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Contemporary Mathematics
Volume 26, 1984

EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnsonl and Joram Lindenstrauss2

INTRODUCTION

In this note we consider the following extension problem for Lipschitz
functions: Given a metric space X and n =2, 3, 4, ... , estimate the
smallest constant L = L(X, n) so that every mapping f from every n-element

subset of X dinto 62 extends to a mapping % from X into 82 with

1El,5p = T Il -

(Here ||g||“_p is the Lipschitz constant of the function g.) A classical re-
sult of Kirszbraun's [1l4, p. 48] states that L(Ez, n) =1 for all n, but
it is easy to see that L(X, n) » » as n -+« for many metric spaces X,
Marcus and Pisier [10] initiated the study of L(X, n) for X = Lp' (For
brevity, we will use hereafter the notation L(p, n) for L(Lp(O,l) , n).)

They prove that for each 1< p < 2 there is a constant C(p) so that for
n = 2’ 3’ 4’ b ’ ’

1/p - 1/2
L(p, ) = C(p) (Log /P ~ /2
The main result of this note is a verification of their conjecture that for

some constant C and all n =2, 3, 4, , ,

L(X, n) = C(Log n) /2
for all metric spaces X. While our proof is completely different from that
of Marcus and Pisier, there is a common theme: Probabilistic techniques de-
veloped for linear theory are combimed with Kirszbraun's theorem to yield ex-
tension theorems.

The main tool for proving Theorem 1 1s a simply stated elementary geome=

tric lemma, which we now describe: Given n points in Euclidean space, what

i
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190 JOHNSON AND LINDENSTRAUSS

is the smallest k = k(n) so that these points can be moved into k-dimensional
Euclidean space via a transformation which expands or contracts all palrwise
distances by a factor of at most 1 + £? The answer, that k = C(¢) Logmn, is
a simple consequence of the isoperimetric inequality for the n-sphere in the
form studied in [2].

Tt seems lilkely that the Marcus-Pisier result and Theorem 1 give the right
order of growth for L(p, n). While we cannot verify this, in Theorem 3 we get

the estimate

) 1/p - 1/2

L(p, n) = & ( [0 &

— - D B <l
Log Log m (1=p<2)

for some absolute constant & > 0, (Throughout this paper we use the conven-
tion that Log x denotes the maximum of 1 and the natural logarithm of x.)}

This of course gives a lower estimate of

5 [ 082 1
lLog Log n
for L(», n). That our approach cannot give a lower bound of

5(Log n)l/p - 1/2

theorem for mappings into 42 whose domains are e-separated.

for L(p, n) 1is shown by Theorem 2, which is an extension

The minimal notation we use is introduced as needed. Here we note only
that BY(y’ ¢) (respectively, bY(y, ¢)) is the closed (respectively, open)
ball in Y about y of radius e. If y =0, we use BY(a) and bY(s),
and we drop the subscript Y when there is no ambiguity. S(Y) 1is the unmit
sphere of the normed space Y. For isomorphic normed spaces X and Y, we

let
) -1
a(x,y) = inf || (1T,

where the inf is over all invertible linear operators from X onto Y. Given

a bounded Banach space valued function f on a set K, we set

el = sup |£(x)]
x€K

1. THE EXTENSION THEOREMS

We begin with the geometrical lemma mentioned in the introduction.

LEMMA 1. For each 1> T > 0 there is a constant K = K(t) > 0 so that if
A.cﬂg, A=n for some n=2, 3, ..., then there is a mapping f from A

onto a subset of ﬁk (k

9 = [K log n]) which satisfies
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i -1
€, €74,y = T2

PROOF, The proof will show that if one chooses at random a rank k orthogonal
projection on zn, then, with positive probability (which can be made arbitra-
rily close to one by adjusting k), the projection restricted to A will
satisfy the condition on ;. To make this precise, we let Q be the projec-
tion onto the first k coordinates of £° and let o be normalized Haar

2
measure on 0(n), the orthogonal group on 8;. Then the random variable

£ (0(m), o) » L&Y

defined by
f(uw = U* QU

determines the notion of "random rank k projection." The applications of
Levy's inequality in the first few self-contained pages of [2] make it easy to
check that f(u) has the desired property. For the convenience of the reader,
we follow the notation of [2].
Let |||+]|| denote the usual Euclidean norm on R" and for 1 <k <n
n
and x € B set

1/2
x(1) 2
1

([

r(x) = rk(x) =V

which is equal to
Vino ] ex|]|

for our eventual choice of k = [K log n]. Thus r(s+) 1is a semi-norm on Bg

which satisfies
r =V [[]x]]] e ).

(In [2], t(+) 4is assumed to be a norm, but inasmuch as the left estimate
al|]x]]] = £(x) in formula (2.5) of [2] is not needed in the present situation,
it is okay that r(+) is only a semi-norm.)

Setting

B = LY n-1

= 5 T X,y €EA; x#Fy YcCS

we want to select U € 0(n) so that for some constant M,
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M(1 - 1) < r(Ux) = M(1+ T) (x € B)

Let M_ be the median of r(s) on Sn_l, so that

n-1
pn_l[x €S : r(x) = Mr] = 1/2
and
b xes"l e sM]=1/2
n-1 : .l
where ) is normalized rotationally invariant measure on s
We have from page 58 of [2] that for each y € sl and e >0,
—n52
o[U € 0(n) : Mr -Vne = r(Uy) = Mr +Vnel=1-4exp ( 5 ).
Hence

tA

(1.1) ofu € 0(n) : M_ - Viae s r(Uy) sM +vVne forall y € Bl=

v

2
1 - 2n(n+l) exp (-n; ) .

By Lemma 1.7 of [2], there is a constant

o 2
cs4 3 (m e™/?
m=1
so that
(1.2) | r(x) dp.n_l(x) - MrI < C .
S
n-1
We now repeat a known argument for estimating [ r(x) dun_l(x) which uses
only Khintchine's inequality. Sn-l
For 1 =k £=n we have:
k
Av S [ 2 +x@] de ,(x) =
5% =1 n-1

R

- AZ én-l |< x, + 6, > | dun_l(x)

1
by the rotational

= Il fn-1|< X, 6l >l dp'n—l(x) .
S invariance of Hoo1

Setting

o = gn—l < %, 51 >| dun_l(x) ;
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we have from Khintchine's inequality that for each 1< k < n,
vV nk a < én—l rk(x) q;n_l(x) < V2nk a .

(Ve plugged in the exact constant of V 2 in Khintchine's inequality calcu-
lated in [5] and [13], but of course any constant would serve as well.)

Since obviously rn(x) =V n, we conclude that for 1=k =n

(1.3) Vi =T 0 d () SV K.
S

Specializing now to the case k = [K log n], we have from (1.2) and (1.3)
that

Vk/3 =M

r

at least for K log n sufficlently large., Thus if we define

e =TV k/3n

we get from (1.1) that

o [U € 0(n) : (1 - T)Mr =r(uy) = (1 + T)Mr for all y € B]

12 k
1 - 2n(n + 1) exp (} >

= 18
TzKl
=1 - 2n(n +1) exp (— ‘*__Igﬁﬁjl)

which is positive if, say,
2
K = (10/7)°, o

It is easily seen that the estimate K logn in Lemma 1 cannot be im-
proved. Indeed, in a ball of radius 2 in 5; there are at most 4k vectors
{xi} so that Hxi - xjH 21 for every 1 # j (see the proof of Lemma 3
below). Hence for <7 sufficiently small there is no map F which maps an
orthonormal set with more than 4k vectors into a k-dimensional subspace of

£2 with

g7y, <i+”

e tip ~1-7°

Zip

We can now verify the conjecture of Marcus and Pisier [10].
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~ 1/2
THEOREM 1. Sup (log n) 1/ L(», n) < @, In other words: there is 5
n=2, 3 ... T
constant K so that for all metric spaces X and all finite subsets M of x

(card M = n, say) every function f from M into 32 has a Lipschitz exten-

sion f : X - 82 which satisfies

<
I#l,,, = VTom m lellyy,

PROOF. Given X, Mc X with card M =n, and £ : M- 32, set A = f [M].

We apply Lemma 1 with T = 1/2 to get a one-to-one function g_l from A onto

a subset g—l[A] of 8; (where k =K log n) which satisfies

-1 < 1. <
g™ Mlyyp = 15 lell gy, =3 -

By Kirszbraun's theorem, we can extend g to a function g @ Zg - 32 in such

a way that

Igll =3 .

bip

Let I : 85 a-@i denote the formal identity map, so that
el =1, N V.

Then

has Lipschitz norm at most ”fuﬂip’ so by the non-linear Hahn-Banach theorem

(see, e.g., p. 48 of [14]), h can be extended to a mapping

k

]

h:X~=>12
which satisfies

= JIll

Iy = gy, -

Then

is an extension of f and satisfiles

= T <<
Il gy =3 VE lElly, =3 Viegn el gy - o
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Next we outline our approach to the problem of obtaining a lower bound for

L(®,n). Take for f the inclusion mapping from an €-net for SN_l into 5?,

and consider EN isometrically embedded into L_. A Lipschitz extension of f

2
to a mapping f : L_ - 32 should act like the identity 52, so the techniques

of [8] should yield a linear projection from L_ onto EN whose norm is of

2
N 5 Vo
order ”fneip’ Since 32 1s complemented in L, only of order N and there
are €-nets for SN"1 of cardinality n = [4/€]N, we should get that
1/2

Log n
o =V N6 (=280
L(*,n) N ~Tog €

In Theorem 2 we make this approach work when € 1s of order N—Z, so we get

I 1/2
L(e,n) = 61 [~ 10BD
=) Log Log n
That the difficulties we incur with the outlined approach for larger values

of & are not purely technical 1is the gist of the following extemsion result,

(%) THEOREM 2. Suppose that X 1s a metric space, AC X, f : A-~ 82 is
Lipschitz and d(x,y) 2 € > 0 for all x # y € A, Then there is an extension
f: X~ 32 of f so that

6D
= E’-I|f” §

el .

where D 1is the diameter of A,

PROOF. We can assume by translating f that there is a point 0 € A so that
f (0) =0. Set B=A~ {0} and define

B
F.A-*Z1 by
8., b #0
F@) ={ P .
0,b=0
Define
G:4¢. > 82
by
G( 2 a & )= 2 a, £ (b)
bes © P pep P

==

(*) See the appendix for a generalization of Theorem 2 proved by Yoav Benyamini,
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Then
GF=1f, G is linear with

el = o |l

IA

<l
pipr and HFH“p = 2/e,

A weakened form of Grothendieck's inequality (see section 2.6 in [91)

yields that G (as any bounded linear operator from an L space 1into a

1
Hilbert space) factors through an ¢ (N) space:

6=80J, I3l =1, Il = 3 fel,
B
o 8 M), H:e N > ¢,
By the non-linear Hahn-Banach Theorem the mapping J F has an extension
E: X~> 8WG<) which satisfies
-
IEN gy = I Rl = 276,
= N 6D
Then f = HE extends f and £ E-E—-angip, as desired. o

For the proof of Theorem 3, we need three well known facts which we state

as lemmas,

LEMMA 2. Suppose that Y, X are normed spaces and f : S(Y) - X is Lipschitz

with f (0) = 0., Then the positively homogeneous extension of f, defined for
y €Y by

£ = lyl r(ﬁ-,ﬂ) (v #0); £(0) =0

is Lipschitz and

o0*

0,5, =2 liel ) + Nl

PROOF. Given Y0 ¥, €Y with 0 < Hyl” = ”y2”,

. . 1 ! ! 72
I£Gr) = Tl = || Dyl T, ) - Iy, Il £ T5.T [T+ ly,ll |] £ .7 - £ T, T il
y. y y
< (I, = Iy 1) fe Tﬁ” BN Wy—iﬂmz—n |l

[y I
¥y = ¥yl I, + ”f”gip [ ﬂ;;ﬂ Yy =9y I

A
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1A

Iy,
FEle byy = vall + Welpgy (5T = 1) sl + 1y = 3

A

(i, + 21 flygp) 17y =3l :

LEMMA 3. If Y 1is an n-dimensional Banach space and 0 < €, then S(Y) ad-

mits an g-net of cardinality at most (1 + 4/¢)".

PROOF. Let M be a subset of S(Y) maximal with respect to "lx-y|| = & for
all x#ye¢eM',

Then the sets
b(y, /2) N S(Y), (yeM
are palrwise disjoint hence so are the sets
b(y, €/4), (y ¢ M.
Since these last sets are all contained in b(l + e/4), we have that

card M » vol b(e/4) = vol b(1 + ¢/4)

4 n
card M < g(1+e/4}:] g o

LEMMA 4. There 1s a constant 6§ > 0 so that for each 1 < P < 2 and each
N=1, 2,

so that

" Lp contains a subspace E such that

d(E, eg) <2

and every projection from LP onto E has norm at least

sy /P -1/2.

PROOF. Given a finite dimensional Banach space X and 1 = p<®, let
x) = inf T Sff : T: X~>1L S:L + X ST=1I1,

1, () thl sl b S > X, <

S0 Yw(X) 1s the projection constant of X, hence by [4], [12]

Yl(@g) = Ym(eg) =V 2n/m .

This gives the p =1 case.
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For 1< p< 2 we reduce to the case p =1 by using Example 3.1 of [2],

which asserts that there is a constant C< ® so that for 1 =p< 2 ¢N
contains a subspace E with d(E, Eg) < 2. Since, obviously,
d(eCN’ ECN) < (CN)l -1/p
P 1
. . . CN
we get that if E is K-complemented in ZP , then
-1/2 1/2 N N CN ,CN
= & = 7 14 £
w72 et oy @) = a, £ e, 40 K
<2 @t " VPx, o

The next piece of background information we need for Theorem 3 is a linear-

ization result which is an easy consequence of the results in [8].

PROPOSITION 1. Suppose XC Y and Z are Banach spaces, f : Y+ Z is

Lipschitz, and U : X Zz 4is bounded, linear. Then there is a linear operator
G : zx > y* so that llall = Il€ll, ~ and
Sl ip e

- U = -
IR, 6 - vxll = ll£)4 Ullgy

where R, is the nmatural restriction map from Y* onto X%,

REMARK. Note that 1f Z 1s reflexive, the mapping F € G*IY : Y+ Z satisfles
< - S -
1Bl = Nely, ) ana ey =0l = lepy - vl
PROOF. We first recall some notation from [8]. If Y is a Banach space, Y#
denotes the Banach space of all scalar valued Lipschitz functions ‘y# from Y
for which y#(o) = 0, with the norm ”y#”eip. There is an obvious lsometric
*
inclusion from Y into Y#. For a Lipschitz mapping f : Y>> 2, Z a normed

space, we can define a linear mapping

Given Banach spaces X C Y, Theorem 2 of [8] asserts that there are norm one

linear projections

so that
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where Rl 1s the restriction mapping from Y# onto X#. Thus 1if

XcyY, f, U, Z are as in the hypothesis of Proposition 1, the linear mapping
PY f# satisfies

#o- #_ #
ey €511 = lIgll,y 0 Ry By £7 = Py Ry £V,
Since U: X -+ Z 1is linear,
* #
U =P U
S0
i # * o i #
“R2 P, £ - U | = ”Px(le -]
. Ly
* *
z € S(z7)

= sup nu*ﬂm_z*msnﬂx-w
* *
z € 8(Z7)

The final lemma we use in the proof of Theorem 3 is a smoothing result for

2ip’ o

homogeneous Lipschitz functions.

LEMMA 5. Suppose X C Y and Z are Banach spaces with dim X = k < =,
F: Y=+ Z 1s Lipschitz with F positively homogeneous (i.e. F(Ay) = X F(y)

for A= 0, y€Y) and U : X-+ 2 1is linear. Then there is a positivglx
homogeneous Lipschitz mapping

~

F : Y > Z which satisfies

(l) ”F]X . U“&ip b (8k + 2) ”FIS(X) . U'S(X)”W

@ Fly;, s 4 170,
PROOF. For y € S(Y) define

Fy = fo(l)F(Y+x) dp(x)
where p(-) is Haar measure on X (=1Rk) normalized so that

r(Bg(1)) = 1.

For Yy Yy € S(Y) we have
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¥y, - Byl = fo(l)”F(yl +x) - F(y, + 0l dx

S UFl gy, vy = vyl

[=1e]

1B, = e, -

For x;, X, € S(X) with Hxl - x2H =8> 0 we have, since U is linear,

that
IF - wx, - (F - Oxll =
I F(x, + x)du(x) - [ U(x, + x)du(x) - [ F(x, + x)du(x) +
By (1) 71 By (1) 71 Bx(l) 2
J U(x, + x) du(x)f <
BX(l) 2
<7 IFx - Uxl| du(x) =<
B (x5 1) A By(x,5 1)
< sup {|Fx - Uxll p [By(x,; 1) A B,(x,; 1)]
x € BX(2) X1 X 72
since F 1s posi~
= 2sup |Fx - Ux| p [By(x;3 1) A By(xy; 1))
X € BX(l) tively homogeneous| ,
Since

BX(xl; 1) A Bx(xz; 1 c [Bx(xl; 1) ~ Bx(xl; 1-8)] U [Bx(xz; 1) ~ Bx(xz; 1-5)1]
we have if § =1 that

BIBy(xys 1) A By(xy; DI = 2[1 - (1-8)%]

<=2k $§
and hence for all X, x, ¢ S(X) that
“(F -w Xl -(F -0 X2” =< 4k ”F'S(X) - UIS(X)” ”xl bl x2”

whence
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IF < 4k ||F

|s(x) ~ U[s(x)“izip [s(x) ~ U|s(x)”°°‘

Finally, note that the positive homogeniety of F implies that

< <<
1B, = 2 7]y, ena IF| l,=2lF

@ s [s(x) ~ UIS(X)”“'

It now follows from Lemma 2 that the positively homogeneous extension F

of F satisfies the conclusions of Lemma 5. [

THEOREM 3. There is a constant T > 0 so that for all n =2, 3, 4, .., and
all 1 =p< 2,

1/p - 1/2
Lip,n) 2 7 (0B _
Log Log n

REMARK. Since L(»w,n) = L(1,n), we get the lower estimate for L(*,n) men-

tioned in the introduction.
PROOF. Given p and n, for a certain value of N = N(n) to be specified

later choose a subspace E of Lp with d(E, Zg) <=2 and E only

& Nl/p - l/2-.::omplemented in Lp (Lemma 4), For a value € =¢(n) > 0 to

be specified later, let A be a minimal €é-net of S(E), so, by Lemma 3,
N
card A = (1 + 4/e)".
One relation among n, N, € we need is
N
(1.4) (1 +4/e)" +1 =n,

Let f : AU{0} - E be the identify map. Since d(E, 82) = 2, we can by

Lemma 2 get a positively homogeneous extension I3 H Lp -+ E of f so that
£, = 6 Lp,m.

Since %(a) = f(a) =a for a € A and A 1is an e-net for S(E), we get that
for x € S(E),

I£(x) - x|l = (6 L(p,n) + 1) .

Therefore, from Lemma 5 we get a Lipschitz mapping f : Lp —+ E which satisfies

el = 24 Llpym)

(1.5) If)g - Tgl < (8N + 2(6 L(p,m + De.
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Note that if
(1.6) (8N + 2)(6 L(p,n) + 1)e =1/2,

(1.5) implies that there is a linear projection from Lp onto E with norm at

most 48 L(p,n), so we can conclude that

L(p,n) > 6/48 NP T 1/2
Finally, we just need to observe that (1.4) and (1.6) are satisfied (at

least for sufficiently large n) if we set

Log n

-2
€ = Log m W= Log Log n *

2. OPEN PROBLEMS.

Besides the obvious question left open by the preceding discussion (i.e.
whether the estimate for L(»,n) given in Theorem 1 is indeed the best pos-
sible), there are several other problems which arise naturally in the present

context. We mention here only some of them.

PROBLEM 1. Is it true that for 1 < p < 2, every subset X of Lp(O,l), and

every Lipschitz map f from X into 3; there is an extension % of £

from Lp(O,l) into Ek

9 with

kl/p -1/2

2.1) I b

pip = C®) Il

where C(p) depends only on p?
A positive answer to problem 1 combined with Lemma 1 above will of course
provide an alternative proof to the result of Marcus and Pisier [10] mentioned

in the introduction. The linear version of problem 1 (where X is a subspace

and f a linear operator) is known to be true (cf. [7] and [3]).

PROBLEM 2, What happens in the Marcus-Pisier theorem if 2 < p < =? Is the

Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true?

In other words, is it true that for 2 <p< e there is a c(p) such that

for every Lipschitz map f from a subset X of Lp(O,l) into 82 there is

a Lipschitz extension f from Lp(O,l) into 82 with

£ 7
”f”Zip < C(P)”fHEip'
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PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces
different from Hilbert spaces? The most interesting special case seems to be
concerning the spaces e:. It is well known that every finite metric space

X = {xi}2=l embeds isometrically into 5: (the point x, is mapped to the

i
n-tuple {d(xl, xi), d(xz, xi),..., d(xn, xi)} in E:). Hence in view of
Lemma 1 it is quite natural to ask the following. Does there exist for all

e >0 (9r_§l;ernativggjlfor some ¢ > 0) a constant K(e) so that for every

metric space X with cardinality n there is a Banach space Y with

dim Y = K(e)log n and a map f from X dinto Y so that
e == cmiliap Ealig !l — == nat
£l + £ ?

A weaker version of Problem 3 is

PROBLEM 4, It is true that for every metric space X with cardinality n

there is a subset X iﬂ 52 and a Lipschitz map F from X onto X so that

(2.2) 3l

-1 —
2ip IIF ”6ip =K Vlog n

for some absolute constant K?

Since for every Banach space Y with dim Y = k we have
da(y, 32) = VK (cf. [6]) it is clear that a positive answer to problem 3 im-
plies a positive answer to problem 4. V, Milman pointed out to us that it
follows easily from an inequality of Enflo (cf. [1D that (2.2), if true, gives

the best possible estimate. (In the notation of [1], observe that the "m-cube'
m
Xg = (81, 0,500, 0) (8 € {-1, 1™

in ZT has all "diagonals” of length 2m and all "edges" of length 2, so that
if F is any Lipschitz mapping from these 2% points in ET into a Hilbert

space, the corollary in [1] implies that

IFL, s a2

17l eip =

£ip

3. APPENDIX.

After this note was written, Yoav Benyamini discovered that Theorem 2 re-
mains valid if 32 is replaced with any Banach Space. He kindly allowed us to

reproduce here his proof. The main lemma Benyamini uses is:

LEMMA 6. Let T be an indexing set and let {EY}Y ¢ T be the unit vector

basis for co(F). Set
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A= {a eY :0=sa=1; v €T}

B = conv A (= positive part of B@ T)).
1

Then

(i) there is a retraction G from zw(r) onto B which satisfies

el = 2

(i1) there is a mapping H from 2,(T) into A which satisfies

H|, . =4 d H = f 11 T.
Il ”le an eY eY or a T €

PROOF. Since the mapping x - x+ is a contractive retraction from Zw(P)
onto its positive cone, Em(F)+; to prove (i) it is enough to define G only
on ﬂw(T)+.

For y ¢ ﬂm(T)+, let

8() = inf {t : [[(y - te)"l, = 1

is the

where e € £ _(I') 1is the function identically equal to one and .”1

usual norm in Zl(F). Clearly the inf is actually a minimum and
0=g(y =yl . Note that

[g(y) - g(2)| = [y-zll.
Indeed, assume that g(y) = g(z). Then

y - [g(z) + Hy—z”oo el =y -glz)e+z -y =<z - g(z)e
and hence
+ p
[(y-[g(z) + [ly-zll _le) Iy =13

that is

LA

g(y) = g(z) + |y-z|l_.

Now set for vy ¢ ZW(T)+

ay) = (v - gme)™.

To prove (ii), it is enough, in view of (i), to define H on B with

“H]BHeip =2, For y €B, y={y(p} defined Hy by

Yy €I

By(y) = Qy(y) - s
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For y € B, there is at most one vy € I' for which yiv) > %, hence HB C A,
Evidently HeY = e, for v € T and ”H|B”£ip < 2.

THEOREM 2 (Y. Benyamini), Suppose that X 1s a metric space, Y 1s a subset

of X with d(x,y) 2 e >0 for all x#y €Y, Z 1is a Banach space, and

£ :Y > 7 is Lipschitz. Then there is an extension f : X > Z of f so that

I £l = (4D/e) |I£ll
Lip 2ip

where D 1is the diameter of Y,

PROOF. Represent

Yy = {0} U {yY : v €T}

and assume, by translating £, that £(0) = 0. We can factor f through the
subset € = {0} U {eY :y €T} of & (I') by defining g : Y+ C, h:C~2
by
=e 0) =0
g(y,) 2 g(0)

h(eY) N f(yY), h(0) = 0,

Evidently,
< <
Il = /e, by, = Dlel -

By the non-linear Hahn-Banach theorem, g has an extension to a function

g : X~ £ () with ”g”Zip B ”g”Zip’ so to complete the proof, it suffices to
extend h to a fumction h : B =+ Z with “h”Eip = ”hnﬂip and apply Lemma 6(ii).

Define for 0 =t =1 and v €T

h(teY) = th(eY).

If 1>t>=s=20 and v # A €T then

A

Incre,) - hsepll = (e=)lInCe |+ = llaey) - nie)|

+

< (t—s)“hugip sIhl)

sap = Inlggpliee = se,ll,

so lnll,y, = lnll,y, . o
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