CSE 312: Foundations of Computer Science, II

- Instructor:

James R. Lee (jrl@cs.washington.edu)
CSE 640

- TA:

Jessica Chang (ischang@cs.washington.edu)

CSE 312: Foundations of Computer Science, II

- Probability, statistics, and algorithms

First 20 lectures: prob/stats in CS
Last IO lectures: algorithms, polynomial time, and NP-completeness

- Books

Rosen, Discrete Mathematics (same as 31I)
Ross, Introduction to Probability (supplementary; handouts)
Dasgupta, Papadimitriou, Vazirani, Algorithms
 (required, but PDF version available online)

- Homeworks

Weekly (out Wed, due next Wed).
can work in pairs

CSE 312: Foundations of Computer Science, II

- Grading weekly problem sets (45-55\%) in-class midterm (15-20\%) in-class final exam (30-35\%)
- Office hours

Me: Monday, 2:30-4pm, CSE 640
Jessica: Tuesday, 3-4pm, Room TBA

- Brand new course

Slightly chaotic lecture notes structure (Handwritten, external links, slides, etc.)

pretend you're a doctor

You are trying to diagnose the probability that a woman with a positive mammogram has breast cancer, even though she's in a low-risk group: 40-50 years old.

- Probability of a woman having breast cancer is 0.8%.
- If someone has cancer, probability of a positive mammogram is 90%.
- If someone doesn't have cancer, probability of a positive mammogram is 7%.

A woman walks into your office with a positive test. What's the probability that she has breast cancer?

pretend you're a lawyer

0J simpson murder trial

Prosecutors:

"A slap is a prelude to homicide."
Defense:
"Less than I in 2500 men who commit domestic abuse go on to commit homocide."

Both were considering the wrong question:
If a woman is murdered and she has been domestically abused, the chances are 90% that her husband is the killer.

Bayes rule

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
$$

