NP and Computational Intractability
Polynomial-Time Reduction

Desiderata’. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X **polynomial reduces to** problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. \(X \leq_p Y. \)

Remarks.
- We pay for time to write down instances sent to black box \(\Rightarrow \) instances of Y must be of polynomial size.
- Note: Cook reducibility.

\(\text{computational model supplemented by special piece of hardware that solves instances of } Y \text{ in a single step} \)

\(\text{in contrast to Karp reductions} \)
Polynomial-Time Reduction

Purpose. Classify problems according to *relative* difficulty.

Design algorithms. If \(X \leq_p Y \) and \(Y \) can be solved in polynomial-time, then \(X \) can also be solved in polynomial time.

Establish intractability. If \(X \leq_p Y \) and \(X \) cannot be solved in polynomial-time, then \(Y \) cannot be solved in polynomial time.

Establish equivalence. If \(X \leq_p Y \) and \(Y \leq_p X \), we use notation \(X \equiv_p Y \).

\(\uparrow \)

up to cost of reduction
8.2 Reductions via "Gadgets"

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction via "gadgets."
Satisfiability

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: $(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$

Yes: $x_1 = true$, $x_2 = true$, $x_3 = false$.
3 Satisfiability Reduces to Independent Set

Claim. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET}.\)

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance \((G, k)\) of INDEPENDENT-SET that has an independent set of size \(k\) iff \(\Phi\) is satisfiable.

Construction.
- \(G\) contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = (\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4)
\]
3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one vertex in each triangle.
- Set these literals to true.
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
Review

Basic reduction strategies.
- Simple equivalence: INDEPENDENT-SET \equiv_p VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_p SET-COVER.
- Encoding with gadgets: 3-SAT \leq_p INDEPENDENT-SET.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.
Pf idea. Compose the two algorithms.

Ex: 3-SAT \leq_p INDEPENDENT-SET \leq_p VERTEX-COVER \leq_p SET-COVER.
Self-Reducibility

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem \(\leq_p \) decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality \(k^* \) of min vertex cover.
- Find a vertex \(v \) such that \(G - \{v\} \) has a vertex cover of size \(\leq k^* - 1 \).
 - any vertex in any min vertex cover will have this property
- Include \(v \) in the vertex cover.
- Recursively find a min vertex cover in \(G - \{v\} \).

\[\text{delete } v \text{ and all incident edges} \]
Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

![Graph Diagram]

NO: bipartite graph with odd number of nodes.
Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph $G = (V, E)$, does there exists a simple directed cycle Γ that contains every node in V?

Claim. $\text{DIR-HAM-CYCLE} \leq_P \text{HAM-CYCLE}$.

Pf. Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.
Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ.
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. \Leftarrow

- Suppose G' has an undirected Hamiltonian cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - ..., B, G, R, B, G, R, B, G, R, B, ...
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. \blacksquare
Claim. $\text{3-SAT} \leq_p \text{DIR-HAM-CYCLE}$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamiltonian cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = 1$.
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 6 edges.
3-SAT Reduces to Directed Hamiltonian Cycle

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^*.
- Then, define Hamiltonian cycle in G as follows:
 - if $x^*_i = 1$, traverse row i from left to right
 - if $x^*_i = 0$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour
Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Leftarrow

- Suppose G has a Hamiltonian cycle Γ.
 - If Γ enters clause node C_j, it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on $G - \{C_j\}$
 - Continuing in this way, we are left with Hamiltonian cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.
 - Set $x^*_i = 1$ iff Γ' traverses row i left to right.
 - Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \blacksquare
Longest Path

SHORTEST-PATH. Given a digraph $G = (V, E)$, does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph $G = (V, E)$, does there exists a simple path of length at least k edges?

Claim. 3-SAT \leq_p LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE \leq_p LONGEST-PATH.
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function \(d(u, v)\), is there a tour of length \(\leq D\)?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE: given a graph \(G = (V, E) \), does there exists a simple cycle that contains every node in \(V \)?

Claim. \(\text{HAM-CYCLE} \leq_p \text{TSP}. \)

Pf.
- Given instance \(G = (V, E) \) of \(\text{HAM-CYCLE} \), create \(n \) cities with distance function
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]
- TSP instance has tour of length \(\leq n \) iff \(G \) is Hamiltonian.

Remark. TSP instance in reduction satisfies \(\Delta \)-inequality.