Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World Wide*Web

Tom Leightori-2 Matthew Leviné Daniel Lewirt

Rina Panigrahy

David Karget Eric Lehman

Abstract it was originally configured to handle. In fact, a site mayeiee so

many requests that it becomes “swamped,” which typicaligees

We describe a family of caching protocols for distrib-utetivorks
that can be used to decrease or eliminate the occurrence sdts
in the network. Our protocols are particularly designede with

it unusable. Besides making the one site inaccessibleyhesdtic
destined to one location can congest the network nearétfaring
with traffic at nearby sites.

very large networks such as the Internet, where delays dduse
hot spots can be severe, and where it is not feasible for eegver
to have complete information about the current state of thieee
network. The protocols are easy to implement using exigtity
work protocols such as TCP/IP, and require very little ogarh
The protocols work with local control, make efficient use xise some of these cases, users were denied access to a sitef®ohou
ing resources, and scale gracefully as the network grows. even days. Other examples include sites identified as “Weksf

Our caching protocols are based on a special kind of hashing the-day” and sites that provide new versions of populamsofs.
that we callconsistent hashing Roughly speaking, a consistent Our work was originally motivated by the problem of hot spots
hash function is one which changes minimally as the rangbeft on the World Wide Web. We believe the tools we develop may be
function changes. Through the development of good comsiste relevant to many client-server models, because centdatizevers
hash functions, we are able to develop caching protocolshwdid on the Internet such as Domain Name servers, Multicast iserve
not require users to have a current or even consistent vielweof and Content Label servers are also susceptible to hot spots.
network. We believe that consistent hash functions maytaadin
prove to be useful in other applications such as distributate
servers and/or quorum systems.

As use of the Web has increased, so has the occurrence and
impact of hot spots. Recent famous examples of hot spotseon th
Web include the JPL site after the Shoemaker-Levy 9 comatlstr
Jupiter, an IBM site during the Deep Blue-Kasparov chess-tou
nament, and several political sites on the night of the &lectin

1.1 Past Work

Several approaches to overcoming the hot spots have been pro

posed. Most use some kind of replication strategy to stopeesmf

hot pages throughout the Internet; this spreads the workrefrg

a hot page across several servers. In one approach, alreadtye

use, several clients shargexy cache All user requests are for-

warded through the proxy, which tries to keep copies of feadjy

requested pages. It tries to satisfy requests with a cadmd fail-

ing this, it forwards the request to the home server. Therdila

in this scheme is that there is more benefit if more users ghare

same cache, but then the cache itself is liable to get swamped
Malpani et al. [6] work around this problem by making a group

of caches function as one. A user's request for a page igaelrec

to an arbitrary cache. If the page is stored there, it is neito

the user. Otherwise, the cache forwards the request to fah ot

caches via a special protocol called “IP Multicast”. If thegp is

cached nowhere, the request is forwarded to the home siteeof t

page. The disadvantage of this technique is that as the mumbe

of participating caches grows, even with the use of multjdhe

number of messages between caches can become unmanageable.

A tool that we develop in this papetpnsistent hashinggives a

way to implement such a distributed cache without requithreg

the caches communicate all the time. We discuss this in@edti
Chankhunthod et al. [1] developed the Harvest Cache, a more

scalable approach usingrae of caches. A user obtains a page by

asking a nearby leaf cache. If neither this cache nor itsgjbhave

the page, the request is forwarded to the cache's parenpafa

is stored by no cache in the tree, the request eventualljhesac

the root and is forwarded to the home site of the page. A cache

1 Introduction

In this paper, we describe caching protocols for distridutet-
works that can be used to decrease or eliminate the occesenc
of “hot spots”. Hot spotsoccur any time a large number of clients
wish to simultaneously access data from a single servehnel$ite
is not provisioned to deal with all of these clients simuétausly,
service may be degraded or lost.

Many of us have experienced the hot spot phenomenon in the
context of the Web. A Web site can suddenly become extremely
popular and receive far more requests in a relatively shog than

*This research was supported in part by DARPA contracts NO®@&E
1-1246 and DABT63-95-C-0009, Army Contract DAAH04-95-8607, and
NSF contract CCR-9624239

! Laboratory for Computer Science, MIT, Cambridge, MA 02139.
email: {karger,elehman,danl,ftl,mslevine,danl,rinp@theory.lcs.mit.edu
A full version of this paper is availble at:
http://theory.Ics.mit.eda’ {karger,elehman,ftl, mslevine,danl,rinap

2Department of Mathematics, MIT, Cambridge, MA 02139

retains a copy of any page it obtains for some time. The adgent
of a cache tree is that a cache receives page requests omytéro
children (and siblings), ensuring that not too many requastive
simultaneously. Thus, many requests for a page in a shddder
of time will only cause one request to the home server of tige pa
and won't overload the caches either. A disadvantage, st ilea
theory, is that the same tree is used for all pages, meanatghé
root receives at least one request for every distinct paggested
of the entire cache tree. This can swamp the root if the number
distinct page requests grows too large, meaning that thiense
also suffers from potential scaling problems.

Plaxton and Rajaraman [9] show how to balance the load

among all caches by using randomization and hashing. licpart
ular, they use a hierarchy of progressively larger sets otual

added delay seen by a user is small.

Our second tool is a new hashing scheme we catfisistent
hashing This hashing scheme differs substantially from that used
in Plaxton/Rajaraman and other practical systems. Typisthing
based schemes do a good job of spreading load through a known,
fixed collection of servers. The Internet, however, doeshave
a fixed collection of machines. Instead, machines come and go
as they crash or are brought into the network. Even worse, the
information about what machines are functional propagsitasly
through the network, so that clients may have incompatitikenw's”
of which machines are available to replicate data. This sakan-
dard hashing useless since it relies on clients agreeingtochw
caches are responsible for serving a particular page. Fongbe,
Feeley et al [3] implement a distributed global shared meregs-

cache sites” for each page and use a random hash function to astem for a network of workstations that uses a hash tabldiloliséd

sign responsibility for each virtual site to an actual cagh¢he
network. Clients send a request to a random element in eaah se
the hierarchy. Caches assigned to a given set copy the pagmt®
members of the next, larger set when they discover that kit

is too heavy. This gives fast responses even for popularspage
cause the largest set that has the page is not overloadésh dfiees
good load balancing, because a machine in a small (thusdpade
for one page is likely to be in a large (thus unloaded) setriotlzer.
Plaxton and Rajaraman's technique is also fault tolerant.

The Plaxton/Rajaraman algorithm has drawbacks, howewer. F
example, since their algorithm sends a copy of each pagesequ
to a random element in every set, the small sets for a popatge p
are guaranteed to be swamped. In fact, the algorithm usespwa
ing as a feature since swamping is used to trigger replicafibis
works well in their model of a synchronous parallel systerhere

a swamped processor is assumed to receive a subset of tie-inco

ing messages, but otherwise continues to function normalythe
Internet, however, swamping has much more serious conseesle

Swamped machines cannot be relied upon to recover quickly an

may even crash. Moreover, the intentional swamping of latge-
bers of random machines could well be viewed unfavorabhyjhby t
owners of those machines. The Plaxton/Rajaraman algoathm
requires that all communications be synchronous and/omtles-
sages have priorities, and that the set of caches availablixdxl
and known to all users.

1.2 Our Contribution

Here, we describe two tools for data replication and use tteem
give a caching algorithm that overcomes the drawbacks gbthe
ceding approaches and has several additional, desiraipenies.
Our first tool, random cache treescombines aspects of the
structures used by Chankhunthod et al. and Plaxton/Ragaram

among the machines to resolve references. Each time a new ma-
chine joins the network, the require a central server tostadite
a completely updated hash table to all the machines.

Consistent hashing may help solve such problems. Like most
hashing schemes, consistent hashing assigns a set of ddmek-
ets so that each bin receives roughly the same number of.items
Unlike standard hashing schemes, a small change in the tsrke
does not induce a total remapping of items to buckets. In-addi
tion, hashing items into slightly different sets of buckgiges only
slightly different assignments of items to buckets. We wpmuin-
sistent hashing to our tree-of-caches scheme, and showhisw t
makes the scheme work well even if each client is aware of only
a constant fraction of all the caching machines. In [5] Litwt al
proposes a hash function that allows buckets to be addedt@ne a
time sequentially. However our hash function allows theksteto
be added in an arbitrary order. Another scheme that we carmirap
on is given by Devine [2]. In addition, we believe that cotesis
hashing will be useful in other applications (such as quosys:
tems [7] [8] or distributed name servers) where multiple hiaes
with different views of the network must agree on a common-sto
age location for an object without communication.

1.3 Presentation

In Section 2 we describe our model of the Web and the hot spot
problem. Our model is necessarily simplistic, but is riclowgh
to develop and analyze protocols that we believe may be lusefu
practice. In Section 3, we describe our random tree methddise
it in a caching protocol that effectively eliminates hot &pander a
simplified model. Independent of Section 3, in Section 4 vesent
our consistent hashing method and use it to solve hot spderan
different simplified model involving inconsistent views.

In Section 5 we show how our two techniques can be effectively

Like Chankhunthod et al., we use a tree of caches to coalesce r combined. In Section 6 we propose a simple delay model tipat ca
quests. Like Plaxton and Rajaraman, we balance load by usingtures hierarchical clustering of machines on the Interét.show

a different tree for each page and assigning tree nodes tesac

that our protocol can be easily extended to work in this mesd-r

via a random hash function. By combining the best features of istic delay model. In Sections 7 and 8 we consider faults aed t
Chankhunthod et al. and Plaxton/Rajaraman with our own meth behavior of the protocol over time, respectively. In Sett®owe
ods, we prevent any server from becoming swamped with high discuss some extensions and open problems.

probability, a property not possessed by either Chankloahtt
al. or Plaxton/Rajaraman. In addition, our protocol showw Io
minimize memory requirements (without significantly ireseng
cache miss rates) by only caching pages that have been tedwaes
sufficient number of times.

1.4 A Note on Randomization and Hashing

In several places we make use of hash functions that maptsbjec
into a range. For clarity we assume that these functions rjgets

We believe that the extra delay introduced by a tree of cachesin a truly random fashion, i.e. uniformly and independently
should be quite small in practice. The time to request a page i practice, hash functions with limited independence areenptau-

multiplied by the tree depth. However, the page requestajiyi
takes so little time that the extra delay is not great. Therneof
a page can be pipelined; a cache need not wait until it regeive
whole page before sending data to its child in the tree. Toere
the return of a page also takes only slightly longer. Altbgetthe

sible since they economize on space and randomness. We have
proven all theorems of this paper with only limited indepemck
using methods similar to those in [11]. However, in this agied
abstract we only state the degree of independence required-f
sults to hold. Proofs assuming limited independence wleap in

the full version of this paper.

2 Model

This section presents our model of the Web and the hotspbt pro
lem.

We classify computers on the Web into three categories. All
requests for Web pages are initiatedbypwsers The permanent
homes of Web pages aservers Cachesare extra machines which
we use to protect servers from the barrage of browser regjuest
Throughout the paper, the set of cache€ iand the number of
cachesig.

3 Random Trees

In this section we introduce our first tool, random trees. ife-s
plify the presentation, we give a simple caching protocat thould
work well in a simpler world. In particular, we make the fallimg
simplifications to the model:

1. All machines know about all caches.

2. §(mi,m;) = 1foralli # j.

3. All requests are made at the same time.

This restricted model is “static” in the sense that thereniy o

Each server is home to a fixed set of pages. Caches are als@®n€ batch of requests; we need not consider the long-tebitsta

able to store a number of pages, but this set may change ower ti
as dictated by a caching protocol. We generally assume ltlsat t
content of each page is unchanging, though Section 9 cenéain
discussion of this issue. The set of all pages is denpted

Any machine can send a message directly to any other with
the restriction that a machine may not be aware of the existen
of all caches; we require only that each machine is awarelgf a
fraction of the caches for some constantThe two typical types
of messages are requests for pages and the pages themsklves.
machine which receives too many messages too quickly céases
function properly and is said to be “swamped”.

Latency measures the time for a message from machine
to arrive at machinen,. We denote this quantit§(m, m»). In
practice, of course, delays on the Internet are not so sictudy-
acterized. The value df should be regarded as a “best guess” that
we optimize on for lack of better information; the correasef
a protocol should not depend on valuesdfvhich could actually
measure anything such as throughput, price of connectiaomr
gestion) being exactly accurate. Note that we do not makaedst
a function of message size; this issue is discussed in Set2ol.

All cache and server behavior and some browser behavior is
specified in our protocol. In particular, the protocol sfiesihow

of the network.

Under these restrictions we show a protocol that has good be-
havior. That is, with high probability no machine is swamptéée
achieve a total delay db(log C') and prove that it is optimal. We
use total cache space which is a fraction of the number ofstqu
and evenly divided among the caches. In subsequent segt®ns
will show how to extend the protocol so as to preserve the good
behavior without the simplifying assumptions.

The basic idea of our protocol is an extension of the “tree of
caches” approach discussed in the introduction. We uséréggo
ensure that no cache has many “children” asking it for a @arti
lar page. As discussed in the introduction, levels neardbeget
many requests for a page even if the page is relatively udanpu
so being the root for many pages causes swamping. Our teghniq
similar to Plaxton/Rajaraman's, is to use a different, oanlgt gen-
erated tree for each page. This ensures that no machineritheea
root for many pages, thus providing good load balancing eNtwat
we cannot make use of the analysis given by Plaxton/Rajarama
because our main concern is to prevent swamping, wheregs the
allow machines to be swamped.

In Section 3.1 below, we define our protocol precisely. In-Sec
tion 3.2, we analyze the protocol, bounding the load on achea

caches and servers respond to page requests and which pages athe storage each cache uses, and the delay a browser egpsrien

stored in a cache. The protocol also specifies the cache \w@rser
to which a browser sends each page request. All control nmaust b
local; the behavior of a machine can depend only on messages i
receives.

An adversary decides which pages are requested by browsers
However, the adversary cannot see random values genenated i
protocol and cannot adapt his requests based on obsenags del
in obtaining pages. We consider two models. First, we censd
static model in which a single “batch” of requests is proedsand
require that the number of page requests be at ®estpC where
p is a constant and’' is the number of caches. We then consider
a temporal model in which the adversary may initiate new estgi
for pages at rate at most that is, in any time intervat > 1, he
may initiate at most/r requests.

Objective

The “hot spot problem” is to satisfy all browser page regaiedtile
ensuring that with high probability no cache or server israped.
The phrase “with high probability” means “with probabildyleast
1—-1/N”, whereN is a confidence parameter used throughout the
paper.

While our basic requirement is to prevent swamping, we also
have two additional objectives. The first is to minimize eaofem-
ory requirements. A protocol should work well without redug
any cache to store a large number of pages. A second objégtive
naturally, to minimize the delay a browser experiences taiong
a page.

before getting the page.

3.1 Protocol

We associate a rootetiary tree, called aabstract treg with each
page. We use the ternodesonly in reference to the nodes of these
abstract trees. The number of nodes in each tree is equakto th
number of caches, and the tree is as balanced as possiblé (so a
levels but the bottom are full). We refer to nodes of the trge b
their rank in breadth-first search order. The protocol i<dbed
as running on these abstract trees; to support this, albestgdor
pages take the form of a 4-tuple consisting of the identitihefre-
quester, the name of the desired page, a sequence of noolegtthr
which the request should be directed, and a sequence ofstmdte
should act as those nodes. To determine the latter sequbats,
which cache actually does the work for a given node, the nades
mapped to machines. The root of a tree is always mapped to the
server for the page. All the other nodes are mapped to theesach
by a hash functiorh : P x [1...C] — C, which must be dis-
tributed to all browsers and caches. In order not to cregies®f
pages for which there are few requests, we have another paam
q, for how many requests a cache must see before it bothewéo st
a copy of the page.

Now, given a hash functioh, and parameter$andg, our pro-
tocol is as follows:

Browser When a browser wants a page, it picks a random leaf to
root path, maps the nodes to machines wittand asks the
leaf node for the page. The request includes the name of the
browser, the name of the page, the path, and the result of the

mapping.

Cache When a cache receives a request, it first checks to see if it

is caching a copy of the page or is in the process of getting
one to cache. If so, it returns the page to the requester {@afte
gets its copy, if necessary). Otherwise itincrements atesun

We will now analyze our protocol under the simplified model.
In this “static” analysis we assume for now that caches havegh
space that they never have to evict pages; this means theadree
has already made requests for a page it will not make another

for the page and the node it is acting as, and asks the nextrequest for the same page. In Theorem 3.1 we provide higtaprob

machine on the path for the page. If the counter reaghi¢s

bility bounds on the number of requests a cache gets, asguhah

caches a copy of the page. In either case the cache passes thall the outputs of the functioh are independent and random. The-

page on to the requester when it is obtained.

orem 3.4 extends our high probability analysis to the casenith
is ak-way independent function. In particular we show that it suf

Server When a server receives a request, it sends the requester gjces to have: logarithmic in the system parameters to achieve the

copy of the page.

3.2 Analysis

The analysis is broken into three parts. We begin by showiag t
the latency in processing a request is likely to be smalleuride

assumption that no server is swamped. We then show that no ma

chine is likely to be swamped. We conclude by showing that no
cache need store too many pages for the protocol to work pgyope

The analysis of swamping runs much the same way, except that

the “weights” on our abstract nodes are now the number oeggu
arriving at those nodes. As above, the number of requedthittea
machine is bounded by the weight of nodes mapped to it.

3.2.1 Latency

Under our protocol, the delay a browser experiences in oibigi

a page is determined by the height of the tree. If a requestris f
warded from a leaf to the root, the latency is twice the lergfth
the path,2log, C. If the request is satisfied with a cached copy,
the latency is only less. If a request stops at a cache thaiis w
ing for a cache copy, the latency is still less since a reghast
already started up the tree. Note tHatan probably be made large
in practice, so this latency will be quite small.

Note that in practice, the time required to obtain a largespag
not multiplied by the number of steps in a path over whicleivéds.
The reason is that the page can be transmitted along the path i
a pipelined fashion. A cache in the middle of the path cart star
sending data to the next cache as soon as it receives soneeqit n
not wait to receive the whole page. This means that althohigh t
protocol will increase the delay in getting small pages averhead
for large pages is negligible. The existence of tree schelikeghe
Harvest Cache, suggests that is acceptable in practice.

Our bound is optimal (up to constant factors) for any prokoco
that forbids swamping. To see this, consider makihgequests
for a single page. Look at the graph with nodes correspontding
machines and edges corresponding to links over which the pag
is sent. Small latency implies that this graph has small diam
which implies that some node must have high degree, which im-
plies swamping.

3.2.2 Swamping

The intuition behind our analysis is the following. First evealyze
the number of requests directed to the abstract tree nodesiofis
pages. These give “weights” to the tree nodes. We then anéhgz

same high probability bounds as with full independence.

Analysis for Random h

Theorem 3.1 If h is chosen uniformly and at random from the
space of function® x [1...C] — C then with probability at least

1 —1/N, whereN is a parameter, the number of requests a given

cache gets is no more than

p|2log,C+0O +0 M%—logN
log (TQlogN)

Note thatplog, C is the average number of requests per cache
since each browser request could give risiegy C requests up the

trees. Thelf)’;])ng’\;V term arises because at the leaf nodes of a tree's
times (balls-in-bins) and the

page some cache could ocq%
adversary could choose to devote Rlirequests to that page. We
prove the above Theorem in the rest of the section.

We split the analysis into two parts. First we analyze the re-
guests to a cache due to its presence in the leaf nodes of the ab

stract trees and then analyze the requests due to its peeattie
internal nodes and then add them up.

log N
log log N

Requests to Leaf Nodes

Due to space limitations, we give a proof that only applieemwh
N > R. Its extension to smallV is straightforward but long.
Observe that the requests for each page are being mappednignd
onto the leaf nodes of its abstract tree. And then these tedda
are mapped randomly onto the set of caches. Look at colieofio
all the leaf nodes and the number of requests (weight) atsalci
with each one of them. The variance among the “weights” of the
leaf nodes is maximized when all the requests are made for one
page. This is also the case which maximizes the number of leaf
node requests on a cache.

Each page's tree has abduf{l — 1/d) leaf nodes. Since a
machinem has al /C chance of occurring at a particular leaf node,

with probability1—1/N it will occur in O(lolg‘)fn]gVN) leaf nodes. In
log N)

fact, since there are at maBtrequestsyn will occur O (i 2bo
times in all those requested pages' trees with probability? / V.
Given an assignment of machines to leaf nodes sothatcurs

O(pts) times in each tree, the expected number of requests
gets isR&O(2685) which is O(143£7%). Also, once the as-

outcome when the tree nodes are mapped by a hash function ontaignment of machine to leaf nodes is fixed, the number of =gue

the actual caching machines: a machine gets as many re@sests
the total weight of nodes mapped to it. To bound the projected

weight, we first give a bound for the case where each node is as-
signed to a random machine. This is a weighted version of the

familiar balls-in-bins type of analysis. Our analysis giv&bound
with an exponential tail. We can therefore argue as in [14fitrap-
plies even when the balls are assigned to bins érdy O(log N)-

way independently. This can be achieved by usiriguiversal
hash function to map the abstract tree nodes to machines.

m gets is a sum of independent Bernoulli variables. So by Cher-
noff boundsm getsO (&35 + log V) requests with probability
1—1/N. So we conclude thah getsO({£ 5555 + log V) with
probability at least — (R+1)/N. ReplacingV by N? and assum-

ing N > R we can say that the same bound holds with probability

1 —1/N. ltis easy to extend this proof so that the bound holds
even forN < R.

Requests to Internal Nodes

Again we think of the protocol as first running on the absttesss.
Now no abstract internal node gets more tiamequests because
each child node gives out at mastequests for a page. Consider
any arbitrary arrangement of paths for all tRerequests up their
respective trees. Since there are aRlgequests in all we can bound
the number of abstract nodes that detrequests. In fact we will
bound the number of abstract nodes over all trees whichvwecei
between2’ and2/*! requests wher8 < ¢j < logdg — 1. Let
n; denote the number of abstract nodes that receive bet@ken
and2’*! requests. Let, be the number of requests for page
Then) r, < R. Since each of the&? requests gives rise to at
mostlog, C' requests up the trees, the total number of requests is
no more tharR log,, C. So,

log(dg)—1

Z 2in; < Rlog, C

j=0

@

Lemma 3.2 The total number of internal nodes which receive at
leastqx requests is at motR/x if z > 1

Proof (sketch): Look at the tree induced by the request paths, con-
tract out degree 1 nodes, and count internal nodes.

Forz = 1 there can clearly be no more th&log, C requests.
The preceding lemma tells us that, the number of abstract nodes
that receive betweeti and2’*' requests, is at mogf except for
j = 0. Forj = 0, n; will be at mostR log, C. Now the probabil-
ity that machinen assumes a given one of thesgnodes isl/C.
Since assignments of nodes to machines are independenbttie p
ability that a machinen is receives more thanof these nodes is at
most("7)(1/C)* < (en; /Cz)*. In order for the right hand side

_ nj log N
to be as small as/N we must have: = Q(+ m).
7
Note that the latter term will be present onlyﬁi log N > 2. So
2
. n; 1 N . e
zisO(# +]Og("gm) with probability at least — 1/N.
7

So with probability at least — log(dgq)/N the total number of

requests received by due to internal nodes will be of the order of

2A74+1 ()
dgqlog N

=2plog, C+0 | ———— +1log N
pR08d (log(%"logN) 8)

By combining the high probability bounds for internal andfle
nodes, we can say that a machine gets

log N
)0 (e e
log (7 log N)
requests with probability at least— O('°&%¢). ReplacingV by

N log(dq) and ignorindog log(dgq) in comparision withig we get
Theorem 3.1.

log(dg)—1

>

j=0

log N
log(% log N)

nj

c

log N

Tightness of the high probability bound In this section we
show that the high probability bound we have proven for th&nu
ber of requests received by a machings tight.

Lemma 3.3 There exists a distribution oR requests to pages
so that a given machinen gets Q(plog, C + p—EN_ 4

loglog N
daloe N requests with probability at leasy/ N.
log (Tq log N)

Proof: Full paper. [l

Analysis for k-way Independent h We now extend our high
probability analysis to functionk that are chosen at random from
ak-universal hash family.

Theorem 3.4 If h is chosen at random from A-universal hash
family then with probability at least—1/V a given cache receives

no more tharp log, C+O((kgN (d+p))"/* (14 £ + it +
@)) requests.

Proof: The full proof is deferred to the final version of the paper.
This result does not follow immediately from the results di],
but involves a similar argument.

Settingk = log N we get the following corollary.

Corallary 3.5 The high probability bound proved in theorem 3.1
for the number of requests a cache gets holds evkndfselected
from alog N-universal hash family.

In fact, this can be shown to be true for all the bounds that yle w
prove later, i.e., it sufficek to be logarithmic in the system size.

3.2.3 Storage

In this section, we discuss the amount of storage each caube m
have in order to make our protocol work. The amount of storage
required at a cache is simply the number of pages for whiofit r
ceives more than requests.

Lemma 3.6 The total number of cached pages, over all machines,
is O(log Rlog, C + £) with probability at leastl — 1/R%™). A
given cachen hasO(% + log R) cached copies with high proba-
bility.

Proof (sketch): The analysis is very similar to that in proof of The-
orem 3.1. We again play the protocol on the abstract treeseSi

page is cached only if it requestedimes, we assign each abstract
node a weight of one if it gets more thamequests and zero other-
wise. These abstract nodes are then mapped randomly orgetthe
of caches. We can bound the total weight received by a péaticu
cache, which is exactly the number of pages it caches. ([l

4 Consistent Hashing

In this section we define a new hashing technique caltatsis-
tent hashing We motivate this technique by reference to a simple
scheme for data replication on the Internet. Consider desgagver
that has a large number of objects that other clients might vea
access. It is natural to introduce a layer of caches between t
clients and the server in order to reduce the load on the sdrve
such a scheme, the objects should be distributed acrosathes;

so that each is responsible for a roughly equal share. Irtiaddi
clients need to know which cache to query for a specific object
The obvious approach is hashing. The server can use a hash fun
tion that evenly distributes the objects across the cactidients
can use the hash function to discover which cache storeseatobj
Consider now what happens when the set of active caching ma-
chines changes, or when each client is aware diffarentset of
caches. (Such situations are very plausible on the Int¢rHehe
distribution was done with a classical hash function (faaraple,

the linear congruential functiop — axz + b (mod p)), such in-
consistencies would be catastrophic. When the range ofakk h
function (p in the example) changed, almost every item would be

hashed to a new location. Suddenly, all cached data is sdates ranged hash family immonotonef every ranged hash function in it
cause clients are looking for it in a different location. is.

Consistent hashing solves this problem of different “viéwge
define aviewto be the set of caches of which a particular client is
aware. We assume that while views can be inconsistent, tleey a
substantial: each machine is aware of a constant fractitreafur-
rently operating caches. A client uses a consistent hasttifum
to map a object to one of the caches in its view. We analyze an
construct hash functions with the following consistenayparties.

First, there is a “smoothness” property. When a machinededd Spread: LetV; ... Vy be a set of views, altogether containing

to or removed from the set of caches, the expected fractiabof ¢ distinct buckets and each individually containing at le@gt
jects that must be moved to a new cache is the minimum neededbuckets. For a ranged hash function and a particular itethe

tol mam}am a balanced load across the caches. Seconq,lmm a spreado (i) is the quantity|{fv, (12)}}/:1 | The spreadof a hash
client views, the total number of different caches to whiabgct !
is assigned is small. We call this property “spread”. Sinhjjaver
all the client views, the number of distinct objects assift® a
particular cache is small. We call this property “load”.
Consistent hashing therefore solves the problems distusse The idea behind spread is that theredrgeople, each of whom
above. The “spread” property implies that even in the presen can see at least a constant fractiarit] of the buckets that are
of inconsistent views of the world, references for a givejecbare visible to anyone. Each person tries to assign an itéoa bucket

This property says that if items are initially assigned teet s
of bucketsy; and then some new buckets are added to fosm
then an item may move from an old bucket to a new bucket, but not
from one old bucket to another. This reflects one intuitionub

d consistency: when the set of usable buckets changes, itesukls
only move if necessary to preserve an even distribution.

function o (f) is the maximum spread of an item. Thpreadof
a hash family is> if with high probability, the spread of a random
hash function from the family is.

directed only to a small number of caching machines. Digtirilg using a consistent hash function. The property says thasacthe
a object to this small set of caches will insure access farligihts, entire group, there are at masti) different opinions about which
without using a lot of storage. The “load” property implidgt bucket should contain the item. Clearly, a good consistashh

no one cache is assigned an unreasonable number of objées. T function should have low spread over all items.
“smoothness” property implies that smooth changes in thefse

caching machines are matched by a smooth evolution in ttee loc Load: Define a set of” views as before. For a rangied hash
tion of cached objects. function f and buckeb, theload A (b) is the quantity |, f,,* (b)|-

Since there are many ways to formalize the notion of consis- Theload of a haSh_fUnCti_Oﬂ .iS the maXimUm_load of a bucket. The
tency as described above, we will not commit to a precise idefin 10adof a hash family is\ if with high probability, a randomly cho-
tion. Rather, in Section 4.4 we define a “ranged hash furittiod sen hash function has load (Note thatf), " (b) is the set of items
then precisely define several quantities that capturerdifteas-
pects of “consistency”. In Section 4.2 we construct pratthash
functions which exhibit all four to some extent. In Sectiod,4ve
discuss other aspects of consistent hashing whihc, thooighen-
mane to this paper, indicate some of the richness underlyiag
theory.

assigned to buckeét in view V.) The load property is similar to
spread. The sam& people are back, but this time we consider a
particular buckeb instead of an item. The property says that there
are at most\(b) distinct items that at least one person thinks be-
longs in the bucket. A good consistent hash function shoigsid a
have low load.

Our main result for consistent hashing is Theorem 4.1 which
4.1 Definitions shows the existence of an efficiently computable monotarged

In this section, we formalize and relate four notions of ¢stiesicy. hash family with logarithmic spread and balance.

LetZ be the set of items artélbe the set of buckets. Lét= |Z|
be the number of items. Riewis any subset of the buckel 4.2 Construction

A ranged hash functiois a function of the forny : 28 x Z
B. Such a function specifies an assignment of items to buckets
for every possible view. That isf(V,) is the bucket to which
item i is assigned in view. (We will use the notatiorfy (i) in
place f(V,4) from now on.) Since items should only be assigned
to usable buckets, we requife (Z) C V for every view).

A ranged hash familys a family of ranged hash functions. A
random ranged hash functidas a function drawn at random from
a particular ranged hash family.

In the remainder of this section, we state and relate some rea
sonable notions of consistency regarding ranged hash iéamil
Throughout, we use the following notational conventio#sis a
ranged hash familyf is a ranged hash functiow, is a view,i is an
item, andb is a bucket.

We now give a construction of a ranged hash family with good
properties. Suppose that we have two random functigrendrz.
The functionrz maps buckets randomly to the unit interval, and
does the same for itemgy (¢) is defined to be the buckéte V
that minimizegrg(b) — rz(4)|. In other words;j is mapped to the
bucket “closest” ta. For reasons that will become apparent, we ac-
tually need to have more than one point in the unit intervabeis
ated with each bucket. Assuming that the number of bucketsein
range is always less tham, we will needs log(C') points for each
bucket for some constamt The easiest way to view this is that
each bucket is replicatedlog(C) times, and thems maps each
replicated bucket randomly. In order to economize on theepa
represent a function in the family, and on the use of randds) bi
we only demand that the functiomg andrz map pointdog(C)-
Balance: A ranged hash family ibalancedif, given a particu- way independently and uniformly {6, 1]. Note that for each point
lar view V a set of items, and a randomly chosen function selected We pick in the unit interval, we need only pick enough randats b
from the hash family, with high probability the fraction déins to distinguish the point from all other points. Thus it is ikaly
mapped to each bucket@(1/|V|). that we need more thdng(number of point} bits for each point.

.)) Denote the above described hash familyras
The balance property is what is prized about standard hash

functions: they distribute items among buckets in a baldrfee Theorem 4.1 The ranged hash familf described above has the
sion. following properties:

Monotonicity: A ranged hash functioifi is monotonef for all

viewsV; C Vo C B, fv,(i) € Vi implies fy, (i) = fv, (i). A 1. F is monotone.

2. Balance: For a fixed view, Pr[fy(i) = b] < S5 for

i € Zandb € V, and, conditioned on the choice of, the
assignments of items to buckets lag(C)-way independent.

. Spread: If the number of views = pC for some constant
p, and the number of items = C, then fori € Z, o(i) is

O(tlog(C)) with probability greater thari — 1/C%("),

. Load: IfV and I are as above, then far € B, A\(b) is
O(tlog(C)) with probability greater thari — 1/C%™).

Proof (sketch): Monotonicity is immediate. When a new bucket
is added, the only items that move are those that are nowstltise
one of the new bucket's associated points. No items movegeatw
old buckets. The spread and load properties follow from theeo
vation that with high probability, a point fromveryview falls into

an interval of lengthO(t/C). Spread follows by observing that
the number of bucket points that fall in this size intervaduard
an item point is an upper bound on the spread of that itemesinc
no other bucket can be closer in any view. Standard Cherngiif a
ments apply to this case. Load follows by a similar argumérene
we count the number of item points that fall in the region “edh
by a bucket's associated points. Balance follows from toetffeat
when k log(C') points are randomly mapped to the unit interval,
each bucket is with highu probability responsible for no enttran

a % fraction of the interval. The key here is to count the number
of combinatroially distinct ways of assigning this largeaction to
the k log(C) points associated with a bucket. This turns out to be
polynomial inC. We then argue that with high probability none of
these possibilities could actually occur by showing thadoh one

an additional bucket point is likely to fall. We deduce that fac-
tual length must be smaller than(1/|V|). All of the above proofs
can be done with onljog(C)-way independent mappings. [J

The following corollary is immediate and is useful in thetres
of the paper.

Corallary 4.2 With the same conditions of the previous theorem,
Pr[fv (i) = bin anyview < 228 for i € Z andb € B.

4.3

In this section we show how the hash family just dexcrobed can
be implemented efficiently. Specifically, the expected mgtime

for a single hash computation will i2(1). The expectation is over
the choice of hash function. The expected running time fdirag

or deleting a bucket will bé&(log C') whereC' is an upper bound

on the total number of buckets in all views.

Implementation

as points are added, we bisect segments gradually so thatwée
reach the next power @f we have already divided all the segments.
In this way we amortize the work of dividing search trees @lbof

the additions and removals. Another point is that the setaees in
adjacent empty intervals may all need to be updated whenkebuc
is added since they may all now be closest to that bucket eSiec
expected length of a run of empty intervals is small, the tamttil
cost is negligible. For a more complete analysis of the mmtime
we refer to the complete version of the paper.

4.4 Some Theorems on Consistent Hashing

In this section, we discuss some additional features ofistamg
hashing which, though unneccessary for the remainder gfaper,
demonstrate some of its interesting properties.

To give insight into the monotone property, we will define a
new class of hash functions and then show that this is equitvéd
the class of monotone ranged hash functions.

A w-hash functionis a hash function of the familiar form
f: 28 x T — B constructed as follows. With each iteire Z,
associate a permutatior(i) of all the bucketd3. Define fy (i) to
be the first bucket in the permutatiarii) that is contained in the
view V. Note that the permutations need not be chosen uniformly
or independently.

Theorem 4.3 Every monotone ranged hash function isrdash
function and vice versa.

Proof (sketch): For a ranged hash functigh associate itemwith
the permutatiorby = f5(é),... ,bj+1 = f_(b6, 5;3(8),---.
Supposeb; is the first element of an arbitrary viel, in this
permutation. ThenV; C W, B — {b:i...bj_1}. Since
fv, (i) = b; € V1, monotonicity impliesfy, (i) = b;.

The equivalence stated in Theorem 4.3 allows us to reason
about monotonic ranged hash functions in terms of pernmsti
associated with items.

Universality: A ranged hash family isiniversalif restricting
every function in the family to a single view creates a urseér
hash family.

This property is one way of requiring that a ranged hash func-
tion be well-behaved in every view. The above condition thea
stringent; it says that if a view is fixed, items are assigreu r
domly to the bins in that view. This implies that in any viéwy
the expected fraction of items assigned wf the buckets ig/|V|.
Using only monotonicity and this fact about the uniformitiytioe

A simple implementation uses a balanced binary search tree assignment, we can determine the expected number of itexss re

to store the correspondence between segments of the weriaht
and buckets. If there ar@ buckets, then there will beC log(C)
intervals, so the search tree will have deptfiog(C)). Thus, a
single hash computation takéXlog(C)) time. The time for an
addition or removal of a bucket i (log”(C)) since we insert or
deletex log(C) points for each bucket.

The following trick reduces the expected running time of stha
computation ta)(1). The idea is to divide the interval into roughly

signed when the set of usable buckets changes. This retaties t
informal notion of “smoothness”.

Theorem 4.4 Let f be a monotonic, universal ranged hash func-
tion. LetV; and V- be views. The expected fraction of itehfer

which fy, (i) = fv, (i) is FAGp2-

Proof (sketch): Count the number of items that move as we add

xC'log(C) equal length segments, and to keep a separate searchpuckets fromV; until the view isV; U Vs, and then delete buckets

tree for each segment. Thus, the time to compute the hastidanc
is the time to determine which intervak (i) is in, plus the time

to lookup the bucket in the corresponding search tree. Thke fir
time is alwaysO(1). Since, the expected number of points in each
segment i€)(1), the second time i©(1) in expectation.

down toV,
O

Note that monotonicity is used only to show an upper bound on
the number of items reassigned to a new bucket; this imhias t

One caveat to the above is that as the number of buckets grows,0Ne can not obtain a “more consistent” universal hash fandty

the size of the subintervals needs to shrink. In order to déal
this issue, we will use intervals only of lengtfi2® for somez. At
first we choose the largestsuch that /27 < 1/kC log(C). Then,

relaxing the monotone condition.
We have shown that every monotone ranged hash function can
be obtained by associating each item with a random perroatati

of buckets. The most natural monotone consistent hashifumct
is obtained by choosing these permutations independemdyiai-

formly at random. We denote this function Ilfy

Theorem 4.5 The functionf is monotonic and universal. For item
1 and buckeb each of the following hold with probability at least
1—1/N: o(i) < tlog(NV) and

Ab) < (14 /29)tIog(2NVI)/C2.

Proof: Monotonicity and universality are immediate; this leaves
spread and load. Define:

tlog(NV)

4C

We user’ (i) to denote a list of the buckets iy U ... U Vv
which are ordered as in(i).

First, consider spread. Recall that in a particular vieamit
is assigned to the first bucket in(¢) which is also in the view.
Therefore, if every view contains one of the fissbuckets inm’ (i)
then in every view item will be assigned to one of the first
buckets inz’ (). This implies that item is assigned to at most
distinct buckets over all the views.

We have to show that with high probability every view congain
one of the firstr buckets inz’ (7). We do this by showing that the
complement has low probability; that is, the probabilitgtteome
view contains none of the first buckets is at most/NV.

The probability that a particular view does not contain thet fi
bucket inz’ () is at mostl — 1/¢, since each view contains at least
a 1/t fraction of all buckets. The fact that the first bucket is not
in a view only reduces the probability that subsequent tiscikee
not in the view. Therefore, the probability that a particuleew
contains none of the first buckets is at mogtt — 1/¢)7 = (1 —
1/t)(t1es(VV)) < 1/(NV). By the union bound, the probability
that even one of th& views contains none of the firstbuckets is
at mostl/N.

Now consider load. By similar reasoning, every itéin every
view is assigned to one of the firstog(INV I) buckets inz’ (i)
with probability at least — 1/(2/N). We show below that a fixed
bucketb appears among the firstog (2 NV T) buckets int’ (i) for
at most\ items: with probability atleast —1/(2V). By the union
bound, both events occur with high probability. This implibat at
most\ items are assigned to buckesver all the views.

All that remains is to prove the second statement. The ex-
pected number of itemsfor which the buckeb appears among
the firstt log(2NV I) buckets in%’ (i) is tIlog(2NVI)/C. Us-
ing Chernoff bounds, we find that buckeappears among the first
tlog(2NV I) buckets inr' (i) for at most\ items: with probability
atleastl —1/(2NVI) >1—1/(2N).

tIlog(2NVI)
C

O

A simple approach to constructing a consistent hash fuméio
to assign random scores to buckets, independently for ¢ech i
Sorting the scores defines a random permutation, and thereés
the good properties proved in the this section. Howeverirfgqthe
bucket an item belongs in requires computing all the scoréss
could be restrictivly slow for large bucket sets.

5 Random Trees in an Inconsistent World

In this section we apply the techniques developed in theskest
tion to the simple hot spot protocol developed in section 8.ndiv
relax the assumption that clients know about all of the cacliée

assume only that each machine knows abouttafraction of the
caches chosen by an adversary. There is no difference imabe p
col, except that the mappingis a consistent hash function. This
change will not affect latency. Therefore, we only analyze éf-
fects on swamping and storage. The basic properties ofstensi
hashing are crucial in showing that the protocol still wovkell.

In particular, the blowup in the number of requests and gmia
proportional to the maximurx and A of the hash function.

5.1 Swamping

Theorem 5.1 If h is implemented using tHeg(C')-way indepen-
dent consistent hash function of Theorem 4.1 and if eachaoew
sists ofC’ = C/t caches then with probability at leabt-1/C(*)
an arbitrary cache gets no more thab\((2pt> log, C’ log C) +
(dgtlog C + pt) log C) requests.

Proof (sketch): We look at the different trees of caches for dif-
ferent views for one pages. Let C' = C/t denote the number
of caches in each tree. We overlay these different trees eraon
other to get a new tree where in each node, theresetaf caches.
Due to thespreadproperty of the consistent hash function at most
o = O(tlog C) caches appear at any node in this combined tree
with high probability. In fact since there are onlyrequests, this
will be true for the nodes of all th& trees for the requested pages.
If E,; denotes the event that appears in thg'” node of the
combined tree for page then we know from Corrollary 4.2 that
the probability of this event i©(A/C), whereX is theload which

is O(t log C) with high probability. We condition on the event that
o and areO(t log C') which happens with high probability.

Since a cache in a node sends out at mastuests, each node
in the combined tree sends out at mgstrequests. We now adapt
the proof of Theorem 3.1 to this case. In Theorem 3.1 whergyeve
machine was aware of all th@ caches, an abstract node was as-
signed to any given machine with probabilityC'. \We now assign
and abstract node to a given machine with probabllitp/C). So
we have a scenario with’ = C'/t caches where each abstract node
sends out up tq’ requests to its parent and occurs at each ab-
stract node independently and with probabi®yA/C). The rest
of the proof is very similar to that of Theorem 3.1.

|

5.2 Storage

Using techniques similar to those in proof of Theorem 5.1 @k g
the following lemma. The proof is deferred to the final vensid
the paper.

Lemma5.2 The total number of cached pages, over all machines
is O(oA(log Rlog, C + £)) with probability of1 — 1/R*). A
given cachen hasO(oA(p/q + log R)) cached copies with high
probability.

6 Nonuniform Communication Costs

So far we assumed that every pair of machines can communicate
with equal ease. In this section we extend our protocol te tak
the latency between machinés,into account. The latency of the
whole request will be the sum of the latencies of the machine-
machine links crossed by the request. For simplicity, weirass

in this section that all clients are aware of all caches.

We extend our protocol to a restricted class of functidngn
particular, we assume thétis anultrametric Formally, an ultra-
metric is a metric which obeys a more strict form of the triang
inequality: § (z, z) < max(d(z,y),d(y, 2)).

The ultrametric is a natural model of Internet distancegesit
essentially captures the hierarchical nature of the letdopology,
under which, for example, all machines in a given univeraity
equidistant, but all of them are farther away from anothdvarm
sity, and still farther from another continent. The logipaint-to-
point connectivity is established atop a physical netwarid it is
generally the case that the latency between two sites isndieted
by the “highest level” physical communication link that mbe
traversed on the path between them. Indeed, another dafiaifi
an ultrametric is as a hierarchical clustering of pointse @ilstance
in the ultrametric between two points is completely deteediby
the smallest cluster containing both of the points.

6.1 Protocol

tocol, m; plays the protocol on a set of at leashachines. San is
on the path of the request from; with probability O((log, 7)/i).
Summing ovet, the expected load om is O(log C).

Stating things slightly more formally, we consider a sdbgfC
nested “virtual” cluster®; = {ma,... ,m,:}. Note that any
browser inC; 1 — C; will use all machines i€; in the protocol. We
modify the protocol so that such a machine usely the machines
in C;. This only reduces the number of machines it uses. According
to the monotonicity property of our consistent hash funddiahis
only increases the load on machime

Now we can consider eaahy separately and apply the static
analysis. The total number of requests arriving in one otthsters
under the modified protocol is proportional to the numberaaies
in the cluster, so our static analysis applies to the clusféris
gives us a bound ab(log, C) on the load induced om by C;.

The only modification we make to the protocol is that when a Sumnming over théog C clusters proves the theorem. O
browser maps the tree nodes to caches, it only uses cacltes tha

are as close to it as the server of the desired page. By daisg th

we insure that our path to the server does not contain anyesach 6.2.2 Storage

that are unnecessarily far away in the metric. The mappidgne
using a consistent hash function, which is the vital elenoétihe
solution.

Clearly, requiring that browsers use “nearby” caches casea
swamping if there is only one cache and server near many brews
Thus, in order to avoid cases of degenerate ultrametricsenthere

Using techniques similar to those in proof of Theorem 6.1 @ g
the following lemma.

Lemma 6.2 The total number of cached pages, over all machines
is O(R/qlog Rlog, C log C)) with probability of1 — 1/R%*(V), A
given cachen hasO(log C(p/q+log R)) cached copies with high

are browsers that are not close to any cache, and where tiegere a probability.

clusters in the ultrametric without any caches in them, vetrict
the set of ultrametrics that may be presented to the pratata re-
striction is that in any cluster the ratio of the number ofrexcto the
number of browsers may not fall beldly p (recall thatR = pC).

This restriction makes sense in the real world where caches a

likely to be evenly spread out over the Internet. It is alsoese

sary, as we can prove that a large number of browsers cldstere
around one cache can be forced to swamp that cache in some cir

cumstances.

6.2 Analysis

Itis clear from the protocol and the definition of an ultrarethat
the latency will be no more than the depth of the tieg, C, times
the latency between the browser and the server. So oncewagain
need only look at swamping and storage. The intuition isitiside
each cluster the bounds we proved for the unit distance nagmel
ply. The monotone property on consistent hashing will alieto

restrict our analysis tog(C) clusters. Thus, summing over these

clusters we have onlylag(C') blowup in the bound.

6.2.1 Swamping

Theorem 6.1 Letd be an ultrametric. Suppose that each browser

7 Fault Tolerance

Basically, as in Plaxton/Rajaraman, the fact that our patases
random short paths to the server makes it fault tolerant. de ¢
sider a model in which an adversary designates that someeof th
caching machines may lbewn that is, ignore all attempts at com-

munication. Remember that our adversary does not get towsee o
random bits, and thus cannot simply designate all maching®a
top of a tree to be down. The only restriction is that a speatifie
fraction s of the machines in every view must be up. Under our
protocol, no preemptive caching of pages is done. Thus,ehees
goes down, all pages that it has not distributed become ésadde

to any algorithm. This problem can be eliminated using steshd
techniques, such as Rabin's Information Dispersal Algorif10].

So we ignore server faults.

Observe that a request is satisfied if and only if all the cache
serving for the nodes of the tree path are not down. Since each
node is mapped to a machink-Wise) independently, it is trivial
(using standard Chernoff bounds) to lower bound the number o
abstract nodes that have working paths to the root. Thislestthe
following lemma:

Lemma 7.1 Suppose that = Q(log V). With high probability,

makes at most one request. Then in the protocol above, an arbi the fraction of abstract-tree leaves that have a workingdatthe

trary cache gets no more thaog C (p(8log, C + O(2625)) +

(—dalosN__ 4 jog N)) requests with probability at leadt —
10g(7 log N)

1/N whereN is a parameter.

Proof (sketch): The intuition behind are proof is the following. We
bound the load on a machime. Consider the ranking of machines
m1,,ma, ... according to their distance from. Supposen; asks
for a page from a machine closer to itself than Then according
to our modified protocaol, it will never involve: in the request. So
we need only consider machineg; if it asks for a page at least as far
away from itself asn. It follows from the definition of ultrametrics
that everym;, j < 1, is also used in the revised protocol foy.
Intuitively, our original protocol spread load among the-ma
chines so that the probability a machine got on the path fara p
ticular page requests wa((log, C)/C). In our ultrametric pro-

root is (s'°%2 ©). In particular, if s = 1 — O(1/ log, C), this
fraction is a constant.

The modification to the protocol is therefore quite simple.
Choose a parametey and simultaneously sernidrequests for the
page. A logarithmic number if requests is sufficient to givagh
probability of one of the requests goes through. This chamgee
protocol will of course have an impact on the system. Thisdaotp
is described in the full paper.

Note that since communication is a chancy thing on the Inter-
net, failure to get a quick response from a machine is not a par
ticularly good indication that it is down. Thus, we focusedtbe
tolerance of faults, and not on their detection. Howevergsome
way to decide that a machine is down, our consistent hashifunsc
make it trivial to reassign the work to other machines. If a ge-
cide a machine is down, remove it from your view.

8 Adding Time to the Model

So far, we have omitted any real mention of time from our analy
ses. We have instead considered and analyzed a single "lwditch
R requests, and argued that this batch causes a limited arabunt
caching (storage usage) at every machine, while simulteshear-
guing that no machine gets swamped by the batch. In thisosecti
we show how this static analysis carries implications faragoral
model in which requests arrive over time. Recall that ourpteral
model says that browsers issues requests at a certai. rate

Time is a problematic issue when modeling the Internet, be-
cause the communication protocols for it have no guarantees
garding time of delivery. Thus any one request could také arb
trarily long. However, we can consider the rate at which eserv
receive requests. This seems like an overly simplistic oreasut
the rate at which a machine can receive requests is in fastdlis-
tic that hardware manufacturers advertise. We considentanval
of time , and apply our “requests all come at once” analysis to the
requests that come in this interval.

We can write the bounds from the static analysigbrequests
as follows:

cache size=asR + b, cache load= a;R + b,

Suppose machines have cache size Consider a time interval
small enough to mak® = ~r small enough so that > a,R+b;.
In other words, the number of requests that arrive in thisrirl is
insufficient, according to our static analysis, to use gtferexceed-

information from a server to all the client members of a ncalst
“group.” Our protocol can be mapped into this model if we assu
that every machine “caching” a page joins a multicast grouphfat
page. Even without multicast, if each cache keeps trackedoh
page it caches, of the at masther caches it has given the page
to, then notification of changes can be sent down the treeljo on
the caches that have copies.

It remains open how to deal with time when modeling the In-
ternet, because the communication protocols have no geasn
regarding time of delivery. Indeed, at the packet levelretage not
even guarantees regarding eventual delivery. This suggestel-
ing the Internet as some kind of distributed system. Cleanha
model in which there are no guarantees regarding delivergd;j
the best one can hope to prove is some of the cladsiealessand
safetyproperties underlying distributed algorithms. It is ncgan
what one can prove about caching and swamping in such a model.
We think that there is significant research to be done on theepr
way to model this aspect of the Internet.

We also believe that interesting open questions remaindega
ing the method of consistent hashing that we present in tpsp
Among them are the following. Is therekauniversal consistent
hash function that can be evaluated efficiently?? What tfégle
can be achieved between spread and load? Are there somefkind o
“perfect” consistent hash functions that can be constdudtter-
ministically with the same spread and load bounds we give? On
what other theoretical problems can consistent hashing ggva
handle?

ing m per machine. Thus once a machine caches a page during this

interval, it keeps it for the remainder of the interval. Tlous static
analysis will apply over this interval. This gives us a boamchow
many requests can arrive in the interval. Dividing by therwal

. . bjag
length, we get the rate at which caches see requegis:+ =)

Plugging in the bounds from Section 3, we get the following:

Theorem 8.1 If our machines haven = Q(log N) storage, for
some constaniV, then with probabilityl /N , the bound on the
rate of new requests per cache when we h@vmachines of size

miS'y(M—I—O(%‘?)).

C

Observe the tradeoffs implicit in this theorem. Increasing
m causes the load to decrease proportionately, but nevewbelo
Q(vlog C/C). Increasingd increases the load linearly (but re-
duces the number of hops on a request path). Incregssggms
only to hurt, suggesting that we should always take 2.

The above analysis used the rate at which requests werelissue
to measure the rate at which connections are establishedaito m
chines. If we also assume that each connection lasts forta fini
duration, this immediately translates into a bound on thalmer of
connections open at a machine at any given time.

9 Conclusion

This paper has focused on one particular caching problemt—tha
of handling read requests on the Web. We believe the ideas hav
broader applicability. In particular, consistent hashingy be a
useful tool for distributing information from name serversh as
DNS and label servers such as PICS in a load-balanced and faul
tolerant fashion. Our two schemes may together provide t@n-in
esting method for constructing multicast trees [4].

Another important way in which our ideas could be extended
is in handling pages whose information changes over time,tdu
either server or client activity. If we augment our prototmlet the
server know which machines are currently caching its paum t
the server can notify such caches whenever the data on iespag
changes. This might work particularly well in conjunctioftimthe
currently under developmentulticastprotocols [4] that broadcast

References

[1] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaelschisl
Schwartz and Kurt Worrell. A Hierarchical Internet ObjecdBe. In
USENIX Proceedings 996.

Robert Devine. Design and Implementation of DDH: A Distited

Dynamic Hashing Algorithm. IProceedings of 4th International Con-

ference on Foundations of Data Organizations and Algorghh993.

M. J. Feeley, W. E. Morgan, F. P. Pighin, A. R. Karlin, H. Mevy

and C. A. Thekkath. Implementing Global Memory Managemerd i

Workstation Cluster. IProceedings of the 15th ACM Symposium on

Operating Systems Principle$995.

[4] Sally Floyd, Van Jacobson, Steen McCanne, Ching-Gung dnd
Lixia Zhang. A Reliable Multicast Framework for Light-wéigSes-
sions and Application Level Framin§/GCOMM' 95

5] Witold Litwin, Marie-Anne Neimat and Donovan A. Schneid

LH*-A Scalable, Distributed Data Structure. ACM Transactions

Database Systems, Dec. 1996

Radhika Malpani, Jacob Lorch and David Berger. Makingri/aVide

Web Caching Servers Cooperate.Rroceedings of World Wide Web

Conference1996.

M. Naor and A. Wool. The load, capacity, and availabildfquorum

systems. IrProceedings of the 35th IEEE Symposium on Foundations

of Computer Scien¢c@ages 214-225, November 1994.

[8] D.Peleg and A. Wool. The availability of quorum systetmormation
and Computatiori23(2):210-233, 1995.

[9] Greg Plaxton and Rajmohan Rajaraman. Fast Fault-Talétancur-
rent Access to Shared Objects. fmoceedings of 37th IEEE Sympo-
sium on Foundations of Computer Scient@96.

[10] M. O. Rabin. Efficient dispersal of Information for Seity, Load Bal-
ancing, and Fault Tolerancdournal of the ACMB6:335-348, 1989.

[11] Jeanette Schmidt, Alan Siegel and Aravind Srinivasahernoff-
Hoeffding Bounds for Applications with Limited Independen In
Proc. 4th ACS-SIAM Symposium on Discrete Algoritht893.

[2]

(3]

6

[7]

