Teusors and low rank teusor decompositions
$S_{i j}=$ Score of person i in test j

	Classics	Math	Music	\ldots
Alice	19	26	17	\ldots
Bob	8	17	9	\ldots
Carol	7	12	7	\ldots
\vdots	\vdots	\vdots	\vdots	

$$
\text { rank }-2
$$

$$
S=
$$

$$
\vec{x}_{\text {quant }} \vec{y}_{\text {quant }}^{T}+
$$

$$
\vec{x}_{\text {verb }} \vec{y}^{\top} \text { ven }
$$

test, j quack. meas.
person i quant. revsuy

$\sum_{n} \quad S_{i j k}=\vec{x}_{\text {quant, } ;} \cdot \vec{y}_{\text {quant,j }} \vec{z}_{\text {quart }, k} \forall \forall i, j, k(*)$
$n_{1} \times n_{2} \times n_{3} \quad+\vec{x}_{\text {verb, } i} \cdot \vec{y}_{\text {varb } i j} \cdot \vec{z}_{\text {valb }, k}$
Cor: If $\frac{\left\{\vec{x}_{\text {quant, }} \vec{x}_{\text {verb }}\right\}}{\operatorname{lin} \text { indep }}, \frac{\left\{\vec{y}_{\text {quear }}, \vec{y}_{\text {verb }}\right\}}{\operatorname{lin} \text { indas }}, \frac{\left\{\vec{z}_{\text {qpart }}, \vec{z}_{\text {verk }}\right\}}{\operatorname{lin} \text { vdp }}$ then (*) is unique (up to scolig)

Def. $A n_{1} \times n_{2} \times \cdots \times n_{k}$ array $A \in \mathbb{R}^{n_{1} \times n_{2} k \cdots \times n_{k}}$ is called a k-tensor.
vector $=1$-tensor \quad Rank: A rank $1 \quad k$-tenor is matrix $=2$ tensor of the fam

$$
\begin{array}{ll}
\left(\vec{u}_{1} \otimes \vec{u}_{2} \otimes \vec{u}_{3} \otimes \cdots \otimes \vec{u}_{k}\right)_{i, i 2 \cdots i k} & \begin{array}{l}
\vec{u}_{1} \otimes \vec{u}_{2} \otimes \vec{u}_{3} \otimes \cdots \otimes \vec{u}_{k} \\
\left.\vec{u}_{i}\right)_{i i}\left(\vec{u}_{2}\right)_{i 2} \cdots\left(\vec{u}_{k}\right)_{i k}
\end{array} \\
\mathbb{R}^{n_{i}}, i=1 \ldots, k
\end{array}
$$

Rank of a k-tansor $A=$ smallest r st. we can unite A as a sum of romk-1 tensors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HMM: Topics

$$
T=\# \text { topics }
$$

$$
\left.\begin{array}{rl}
A_{i j k} & =\mathbb{P}\left[x_{1} x_{2} x_{3}=\omega_{i} \omega_{j} \omega_{k}\right] \\
& =\sum_{l=1}^{T} \mathbb{P}\left[h_{2}=l\right] \cdot \mathbb{P}\left[x_{2}=\omega_{j} \mid h_{2}=l\right] \\
\mathbb{P}\left[x_{3}=\omega_{k} \mid h_{2}=l\right] \\
\mathbb{P}\left[x_{1}=\omega_{i} \mid h_{2}=l\right]
\end{array}\right] \quad \begin{aligned}
& A=\sum_{l=1}^{T} \lambda_{l}\left(g_{l} \otimes x_{l} \otimes y_{l}\right) \\
&\left(g_{l}\right)_{j}=\mathbb{P}\left[x_{2}=\omega_{j} \mid h_{2}=l\right] \\
&\left(x_{l}\right)_{k}=\mathbb{P}\left[x_{3}=\omega_{k} \mid h_{2}=l\right]
\end{aligned}
$$

\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
nomen tensor as input
Alg: Look at random slices of the tensor.

$$
T=\sum_{i=1}^{r} \lambda_{i}\left(\vec{x}_{i} \otimes \vec{y}_{i} \otimes \vec{z}_{i}\right)
$$

Pick two randan vectors \vec{u}, \vec{v}

$$
\begin{aligned}
& (1) T_{\vec{u}}=\sum_{i=1}^{n} u_{i} T[\because, \therefore, i] \\
& (2) T_{\vec{v}}=\sum_{i=1}^{n} v_{i} T[\because, i, i]
\end{aligned}
$$

(3) $\vec{X}_{i}=$ eigurectors of $T_{\vec{u}}\left(T_{\vec{U}}\right)^{-1}$
$\vec{y}_{i}=$ eigeneetes of $T_{\vec{v}}\left(T_{\vec{u}}\right)^{-1}$
Note that matrix - ven mull is also a slice

$$
T_{\vec{u}}=X D_{\vec{u}} Y^{\top} \quad T_{\vec{v}}=X D_{\vec{v}} Y^{\top}
$$

"Simultanams" SVD is unique (1)

$$
\begin{aligned}
T_{u}\left(T_{v}\right)^{-1} & =X D_{\vec{u}} Y^{\top} Y_{D_{\vec{v}}^{-1}} X^{-1} \\
& =X D_{\vec{u}} D_{\vec{u}}^{-1} X^{-1}
\end{aligned}
$$

eigeneeturs give the X 's

