# NP and Computational Intractability

# Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation.  $X \leq_P Y$ .

computational model supplemented by special piece of hardware that solves instances of Y in a single step

#### Remarks.

- We pay for time to write down instances sent to black box  $\Rightarrow$  instances of Y must be of polynomial size.
- Note: Cook reducibility.

#### Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If  $X \leq_P Y$  and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If  $X \leq_P Y$  and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If  $X \leq_P Y$  and  $Y \leq_P X$ , we use notation  $X \equiv_P Y$ .

18

# 8.2 Reductions via "Gadgets"

#### Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction via "gadgets."

## Satisfiability

Literal: A Boolean variable or its negation.  $x_i$  or  $x_i$ 

Clause: A disjunction of literals.  $C_j = x_1 \vee \overline{x_2} \vee x_3$ 

Conjunctive normal form: A propositional formula  $\Phi$  that is the conjunction of clauses.

 $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$ 

SAT: Given CNF formula  $\Phi$ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

each corresponds to a different variable

Ex: 
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$
  
Yes:  $x_1$  = true,  $x_2$  = true  $x_3$  = false.

#### 3 Satisfiability Reduces to Independent Set

#### Claim. $3-SAT \leq_{P}$ INDEPENDENT-SET.

Pf. Given an instance  $\Phi$  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff  $\Phi$  is satisfiable.

#### Construction.

G

k = 3

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- . Connect literal to each of its negations.



#### 3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size  $k = |\Phi|$  iff  $\Phi$  is satisfiable.

Pf.  $\Rightarrow$  Let S be independent set of size k.

G

k = 3

- S must contain exactly one vertex in each triangle.
- Set these literals to true. ← and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

 $Pf \leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. <math>\blacksquare$ 



## Review

#### Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET =  $_{P}$  VERTEX-COVER.
- Special case to general case: VERTEX-COVER  $\leq_{P}$  SET-COVER.
- Encoding with gadgets:  $3-SAT \leq_{P} INDEPENDENT-SET$ .

Transitivity. If  $X \leq_P Y$  and  $Y \leq_P Z$ , then  $X \leq_P Z$ . Pf idea. Compose the two algorithms.

**EX:**  $3-SAT \leq_{P} INDEPENDENT-SET \leq_{P} VERTEX-COVER \leq_{P} SET-COVER.$ 

# Self-Reducibility

Decision problem. Does there exist a vertex cover of size  $\leq k$ ? Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem  $\leq_{P}$  decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k\* of min vertex cover.
- Find a vertex v such that  $G \{v\}$  has a vertex cover of size  $\leq k^* 1$ .
  - any vertex in any min vertex cover will have this property
- Include v in the vertex cover.
- Recursively find a min vertex cover in  $G \{v\}$ .

delete v and all incident edges

## Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle  $\Gamma$  that contains every node in V.



NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

**DIR-HAM-CYCLE:** given a digraph G = (V, E), does there exists a simple directed cycle  $\Gamma$  that contains every node in V?

Claim. DIR-HAM-CYCLE  $\leq_{P}$  HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.



### Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

#### Pf. $\Rightarrow$

- . Suppose G has a directed Hamiltonian cycle  $\Gamma.$
- Then G' has an undirected Hamiltonian cycle (same order).

# **Pf**. ⇐

- Suppose G' has an undirected Hamiltonian cycle  $\Gamma'.$
- Γ' must visit nodes in G' using one of following two orders:
   ..., B, G, R, B, G, R, B, G, R, B, ...

..., B, R, G, B, R, G, B, R, G, B, ...

- Blue nodes in  $\Gamma'$  make up directed Hamiltonian cycle  $\Gamma$  in G, or reverse of one.  $\hfill \label{eq:Gamma}$ 

Claim.  $3-SAT \leq P$  DIR-HAM-CYCLE.

Pf. Given an instance  $\Phi$  of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff  $\Phi$  is satisfiable.

Construction. First, create graph that has 2<sup>n</sup> Hamiltonian cycles which correspond in a natural way to 2<sup>n</sup> possible truth assignments.

Construction. Given 3-SAT instance  $\Phi$  with n variables  $x_i$  and k clauses.

- Construct G to have 2<sup>n</sup> Hamiltonian cycles.
- Intuition: traverse path i from left to right  $\Leftrightarrow$  set variable  $x_i = 1$ .



Construction. Given 3-SAT instance  $\Phi$  with n variables  $x_i$  and k clauses.

• For each clause: add a node and 6 edges.



Claim.  $\Phi$  is satisfiable iff G has a Hamiltonian cycle.

#### Pf. $\Rightarrow$

- Suppose 3-SAT instance has satisfying assignment  $x^*$ .
- Then, define Hamiltonian cycle in G as follows:
  - if  $x_i^* = 1$ , traverse row i from left to right
  - if x<sup>\*</sup><sub>i</sub> = 0, traverse row i from right to left
  - for each clause  $C_j$ , there will be at least one row i in which we are going in "correct" direction to splice node  $C_j$  into tour

Claim.  $\Phi$  is satisfiable iff G has a Hamiltonian cycle.

#### **Pf**. ⇐

- . Suppose G has a Hamiltonian cycle  $\Gamma.$
- If  $\Gamma$  enters clause node  $C_j$ , it must depart on mate edge.
  - thus, nodes immediately before and after  $C_j$  are connected by an edge e in G
  - removing  $C_j$  from cycle, and replacing it with edge e yields Hamiltonian cycle on  $G - \{C_j\}$
- Continuing in this way, we are left with Hamiltonian cycle  $\Gamma'$  in  $G \{C_1, C_2, \ldots, C_k\}$ .
- Set  $x_i^* = 1$  iff  $\Gamma'$  traverses row i left to right.
- Since  $\Gamma$  visits each clause node  $C_{\rm j}$  , at least one of the paths is traversed in "correct" direction, and each clause is satisfied.  $\ \ \,$

# Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim.  $3-SAT \leq_{P} LONGEST-PATH$ .

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE  $\leq_{P}$  LONGEST-PATH.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour Reference: http://www.tsp.gatech.edu

# TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$ ?



11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

```
Claim. HAM-CYCLE \leq_{P} TSP. Pf.
```

• Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function  $\begin{bmatrix} 1 & \text{if } (u, v) \end{bmatrix} \in E$ 

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

. TSP instance has tour of length  $\leq$  n iff G is Hamiltonian.

**Remark.** TSP instance in reduction satisfies  $\Delta$ -inequality.