y ∈ X. If dτ(FP(x), FP(y)) � τ−` , then FP(x) and FP(y) share a common
prefix of length `, and therefore P`(x) � P`(y). Now property (ii) of a τ-stack guarantees that
d(x , y) 6 diam(P`(x)) 6 τ−` . �
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Lemma 4.3. For any τ-stack P �
�
P0 , P1 , . . . , PM�

, it holds that

dτ
�
FP(x), FP(y)� 6 τ

∑
j>1

τ− j1P j(x),P j(y) ∀x , y ∈ X .

Proof. Consider x , y ∈ X and suppose that dτ
�
FP(x), FP(y)� � τ−` for some ` < M. It is

straightforward to check that ` + 1 � min{ j : P j(x) , P j(y)}. �

Next we observe that there is a universal inverse to those embeddings. Define the mapping
Fin : C̄X → X by Fin(ξ) :� min(ξ). One has for any τ-stack P:

Fin ◦ FP � idX . (4.1)

4.2 The HST reduction

Let AC denote an α-competitive k-server algorithm for the metric space (C̄X , dτ) over some
probability space ΩC . Suppose that σ � 〈σ1 , σ2 , . . .〉 is a request sequence for X, and we have an
adapted sequence P � 〈P1 ,P2 , . . .〉 of τ-stacks of X over an independent probability space ΩX .

This yields a mapping FP : R(X)→ R(CX) given by

FP(σ) :�


FP1(σ1), FP2(σ2), . . .� .

From this one derives a k-server algorithm for X:

AX :� F⊗k
in ◦ AC ◦ FP ,

Note that AX is a valid k-server algorithm precisely because of (4.1).
Moreover, because of Lemma 4.2, the inverse map Fin is non-expanding, and thus:

costX(AX(σ)) 6 �
ΩC

�
costdτ

�(AC ◦ FP)(σ)��
6 OX,k(1) + αcost∗dτ (FP(σ)) . (4.2)

Thus our goal becomes clear: We would like to choose P so that

�
ΩX

[
costdτ

((F⊗k
P
◦ optX)(σ))]

6 OX,k(1) + β cost∗X(σ) ∀σ ∈ R(X) . (4.3)

Indeed since F⊗k
P
◦ optX services the request sequence FP(σ), one has cost∗

dτ
(FP(σ)) 6

costdτ
((F⊗k
P
◦ optX)(σ)) , and thus (4.3) in conjunction with (4.2) show that AX is an αβ-competitive

algorithm for X.
In essence, (4.3) asks that the embedding FP has β-distortion on the subset of X that currently

matters. Focusing on such a subset is the reason why one could hope to the usual Ω(log n) lower
bound by something depending on k andAX .

4.3 A dynamic embedding

The algorithm will produce an adapted sequence P � 〈P1 ,P2 , . . .〉 of τ-stacks verifying (4.3) with
β 6 O(M log k). In fact it is slightly easier for the algorithm’s description to allow P j

t to be a partial
partition, i.e., simply a collection of pairwise disjoint subsets of X. In the case it is understood that
the embeddings FP use the completion of any such partial partition P, that is all the elements from
X \ [P] (we denote [P] :� ∪S∈PS) are added as singletons to form a complete partition.
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The embedding algorithm. For j � 1, . . . ,M, we will maintain an adapted set N j
⊆ X of level- j

centers as well as an adapted mapping R j : N j
→ R+ of radii. These will be used to construct our

adapted τ-stack P �
�
P0 ,P1 , . . . ,PM�

.
For every j ∈ Z, consider the probability distribution µ j with density:

dµ j(r) :�
kτ j log k

k − 1
exp

�
−rτ j log k

�
1[0,τ− j](r) .

This is simply a truncated exponential distribution, as employed by Bartal [Bar96].

Initially, N j
0 � P j

0 � ∅ for j � 1, . . . ,M. Upon receiving request σt ∈ X, we proceed as follows:

For j � 1, 2, . . . ,M:

1. If |N j | > 2k, then
[level- j reset]:

For i � j, j + 1, . . . ,M, set N j :� ∅ and P j :� ∅.
2. If d(σt ,N j) > τ− j−1, then

[level- j insertion]:
(a) N j :� N j

∪ {σt}
(b) R j(σt) :� τ− j−1 + R̂ j

t , where R̂ j
t is sampled independently according to the

distribution µ j+1.
(c) P j :� P j

∪
�
B(σt ,R j(σt)) \ [P j]	.

Analysis. Let us nowprove that for the stackP generated in thisway, (4.3) holds for β 6 O(M log k).
We need a few preliminary results.

Lemma 4.4. Pt is a τ-stack for every t > 1.

Proof. This follows from the fact that the distribution µ j+1 is supported on the interval [0, τ− j−1]
and thus every set in P j

t is contained in a ball of radius 2τ− j−1, which is a set of diameter at most
4τ− j−1 6 τ− j for τ > 4. �

We defer the proof of the next lemma to the end of this section.

Lemma 4.5. For all x ∈ X and t > 1, it holds that

�
ΩX

�
dτ(FP t (x), FP t (σt))� 6 O(M log k) d(x , σt) .

Lemma 4.6. For all t > 1 and j � 1, 2, . . . ,M: If K j,t denotes the number of level- j resets up to time t, then

cost∗X(σ[1,t]) > kτ− j−1
· K j,t .

Proof. Suppose that between time t1+1 and t2 there are requests made at points x1 , x2 , . . . , xk+k′ ∈ X
that satisfy d(xi , x j) > D for all i , j. Then clearly:

cost∗X(σ[1,t2]) > cost∗X(σ[1,t1]) + k′D . �

Theorem 4.7. For every time t > 1:

�
ΩX

[
costdτ

((F⊗k
P
◦ optX)(σ[1,t])

)]
6 O(M log k) cost∗X(σ[1,t]) + OX,k(1) .
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Proof. We can split the movement of F⊗k
P
◦ optX into three parts: First the stack P is possibly

updated by the algorithm, either with a reset or an insertion (each induce movement), and then we
mirror the move of optX .

Let us first consider the case of a level- j reset at time t. The key observation is that the mapping
FPt remains identical to FPt on the ( j−1)-prefix, that is (P0

t (x), . . . , P j−1
t (x)) � (P0

t−1(x), . . . , P j−1
t−1 (x)),

∀x ∈ X. Thus the movement cost induced by a level- j reset is at most kτ1− j . In particular the total
cost of resets up to time t is upper bounded by

M∑
j�1

K j,t · kτ1− j 6 τ2M · cost∗X(σ[1,t]) ,

where the last inequality is Lemma 4.6.

For the cost resulting from a level- j insertion at time t, we use the following argument. Assume
that j is the smallest index in [M] with a level- j insertion. Note that, by construction of the
radii, one has Ph

t (σt) ⊆ P j
t (σt) for h > j. In particular, the movement comes from the set of

servers It � {i ∈ [k] : (optX
t−1)i ∈ P j

t (σt)}, for which the mapping FPt will change the j-suffix
(i.e., (P j

t , . . . , P
M
t )) compared to FPt−1 . However, importantly the ( j − 1)-prefix remains identical

(this is because there is no insertion at level j − 1 and thus these servers remain part of the same
non-singleton cluster at level j − 1).

In other words, the total movement is O(τ− j |It |). Now we argue that we can match this
movement with either reset movement or movement coming from optX as follows. First we ignore
the set of servers in Jt ⊆ It such that their ( j − 1)-prefix remain the same forever, indeed one has∑

t>1 | Jt | � OX,k(1). Now for a server i ∈ It \ Jt consider the first time s > t such that the ( j−1)-prefix
of FPt−1((optX

s )i) is different from FPt ((optX
t−1)i). The corresponding movement at time s comes

either from a reset or from a movement of optX , and moreover its cost is larger than τ− j . Thus we
just showed that at the expense of an additive term of OX,k(1) and a multiplicative factor 2 for
movement cost induced by resets and the movement of optX , one can ignore the movement cost
induced by insertions.

Finally, we deal with the cost coming from movement of optX . We may assume that optX is
conservative: If σt ∈ optX

t−1, then optX
t � optX

t−1 and otherwise optX
t−1 \ optX

t � {xt} for some xt ∈ X,
and optX pays d(σt , xt). From Lemma 4.5, the expected cost of mirroring this move in dτ is at most
O(M log k) d(σt , xt). �

Thus we are left only to analyze the stretch. Note that since d(σt ,N
j
t ) 6 τ− j−1 by construction,

the next lemma yields Lemma 4.5 when combined with Lemma 4.3.

Lemma 4.8. For every y ∈ X satisfying d(y ,N j
t ) 6 τ− j−1 and every x ∈ X:

�
[
P j

t (x) , P j
t (y)

]
6 (2 + 4e)d(x , y)τ j+1 log k .

Proof. Note that |N j
t | 6 2k by construction. Let us arrange the centers in the order which they were

added: N j
t � {x1 , x2 , . . . , xN}. Let R̂1 , . . . , R̂N denote the corresponding random radii R̂i :� R̂ j

t(xi)
and let Ri :� R̂i + τ− j−1.

Denote the event

Ei :�
�
d(xi , {x , y}) 6 Ri ∧max{d(xi , x), d(xi , y)} > Ri

	
,

25



and let i∗ :� min{i : d(xi , {x , y}) 6 Ri}. Define c :� (1 − 1
log k )τ− j−1. Then:

�
[
P j

t (x) , P j
t (y)

]
�

N∑
i�1
�[i � i∗] · �[Ei | i � i∗]

6
N∑

i�1
�[Ei ∧ {R̂i > c}] +

N∑
i�1
�[i � i∗] · � �

Ei ∧ {R̂i < c} | i � i∗
�
.

For any i � 1, . . . ,N , we have

�[Ei ∧ {R̂i > c}] 6 sup
R>c




∫ R+d(x ,y)

R
dµ j+1(r)




6

∫ c+d(x ,y)

c
dµ j+1(r)

�
k

k − 1
�
1 − exp

�
−d(x , y)τ j+1 log k

��
e−cτ j+1 log k

6
2e
k

d(x , y)τ j+1 log k ,

where thefinal lineuses 1−e−u 6 u and k > 2. This yields
∑N

i�1 �[Ei∧{R̂i > c}] 6 4ed(x , y)τ j+1 log k
since N 6 2k.

Now analyze:

�[Ei ∧ {R̂i < c} | i � i∗] 6 sup
06R<c




∫ R+d(x ,y)
R dµ j+1(r)∫ τ− j−1

R dµ j+1(r)




6

∫ c+d(x ,y)
c dµ j+1(r)∫ τ− j−1

c dµ j+1(r)

�
1 − exp

�
−d(x , y)τ j+1 log k

�

1 − exp(cτ j+1 log k)/k
6 2d(x , y)τ j+1 log k ,

where in the last line we have used again 1 − e−u 6 u and the value of c. �

5 Mirror descent

We now prove Theorem 2.2.

5.1 Preliminaries

Consider an Rn-set-valued map F with domain X ⊆ Rn . We will be interested in the following
viability problem (i.e., a differential inclusion with a constraint set for the solution): Given a constraint
set K ⊆ X and initial point x0 ∈ K, find an absolutely continuous solution x : [0,∞)→ K such that

∂t x(t) ∈ F(x(t)) ,
x(0) � x0 .

The upshot is that, under appropriate continuity condition on F, this problem has a solution
provided that F always contain admissible directions, that is F(x) ∩ TK(x) , ∅ where TK(x) is the
tangent cone to K at x (see definition below). We now recall the needed definitions with some basic
results, and state the general existence theorem from [AC84].
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Definition 5.1. The polar N◦ of a set N ⊆ Rn is

N◦ :� {z ∈ Rn : 〈z , y〉 6 0 for all y ∈ N} .
The normal cone to K at x is

NK(x) � (K − x)◦ ,
and the tangent cone to K at x is

TK(x) :� NK(x)◦ .
Lemma 5.2 (Moreau’s decomposition [HUL93, Thm III.3.2.5]). Let N be a cone. Then for any x ∈ Rn

there is a unique pair (u , v) ∈ N × N◦ such that 〈u , v〉 � 0 and x � u + v. Furthermore u (resp., v) is the
projection of x onto N (resp., N◦).

Definition 5.3. F is upper semicontinuous (u.s.c.) if for any x ∈ X and any open neighborhood
N ⊃ F(x) there exists a neighborhood M of x such that F(M) ⊆ N . F is upper hemicontinuous (u.h.c.)
if, for any θ ∈ Rn , the support function x 7→ supy∈F(x)〈θ, y〉 is upper semicontinuous.

Lemma 5.4 ([AC84, Prop. 1, pg. 60; Cor. 2, pg. 63]). For any F as above, u.s.c. implies u.h.c., and
moreover if F takes compact, convex values then the two notions are equivalent.

Lemma 5.5 ([AC84, Thm. 1, pg. 41]). Let F and G be two set valued maps such that F is u.s.c., F takes
compact values, and the graph of G is closed. Then the set-valued mapping x 7→ F(x) ∩ G(x) is u.s.c.
Theorem 5.6 ([AC84, Thm. 1, pg. 180]). Assume that F is u.h.c. and takes compact, convex values, and
that K is compact. Furthermore assume the tangential condition: For any x ∈ X,

F(x) ∩ TK(x) , ∅ .
Then the viability problem admits an absolutely continuous solution.

5.2 Existence

We prove the following theorem which can be viewed as a non-Euclidean extension of [AC84, pg.
217].

Theorem 5.7. Let K ⊆ Rn be a compact convex set, let H : K → {A ∈ Rn×n : A � 0} be continuous, and
let f : [0,∞) × K → Rn be continuous. Then, for any x0 ∈ K, there is an absolutely continuous solution
x : [0,∞)→ K satisfying:

∂t x(t) ∈ H(x) �
f (t , x(t)) − NK(x(t))� , (5.1)

x(0) � x0 .

Furthermore, any solution to the viability problem satisfies

∂t x(t) � argmin
�
‖v − H(x) f (t , x(t))‖2x ,∗ : v ∈ TK(x(t))	 . (5.2)

In particular, one has
‖∂t x(t)‖x ,∗ 6 ‖ f (t , x)‖x . (5.3)

Proof. It suffices to prove the existence on any time interval [T, T + 1]. We denote 〈·, ·〉x for the
inner product induced by H(x) (i.e., 〈α, β〉x :� 〈α,H(x)β〉), ‖ · ‖x for the corresponding norm, and
‖ · ‖x ,∗ for its dual norm. To apply Theorem 5.6, consider the following differential inclusion, with
K � [T, T + 1] × K,

x̃′(t) ∈ F(x̃(t)) ,
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where F : K → 2Rn+1 defined by

F(t , x) :�
(
1,H(x) �

f (t , x) − NK(x)) ∩ {v ∈ Rn : ‖v‖x ,∗ 6 ‖ f (t , x)‖x}�)
.

Thanks to the restriction to velocities satisfying ‖v‖x ,∗ 6 ‖ f (t , x)‖x , it holds that F(t , x) is compact
(it is also clearly convex). Moreover, K is compact. Thus, besides the tangential condition, it remains
to show that F is u.h.c. Since F is compact and convex valued, by Lemma 5.4 it suffices to show
that F is u.s.c. For this we apply Lemma 5.5. Note that {(1,H(x)( f (t , x) − y)) : x ∈ K, y ∈ NK(x)}
is closed (using again continuity of H and f ), and thus it suffices to show that the mapping
x 7→ {v ∈ Rn : ‖v‖x ,∗ 6 ‖ f (t , x)‖x} is u.s.c., which is clearly true since its support function in
direction θ is x 7→ ‖ f (t , x)‖x‖θ‖x which is continuous by continuity of H and f .

It remains to check the tangential condition. We note that

NK(t , x) �



(−∞, 0] × NK(x) t � 0 ,
{0} × NK(x) otherwise.

TK(t , x) �



[0,∞) × TK(x) t � 0 ,
R × TK(x) otherwise.

Thus it suffices to show that there exists u ∈ NK(x) such that ‖H(x)( f (t , x)− u)‖x ,∗ 6 ‖ f (t , x)‖x and
H(x)( f (t , x) − u) ∈ TK(x).

We apply Moreau’s decomposition (Lemma 5.2) in Rn equipped with the inner product 〈·, ·〉x to
the cone NK(x) andwrite f (t , x) � u+v where u ∈ NK(x) and v is in the polar (w.r.t. 〈·, ·〉x) of NK(x).
Since 〈u , v〉x � 0, we have ‖ f (t , x)− u‖x 6 ‖ f (t , x)‖x . This gives ‖H(x)( f (t , x)− u)‖x ,∗ 6 ‖ f (t , x)‖x .
Furthermore since v is in the polar, we have for all y ∈ NK(x), 〈 f (t , x) − u , y〉x 6 0 which means
that H(x)( f (t , x) − u) ∈ TK(x). This concludes the existence proof.

Since the objective function in (5.2) is strongly convex, the optimality condition of (5.2) shows
that any v ∈ TK(x(t)) satisfying H(x)−1(v − H(x) f (t , x(t))) ∈ −TK(x(t))◦ is the unique solution.
Now, we note that ∂t x(t) ∈ TK(x(t)) because x(t) ∈ K and

H(x)−1(∂t x(t) − H(x) f (t , x(t))) ∈ −NK(x(t)) � −TK(x(t))◦ ,
where we used that TK(x(t))◦ � NK(x(t))◦◦ � NK(x(t)) (since NK(x(t)) is a closed and convex cone).
This establishes (5.2).

Since we exhibited a solution satisfying (5.3), the almost everywhere uniqueness of ∂t x(t) shows
that (5.3) holds for any solution. �

5.3 Uniqueness

We prove here that the solution to the viability problem is in fact unique under slightly more
restrictive assumptions than those in Theorem 5.7. In what follows, we denote, as in the proof of
Theorem 5.7, 〈·, ·〉x for the inner product induced by H(x), ‖ · ‖x for its corresponding norm and
‖ · ‖x ,∗ for its dual norm.

Lemma 5.8. Let x(t) be an absolutely continuous path with values in a convex set K ⊆ Rn . Then,
∂t x(t) ∈ NK(x(t))⊥ almost everywhere.

Proof. For any t such that ∂t x(t) exists, one has
x(t + h) � x(t) + h∂t x(t) + o(h) .

In particular for any y ∈ NK(x(t)), since x(t + h) ∈ K, one has



y , x(t + h) − x(t)� 6 0.
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Taking h → 0+, we obtain



y , ∂t x(t)� 6 0. Taking h → 0−, we obtain



y , ∂t x(t)� > 0. Therefore,
∂t x(t) ∈ NK(x(t))⊥. �

Lemma 5.9. The solution x(t) in Theorem 5.7 is unique provided that H is Lipschitz, and f is locally
Lipschitz.

Proof. Let x(t) and x̃(t) be two solutions to the viability problem. We show that for any T > 0 there
are some constants C, ε > 0 such that for all t ∈ [T, T + ε],

∂t‖x(t) − x̃(t)‖2
x(t),∗ 6 C‖x(t) − x̃(t)‖2

x(t),∗ , (5.4)

which concludes the proof by a simple application of Gronwall’s inequality (notice that since H is
continuous and K is compact, there is some constant ε′ such that H−1(x) � ε′In ,∀x ∈ K).

Recall that we have ∂t x(t) � H(x(t))( f (t , x(t)) − u(t)) for some u(t) ∈ NK(x(t)) (and similarly
for x̃ there is some path ũ in the normal cones). In particular we get:

1
2
∂t ‖x(t) − x̃(t)‖2

x(t),∗ � 〈x(t) − x̃(t),H(x(t))( f (t , x(t)) − u(t)) − H(x̃(t))( f (t , x̃(t)) − ũ(t))〉x(t),∗
(5.5)

+
1
2
(x(t) − x̃(t))>(∂t H(x(t))−1)(x(t) − x̃(t)) . (5.6)

Denote ‖ · ‖op for the spectral norm, and observe that by continuity of H and compactness of K,
there exists M > 0 such that for all t, ‖H(x(t))‖op , ‖H(x(t))−1‖op 6 M. Thus we can bound the term
(5.6) as follows:

(x(t) − x̃(t))>(∂t H(x(t))−1)(x(t) − x̃(t)) 6 ‖x(t) − x̃(t)‖2
x(t),∗‖H(x(t))1/2(∂t H(x(t))−1)H(x(t))1/2‖op

6 M‖x(t) − x̃(t)‖2
x(t),∗‖(∂t H(x(t))−1)‖op .

Now since H is Lipschitz, there exists a constant M′ such that for all t ∈ [T, T + ε],
‖(∂t H(x(t))−1)‖op � ‖H(x(t))−1(∂t H(x(t)))H(x(t))−1‖op

6 M2M′‖∂t x(t)‖2 6 M3M′‖∂t x(t)‖x(t),∗ 6 M3M′‖ f (t , x(t))‖x(t) ,

where the last inequality follows from (5.3). Since f (t , x) is uniformly bounded on [T, T + ε], we
finally get that for some C > 0, the term (5.6) is bounded from above by C‖x(t) − x̃(t)‖2

x(t),∗ for all
t ∈ [T + ε].

Next we consider the term (5.5) and decompose it into two terms:

(i) (x(t) − x̃(t))> �
f (t , x(t)) − u(t) − ( f (t , x̃(t)) − ũ(t))�, and

(ii)


x(t) − x̃(t), (H(x(t)) − H(x̃(t))) �

f (t , x̃(t)) − ũ(t)��
x(t),∗.

We further decompose (i) into

(iii) (x(t) − x̃(t))>( f (t , x(t)) − f (t , x̃(t))), and
(iv) (x(t) − x̃(t))>(ũ(t) − u(t)).

To bound (iii), we now use that f is locally Lipschitz, which shows that this term is bounded from
above by C‖x(t) − x̃(t)‖x(t),∗ for any t ∈ [T, T + ε].

The term (iv) is nonpositive since u(t) ∈ NK(x(t)) and ũ(t) ∈ NK(x̃(t)). Finally, for (ii) one can
combine Lipschitzness of H and (5.3) as above to obtain that it is bounded by C‖x(t) − x̃(t)‖x(t),∗ for
all t ∈ [T, T + ε], thus concluding the proof. �

29



Acknowledgements

We thank Anna Karlin, Manor Mendel, and Yuval Rabani for useful comments on an initial draft of
this manuscript.

Part of this work was carried out while M. B. Cohen, Y. T. Lee, and J. R. Lee were at Microsoft
Research in Redmond. We thank Microsoft for their hospitality. M. B. Cohen and A. Mądry are
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