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Abstract In this paper we consider the problem of designing a mecha-
nism for double auctions where bidders each bid to buy or sell one unit
of a single commodity. We assume that each bidder’s utility value for
the item is private to them and we focus on truthful mechanisms, ones
where the bidders’ optimal strategy is to bid their true utility. The profit
of the auctioneer is the difference between the total payments from buy-
ers and the total payments to the sellers. We aim to maximize this profit.
We extend the competitive analysis framework of basic auctions [12] and
give an upper bound on the profit of any truthful double auction. We
then reduce the competitive double auction problem to basic auctions
by showing that any competitive basic auction can be converted into a
competitive double auction with a competitive ratio of twice that of the
basic auction. In addition, we show that better competitive ratios can
be obtained by directly adapting basic auction techniques to the double
auction problem. In doing so, we generalize the consensus and revenue
estimate technique from [11] to a wider class of problems.

1 Introduction

Dynamic pricing mechanisms, and specifically auctions with multiple buyers and
sellers, are becoming increasing popular in electronic commerce. We consider
double auctions in which there is one commodity in the market with multiple
buyers and sellers each submitting a single bid to either buy or sell one unit
of the commodity (for example, see [10]). The numerous applications of double
auctions in electronic commerce, including stock exchanges, business-to-business
commerce, bandwidth allocation, etc. have led to a great deal of interest in fast
and effective algorithms [25,28].

For double auctions, the auctioneer, acting as a broker, is faced with the task
of matching up a subset of the buyers with an equal-sized subset of the sellers.
The auctioneer decides on a price to be paid to each seller and received from each
buyer in exchange for the transfer of one item from each of the selected sellers to
each of the selected buyers. The profit of the auctioneer is the difference between
the prices paid by the buyers and the prices paid to the sellers. We assume that
each buyer wishes to purchase exactly one item, each seller wishes to sell exactly



one item, and that the items are indistinguishable, i.e., no buyer has reason to
prefer one seller’s item over that of another.

We assume that each bidder has a private utility value for the item. For the
buyers this utility value is the most that they are willing to buy the item for.
For the sellers it is the least they are willing to sell for. We focus on double
auction mechanisms that are truthful: the best strategy of a selfish bidder that
is attempting to maximize their own gain is to bid their true utility value.

The traditional economics approach to the study of profit maximizing auc-
tions is to construct the optimal Bayesian auction assuming bidder utility values
are independent and drawn from a known prior distribution (e.g., [7,20]). One
can relax this assumption, in particular by assuming that the distribution is
unknown but belongs to a certain class of distributions. Baliga and Vohra [2]
discuss a number of other ways to relax this assumption as well. In this pa-
per, following [13,9,12], we attempt to design mechanisms that maximize profit
while making as few assumptions about the input as possible. As in competitive
analysis of online algorithms (see e.g., [6]), we gauge a truthful double auc-
tion mechanism’s performance on a particular bid set by comparing it against
the profit that would be achieved by an “optimal” auction, Mopt, on the same
bidders. Note that a mechanism with a certain performance guarantee under
minimal assumptions about the input distribution may have better performance
guarantees under stronger assumptions, e.g., Bayesian.

If, for every bid set, a particular truthful double auction mechanism M
achieves a profit that is close to that of the optimalMopt, we say that the auction
mechanismM is competitive againstMopt, or simply competitive. For example,
we might be interested in constructing double auctions that are competitive with
the optimal single-price omniscient mechanism, F . This is the mechanism which,
based on perfect knowledge of buyer and seller utilities, selects a single price bopt

for the buyers and a single price sopt for the sellers. It then finds the largest k
such that the highest k buyers each bid at least bopt and the lowest k sellers
each bid at most sopt. It then matches these buyers and sellers up, paying all
the sellers sopt and charging each of the buyers bopt. The profit of the auctioneer
is thus k(bopt − sopt).

An interesting special case that has received attention is the basic auction,
in which there is an auctioneer with an unlimited supply of identical items, and
a set of bidders each interested in one item and each with a private utility value
for the item. Previous research [13,9] has shown how to design truthful basic
auctions that are competitive.

1.1 Results

This paper makes the following contributions. First we extend the framework
for competitive analysis of basic auctions to double auctions. This framework is
motivated by a number of results bounding truthful mechanism profit. In partic-
ular, we show that no monotone1 double auction (even a multi-priced mechanism)

1 See Section 2.2 for the definition of monotone.



can achieve a higher profit than twice the optimal single-priced mechanism F
discussed above.

Next we present a reduction from double auctions to basic auctions by show-
ing how to construct a competitive double auction from any competitive basic
auction while losing only a factor of two in competitive ratio. Using this reduc-
tion and the best known competitive basic auction gives a double auction with a
competitive ratio of 6.78. This shows that mechanism design techniques for the
basic auction problem extend to the double auction problem.

Finally, we show how to apply the consensus and revenue estimate technique
from [11] to the double auction directly, without using the reduction. In order
to to this, we generalize the technique and make it applicable in a more general
context. The generalized technique gives a 3.75-competitive double auction. We
think that this technique is interesting in itself and we hope that it will find
other applications.

1.2 Related Work

We study profit maximizing single-round double auctions when the utility value
of each bidder is private and must be truthfully elicited. When the utilities are
public values this problem becomes trivial. The following variants of the problem
have been previously studied.

When the goal is not to maximize profit of the auctioneer, but to find an
outcome that is maximizes the common welfare, i.e., the sum of the profits of
each of the bidders, subject to the constraint that the auctioneer’s profit is non-
negative, McAffee [18] gives a truthful mechanism that approaches optimal as
the number of sold items in the optimal solution grows. Note that the Vickrey-
Clarke-Groves [8,14,27] mechanism, the only mechanism that always gives the
outcome that maximizes the common welfare, always gives a non-positive profit
to the auctioneer (assuming voluntary participation2).

Our results are closely related to the basic auctions for a single item available
in unlimited supply, e.g., for digital goods [13,12]. As such, the approach we take
in this paper closely parallels that in [12]. Furthermore, as we explain later, the
basic auction is a special case of the double auction where all sellers have utility
zero.

An “online” version of the double auction, where bids arrive and expire at dif-
ferent times, was considered by Blum, Sandholm, and Zinkevich [5] (also known
as a continuous double auction [28]). Their mechanism must make decisions
without knowing what bids will arrive in the future. They consider the goals of
optimizing the profit of the auctioneer and of maximizing the number of items
sold. Their solution assumes that bidders are compelled to bid their true utility
value despite the fact that the algorithms they develop are not truthful, i.e.,
the utility values of the bidders are public. An interesting open question left by
our work is the problem of a profit maximizing online double auction for the
private value model. For private values, an online variant of the basic auction

2 Defined in Section 2.



problem was first considered in a competitive framework for profit maximization
by Bar-Yossef et al. [3] and recently extended by Blum et al. [4].

More generally, there has been a great deal of recent work at the intersection
of game theory, economic theory and theoretical computer science [21,24]. On
the game theory and economics end, there is a large body of work on mecha-
nism design (also known as implementation theory or theory of incentives) (see
e.g., [17], chapter 23). One of the most important positive results in this field is
aforementioned family of Vickrey-Clarke-Groves mechanisms.

Recent work in computer science pertaining to these fields has focused largely
on merging the considerations of incentives (e.g. truthfulness) with considera-
tions of computational complexity [15,21,22,23]. One of the first examples of such
work is the paper of Nisan and Ronen [22] where the mechanism design frame-
work is applied to some standard optimization problems in computer science,
such as shortest paths and scheduling on unrelated machines.

Of course, auctions, be they traditional or combinatorial, have received a
great deal of attention (see e.g., the surveys [26,16]).

2 Preliminaries

We consider single-round, sealed-bid double auction mechanisms in which each
bidders wants to either buy or sell one out of a set of identical items. Bidders
submit one sealed bid each, and publicly declare themselves to be either a buyer
or a seller. For buyers, the bid represents the maximum amount they are willing
to pay for an item, whereas for sellers, the bid represents the minimum amount
they are willing to sell the item for.

We denote by b the vector of bid values associated with buyers and by s the
vector of all bid values associated with sellers. The ith component of b (resp.
s) is bi (resp. si), the bid value submitted by the ith buyer (resp. seller). We
assume that the number of buyers is equal to the number of sellers, and we use
n to denote this number.

Definition 1 (Double Auction). A single-round sealed-bid double-auction
mechanism is one where:

– Given the two bid vectors b = (b1, . . . , bn) and s = (s1, . . . , sn), the mecha-
nism computes a pair of allocation vectors, x and y ∈ {0, 1}n, and payment
vectors p and q ∈ IRn, subject to the constraints that:

• The number of winning buyers is equal to the number of winning sellers,
i.e.,

∑

i xi =
∑

i yi.
3

3 We assume that the auctioneer neither has any items for sale nor is willing to pur-
chase any. For this reason, we can also assume that the number of buyer bids equals
the number of seller bids. If there are any extra buyers or sellers, the auctioneer can
earn the same amount of profit by ignoring the extra low bidding buyers or high
bidding sellers.



• 0 ≤ pi ≤ bi (resp. si ≤ qi) for all winning buyers (resp. sellers) and
pi = 0 (resp. qi = 0) for all losing buyers (resp. sellers). These are the
standard assumptions of no positive transfers and voluntary participa-
tion. See, e.g., [19].

– If xi = 1 buyer i wins (i.e., receives the item) and pays price pi, otherwise
we say that buyer i loses or is rejected. If yi = 1 seller i wins (i.e., sells the
item) and gets paid qi, otherwise we say that seller i loses or is rejected.

– The profit of the mechanism is M(b, s) =
∑

i pi −
∑

i qi.

We say the mechanism is randomized if the procedure used to compute the
allocations and prices is randomized. Otherwise, the mechanism is deterministic.
Note that if the mechanism is randomized then the profit of the mechanism, the
output prices, and the allocation are random variables.

We use the following private value model for the bidders:

– Each bidder has a private utility value for the item. We denote the utility
value for buyer i by ui and the utility value for seller i by vi.

– Each bidder bids so as to maximize their profit: For buyers (resp. sellers)
this means they bid bi (resp. si) to maximize profit given by uixi− pi (resp.
qi − viyi).

– Bidders bid with full knowledge of the auctioneer’s strategy. (So the auc-
tioneer does not have a strategy.)

– Bidders do not collude.

Finally, we formally define the notion of truthfulness.

Definition 2 (Truthfulness). We say that a deterministic double auction is
truthful if bidding truthfully, i.e., bi = ui for buyers and si = vi for sellers, is a
dominant strategy for each bidder: for any value of other bidders bids, a bidder’s
profit (xiui−pi for buyers and qi−yivi for sellers) is maximized by bidding their
utility.

Definition 3. We say that a randomized double auction is truthful if it can be
described as a probability distribution over deterministic truthful double auctions.

As bidding ui (resp. vi) is a dominant strategy for buyer i (resp. seller i) in
a truthful auction, in the remainder of this paper, we assume that bi = ui and
si = vi.

Definition 4 (Basic Auction). [12] The basic auction on n buyers, b, is a
single round, sealed bid mechanism that computes an allocation x and prices p
that results in the sale of up to n identical items.

It is easy to see that the basic auction problem can be viewed as a special case
of the double auction problem with all sell bids at value zero.

It is assumed that input order of the bids b and s is arbitrary. Throughout
our discussion of auction problems we will use the following notation for the ith
highest bidding buyer and the ith lowest bidding seller.



Definition 5. The ith highest bidding buyer is b(i). The ith smallest seller bid
is s(i).

The most common example of a truthful basic auction is the Vickrey auction
[27]. Below we give a formal definition of the Vickrey auction and extend it to
the double auction problem. It is easy to see that for any fixed k, the k-Vickrey
auctions are truthful. However, for any fixed k, Vk does not generally maximize
the profit of the auctioneer.

Definition 6 (Vickrey Basic Auction). The k-item Vickrey basic auction
on bids b, Vk(b), sells to the highest k bidders at the k +1st bid value, i.e., b(k).
Its revenue is thus

Vk(b) = kb(k+1).

Definition 7 (Vickrey Double Auction4 ). The k-item Vickrey double auc-
tion on bids b and s, Vk(b, s), sells to the highest k buyers at price b(k+1) and
buys from the lowest k sellers at price s(k+1). Its revenue is

Vk(b, s) = k(b(k+1) − s(k+1)).

In typical examples it is important that the k-Vickrey basic auction only sells
k items. It is likewise important that the k-Vickrey double auction has the same
number of winning buyers as winning sellers, e.g. k of them. As specified above,
the k-Vickrey auctions are not well defined if there are several bidders with iden-
tical bid values. It is simple to fix this problem by assuming that the k-Vickrey
auction breaks ties arbitrarily. This tie breaking is natural and necessary for
double auction problem and we will be assuming throughout this paper that bid
values are distinct. This can be achieved by assuming an arbitrary (or random)
total order on the bidders that respects the partial order given by their actual
bid values. Thus for example, we number the bids from 1 to n, and if two bids
are the same, the one with the higher number is treated as being larger. Thus, in
the remainder of this paper, we will assume that b(i) > b(i+1) and s(i) < s(i+1).

2.1 Bid Independence

We describe a useful characterization of truthful mechanisms using the notion
of bid independence.

Definition 8. Let f and g be a functions from bid vectors to prices (non-
negative real numbers). The deterministic bid-independent double auction de-
fined by f and g is Mf,g. For each buyer i,

1. Compute bid-independent threshold ti = f(b−i, s).
(where b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn))

2. If ti < bi, set xi ← 1 and pi ← ti. (Buyer i wins.)

4 This is a slight abuse of terms – The Vickrey auction for 2-sided markets will execute
the trades that are economically efficient to execute, which could be less than k



3. If ti > bi set xi = pi = 0. (Buyer i is rejected.)
4. Otherwise, if ti = bi the auction can either accept the bid at price ti or reject

it.

We treat the sellers symmetrically using threshold g(b, s−i) and selling to seller
i if the threshold is more than si.

A randomized bid-independent auction is a probability distribution over de-
terministic bid-independent auctions.

The following folklore theorem, which is a straightforward generalization of
the equivalent result for basic auctions in [12], relates bid independence to truth-
fulness.

Theorem 1. A double auction is truthful if and only if it is bid-independent.

2.2 Monotonicity

We define the notion of monotone double auctions to characterize “reasonable”
truthful mechanisms. The intuition underlying our notion of monotonicity is that
if an auction is to achieve a large profit, the bid-independent function defining
the auction should output higher prices for buyers when it sees higher buyer bid
values.

Definition 9. A randomized double auction is monotone if:

– For any pair of buyers i and j with bi ≤ bj , we have:

∀x ≤ bi, Pr[buyer i wins at price ≤ x] ≤ Pr[buyer j wins at price ≤ x] .

– For any pair of sellers i and j with si ≥ sj , we have:

∀x ≥ si, Pr[seller i wins at price ≥ x] ≤ Pr[seller j wins at price ≥ x] .

To get a feel for this definition, observe that when bi ≤ bj the bids visible
in the vector b−j are the same as those visible in the vector b−i except for the
fact that the smaller bid bi is visible in b−j whereas the larger bid bj is visible
in b−i. Intuitively, monotonicity means that if buyer bids are increased while
keeping the seller bid vector constant, then the threshold prices output by the
bid-independent function f increase. A similar intuition follows for the sellers.

2.3 Single Price Omniscient Mechanism

A key question is how to evaluate the performance of mechanisms with respect
to the goal of profit maximization. A natural objective would be to design a
mechanism that, on all inputs, achieves a profit close to that of the optimal
multiple-price omniscient mechanism, T , that requests each buyer to pay their
utility value and pays to each seller their utility value (as long as positive profit
can be made). Note that the profit of this mechanism is T (b, s) =

∑

i bi−
∑

i si,
if all buyers bid above all sellers.



Definition 10. The optimal single price omniscient mechanism, F , is the mech-
anism that uses the optimal single buy price and single sell price. It achieves the
optimal single price profit of

F(b, s) = max
i

i(b(i) − s(i)).

See Figure 4 for an illustration.
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Figure 1. In this figure, the red bars represent the buyer bids sorted in order of de-
creasing value, the blue bars represent the seller bids sorted in order of increasing value
and the area of the green rectangle represents the value of F(b, s).

The facts that no reasonable truthful mechanism can achieve profit above
2F(b, s) (as we will prove shortly) and F(b, s) can be Θ(T (b, s)/ log n) (see [12])
imply that we cannot hope to be competitive with the optimal multi-price mech-
anism T . This motivates using F as a performance metric. Unfortunately, it is
impossible to be competitive with F . This is shown in [12] for basic auctions, a
special case of the double auction, when the F sells to only the highest bidder.
Hence, we compare the performance of truthful mechanisms with the profit of
the optimal single price omniscient mechanism that transfers at least two items
from sellers to buyers.



Definition 11. The optimal fixed price mechanism that transfers at least two
items, F (2), has profit

F (2)(b, s) = max
i≥2

i(b(i) − s(i)).

2.4 Competitive Mechanisms

We now formalize the notion of a competitive mechanism:

Definition 12. We say that a truthful randomized double auction M is β-
competitive against F (2) if, for all bid vectors b and s the expected profit of
M satisfies

E[M(b, s)] ≥ F (2)(b, s)/β.

We say that M is competitive if M is β-competitive for some constant β.

3 Upper Bound on the Profit of Truthful Mechanisms

In this section, we show that the profit for all monotone double auction mech-
anisms is bounded by 2F(b, s). Goldberg et al. showed that for basic auctions
this result holds without the factor of two:

Theorem 2. [12] For input bids b, no monotone basic auction has expected
profit more than F(b).

We conjecture that this bound holds for double auctions as well, though what
we prove below is a factor of two worse.

Lemma 1. For any value v and buyer and seller bids b and s, define b′ and s′

as b′i = bi − v and s′i = v − si for 1 ≤ i ≤ n. Then for any monotone double
auction, M:

E[M(b, s)] ≤ F(b′) + F(s′).

Proof. Let x, y, p, and q be the outcome and prices when M is run on b and
s. Let X = {i : xi = 1} and Y = {i : yi = 1}. Note |X | = |Y |. Thus,

M(b, s) =
∑

i

pi −
∑

i

qi =
∑

i∈X

pi −
∑

i∈Y

qi

=
∑

i∈X

(pi − v) +
∑

i∈Y

(v − qi).

Let Av,s be the basic auction that on b′ simulatesM(b, s) to compute prices
pi for each bidder b′i and then offers them pi − v. It is easy to see that this is
truthful, monotone (since M is), and gives revenue

Av,s(b
′) =

∑

i∈X

(pi − v).



Using the bound on the revenue of any monotone basic auction (Theorem 2) we
get:

E

[

∑

i∈X

(pi − v)

]

= E[Av,s(b
′)] ≤ F(b′).

Combining this with the analogous argument for s′ we have:

E[M(b, s)] = E

[

∑

i∈X

(pi − v)

]

+ E

[

∑

i∈Y

(v − qi)

]

≤ F(b′) + F(s′).

ut

Theorem 3. For any bid vectors b and s, any truthful monotone double auc-
tion, M, has expected profit at most 2F(b, s).

Proof. Find the largest ` such that b(`) ≥ s(`) and choose v ∈ [s(`), b(`)]. Now we
let b′ and s′ be b′i = bi − v and s′i = v − si for 1 ≤ i ≤ n. For our choice of v,
Lemma 1 gives E[M(b, s)] ≤ F(b′) + F(s′).

Note that F(b, s) = maxi i(b(i) − s(i)). Let k be the number of winners in
F(b, s). Note that by our choice of v, we have b(k) ≥ v and s(k) ≤ v. This gives:

F(b′) = max
i

i(b(i) − v) ≤ max
i

i(b(i) − s(i)) = F(b, s), and

F(s′) = max
i

i(v − s(i)) ≤ max
i

i(b(i) − s(i)) = F(b, s).

Thus, E[M(b, s)] ≤ F(b′) + F(s′) ≤ 2F(b, s). ut

4 Reducing Competitive Double Auctions to Competitive

Basic Auctions

In previous work, a number of different constant competitive mechanisms have
been described for the basic auction problem. At first glance, one might imagine
that one could simply run a competitive basic auction on the buyers (with auc-
tioneer as seller) and a competitive basic auction on the sellers (with auctioneer
as buyer) and combine the results. The problem is that the number of items sold
in the auction on the buyers might be different from the number of items bought
in the auction on the sellers. Thus a mechanism is needed for coordinating these
outcomes. In this section, we present a technique for doing this. Specifically, we
describe a general procedure for converting any β-competitive basic auction into
a 2β-competitive double auction.

Definition 13 (MA). Given,

– Basic auction, A.
– Input b and s.



– `, the largest value such that b(`) ≥ s(`).

The double auction, MA, does as follows:

Case 1 (` = 1): Output the empty allocation.
Case 2 (` = 2): Simulate the 1-item Vickrey double auction, V1(b, s), and out-

put its outcome.
Case 3 (` ≥ 3): Let b′ and s′ be n-dimensional vectors with components by

b′i = bi − s(`) and s′i = b(`) − si. Let b′′ (resp. s′′) be the (`− 1)-dimensional
vector consisting of the largest `− 1 bids in b′ (resp. s′).
1. With probability 1/2 simulate A(b′′). If buyer i wins the simulation of
A at price p′′i , then buyer i wins MA at price pi = max(b(`), p

′′
i + s(`)).

All other buyers lose. Let k < ` be the number of winners in A(b′′). To
determine the outcome for the sellers, run the k-Vickrey basic auction
auction on s.

2. Otherwise (with probability 1/2) simulate A(s′′). If seller i wins the simu-
lation of A at price q′′i then seller i winsMA at price qi = min(s(`), b(`)−
q′′i ). As in Step 1, we run the k-Vickrey basic auction on the buyers to
determine the outcome for buyers, where k < ` is the number of winners
in A(s′′).

We illustrate the auction pictorially in the following figures.
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Figure 2. In this and the remaining figures, the red bars represent the buyer bids
sorted in order of decreasing value, the blue bars represent the seller bids sorted in
order of increasing value. The values b(`) and s(`) are shown.

Theorem 4. MA is truthful.

Proof. One way to prove this is to give a bid-independent implementation. As
this is rather tedious, we present a direct argument here.

We show that MA is truthful for the buyers. The result for sellers is sym-
metric. First note all buyers that win the auction pay at least b(`) and that the
buyer with the `th highest bid and all buyers with lower bids always lose the
auction. In the case that ` ≤ 2 this is obvious. For ` ≥ 3 we have:

– In Step 1, since b(`) is excluded from b′′, b(`) loses. In this case by definition,
all winners pay at least b(`).

– In Step 2, since k < ` the k-Vickrey auction on buyers rejects b(`) (and
winners must pay at least b(`)).

We now argue that MA is truthful for the buyer with the `th highest bid and
all lower bidding buyers. Suppose buyer i is one of these lower bidding buyers.
Hold all other bid values fixed. To win the auction, buyer i would have to bid
higher than b(`−1). In this case, all winners would pay at least b(`−1) which is
more than this buyer’s utility value, bi. Such a sale price would give buyer i a
negative profit, hence buyer i prefers losing the auction.
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Figure 3. The solid blue bars represent the bids b′

i = bi − s(`) sorted in order of
decreasing value. In step 1 of case 3, which occurs with probability 1/2, we run the
auction A on the first ` − 1 of these (all those with b′

i > 0).
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Figure 4. The solid blue bars represent the bids b′

i = bi − s(`) sorted in order of
decreasing value. In step 1 of case 3, we run the auction A on the first ` − 1 of these
(all those with b′

i > 0). The area of the red rectangle represents the optimal fixed price
revenue for this set of bids. The auction A is guaranteed to return a profit from these
bidders which is at least a constant fraction of this area.
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Figure 5. The solid cyan bars represent the bids s′

i = b(`) − si sorted in order of
decreasing value. In step 2 of case 3, we run the auction A on the first ` − 1 of these
(all those with b′

i > 0.)
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Figure 6. The solid cyan bars represent the bids s′

i = b(`) − si sorted in order of
decreasing value. In step 2 of case 3, we run the auction A on the first ` − 1 of these.
The area of the blue rectangle represents the optimal fixed price revenue for this set
of bids. The auction A is guaranteed to return a profit from these bidders which is
at least a constant fraction of this area. Note that if a selling bidder wins the basic
auction simulation at a price of p, the price paid to that seller is min(s(`), b` −p). Since
the corresponding winning buyer (determined by running a k-Vickrey auction pays at
least b`, the profit associated with this selling bidder is at least p.
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Figure 7. In this figure, the area of the red rectangle is the optimal fixed price revenue
from the buyer bids b′ and the area of the blue rectangle is the optimal fixed price
revenue from the seller bids s′. The green rectangle is the optimal fixed price revenue
in the double auction. The area of this rectangle is at most the area of the red rectangle
plus the area of the blue rectangle.



Now we show that the mechanism is truthful for the remaining ` − 1 high
bidding buyers. First, none of these bidders can change the value of b(`) or `
without lowering their bid value below b(`) which would cause them to lose the
auction.

We now argue (the simpler case) that Step 2 is truthful for the ` − 1 high
bidding buyers. In this step the truthful k-Vickrey auction is run on these buyers.
Since k-Vickrey is truthful and because the k is determined from s, `, and b(`)

which we have shown to be unchangeable by any winning buyers, Step 2 is
truthful.

The truthfulness of Step 1 is similar. Suppose basic auction A is defined by
bid-independent function f ′. Then we can define the bid-independent function
for this case as f(b−i, s) = max(b(`), f

′(b−i − s(`)) + s(`)). Given that b(`), `,
and thus s(`) have been shown to be unchangeable by any winning buyers, this
shows that Step 1 is truthful. ut

Theorem 5. If A is β-competitive, MA is 2β-competitive against F (2)(b, s).

Proof. If ` = 1, F (2)(b, s) ≤ 0 so the null allocation is competitive. If ` = 2,MA

runs the 1-item Vickrey double auction which is 2-competitive when ` = 2. For
the rest of the proof assume ` ≥ 3. Let k ∈ [2, `] be the number of items sold by
F (2)(b, s). Thus,

F (2)(b, s) = k(b(k) − s(k))

= k(b(k) − s(`)) + k(b(`) − s(k))− k(b(`) − s(`)).

But by definition F (2)(b′) ≥ k(b(k) − s(`)) and likewise for s′, therefore

F (2)(b, s) ≤ F (2)(b′) + F (2)(s′)− k(b(`) − s(`)). (1)

Note that for the buyers (and similarly for sellers):

F (2)(b′) ≤ F (2)(b′′) + b(`) − s(`). (2)

Because k ≥ 2, from Equations (1) and (2) we have

F (2)(b, s) ≤ F (2)(b′′) + F (2)(s′′).

Note that because A is β-competitive, the expected revenues from Step 3 and
Step 4 are at least F (2)(b′′)/2β and F (2)(s′′)/2β respectively. Thus,

E[MA(b, s)] ≥ 1
2β

(F (2)(b′′) + F (2)(s′′)) ≥ 1
2β
F (2)(b, s).

ut

Plugging in the 4-competitive Sampling Cost Sharing (CORE) basic auc-
tion [9], we get a double auction with a competitive ratio of 8. Plugging in
the 3.39-competitive Consensus Revenue Estimate basic auction [11] we get a
competitive ratio of 6.78. As we show below, we can do better if we customize
mechanisms for the double auction problem.



5 Generalized CORE Mechanism

As we have seen in the previous section, the CORE mechanism of [11] can be
used in the general reduction from the basic auction problem to give a 6.78-
competitive auction for the double auction problem. In this section, we show
how the ideas of the CORE auction can be generalized to get a double auction
mechanism with a competitive ratio of 3.75.

We begin with an intuitive explanation of the essential ideas of CORE as
applied in the basic auction setting. The mechanism relies on the fact that,
given any target revenue R, there exists a truthful mechanism parameterized
by R that is guaranteed to extract a profit of R from the bidders as long as
R ≤ F(b). This observation suggests the following idea for an auction: First,
try to truthfully estimate a value R that is close to, but no greater than F(b).
Then run the truthful mechanism that extracts the profit of R from the bidders.
This is the essential idea of CORE.

A bit more formally, CORE consists of two parts: a consensus revenue esti-
mator and a profit extractor.

1. Get a bid-independent consensus estimate of F(b).
This consists of selecting a bid-independent function r(·) (according to some
predefined probability distribution over such functions) so that:
– The outcome is a consensus:: This means that with high probability,

r(b−i) = R for all i, i.e., even though the computation performed for
each bidder is on a different subset of the bids (specifically, all bids but
his own), the computations for the different bidders all compute the same
value R.

– The outcome is a good estimate: This means that R is close to but less
than F(b).

2. Truthfully extract the profit R. (Below, we will refer to the bid-independent
function implementing this profit extraction as peR(·).)

To apply this approach to the double auction setting, we would like a con-
sensus revenue estimator that gives us a good estimate of F(b, s), and a profit
extractor, i.e., a truthful mechanism that extracts a revenue of R whenever
R ≤ F(b, s).

There are two issues that prevent the generalization to double auctions from
being immediate. The first is that there is no profit exact or even approximate
profit extractor which extracts a revenue of R whenever R ≤ F(b, s). The second
is that for the basic auction, there was no problem in the unlikely event that
the first step fails and consensus is not achieved. In contrast, in the double
auction setting, if consensus is not achieved, it is not automatically guaranteed,
for example, that the same number of buyers and sellers win the auction. Thus,
we need to show that the outcome of the auction is never infeasible.

In the rest of this section, we formalize the ideas that have to this point
been described informally. We present an abstract version of CORE that has the
potential to be useful for a wide variety of private-value optimization problems.



We begin by describing the class of mechanism design problems that we consider
and then proceed to give a general version of the CORE mechanism. Once we
have presented the general technique, we apply it to the double auction problem.

5.1 Single Parameter Agent Allocation Problems

We consider mechanism design problems with the following characteristics:

– There are n agents.
– The feasible outcomes of the mechanism are a subset X of the possible

allocations x = (x1, . . . , xn), where xi is 1 if agent i receives the allocation,
and 0 otherwise.

– Each agent has a utility value, where agent i’s utility is ui.

The mechanism takes as input a vector of bids, one from each agent, repre-
senting that agents’ utility value, and produces as output an allocation x ∈ X
and a payment vector p ∈ IRn, representing the payment from the bidder to the
auctioneer. We require that pi = 0 if xi = 0, and pi ≤ ui otherwise.

We use the same private value model as discussed before in the context of
double auctions, so, for example, bidder i bids so as to maximize his profit, which
is uixi − pi.

The auctioneer’s profit is
∑

i pi, and our goal is to design truthful mechanisms
which maximize auctioneer profit.

This model captures both the basic auction and the double auction. The
double auction is captured by (a) representing the utility value of the selling
bidders as negative numbers (the negation of which is the minimum that bidder
is willing to take for the item) and (b) letting X be the set of allocations in which
an equal number of the buying bidders and selling bidders receive an allocation.

A more complex example captured by this model is a combinatorial auction in
which each bidder is single-minded. In this case, there is a set of n different items
to be auctioned off, each bidder is interested in only one subset of the available
items, and has a utility value for that subset, and the feasible allocations are
partitions of the items among the bidders, where bidder i has xi = 1 if and only
if he receives a superset of his desired set of items.

Since all of these problems are allocation problems with profit maximization
as the objective, we simply use the term auction to describe any of them.

It is well known that for this type of auction, in which each bidder is defined
by a single utility value (this case has been referred to as the single parameter
agents case ), Theorem 1 holds.

Theorem 6. [1] An auction with single-parameter agents is truthful if and only
if it is bid-independent.

5.2 Profit Extraction

We are now ready to present the generalized CORE mechanism for any auc-
tion problem with single parameter agents. We begin by discussing the profit
extraction step.



To define a profit extractor we need to define a profit metric. Let I represent
the input to the auction problem and the masked input I−i be the input with
the value corresponding to the i-th bidder removed. For example I = b for the
basic auction problem and I = (b, s) for the double auction problem.

Definition 14 (Profit Metric). A profit metric, O, is a function from inputs
I to nonnegative reals (to be interpreted as an amount of profit achievable on
that input as measured by the metric of choice).

We use a profit metric as a benchmark for auction performance. As an example,
F(b, s) or F (2)(b, s) are two of the possible profit metrics for the double auction
problem and F(b) and F (2)(b) are two of the possible profit metrics for the
basic auction problem.

For any α ≥ 1, we use the following definition.

Definition 15 (α-Profit Extractor). A α-profit extractor for profit metric O
is a truthful mechanism O-ExtractR parameterized by a target profit R, that has
expected profit of at least R/α on all inputs, I, such that O(I) ≥ R.

We refer to a 1-profit extractor as exact.
Intuitively, if the optimal profit on a given input I is small, e.g., much smaller

than our target R, we do not require the profit extractorO-ExtractR to work well
or, for that matter, to work at all. However, if the optimal profit is substantial,
greater than our target R, we require O-ExtractR to extract a constant fraction
of our target.

We illustrate this concept by discussing a known profit extractor for basic
auctions, and presenting a new approximate profit extractor for double auctions.

Profit Extraction for Basic Auctions For the basic auction problem, a
specialization of the general cost sharing mechanism of Moulin and Shenker [19]
is a 1-profit extractor for metric F . It is also the basis for the only basic auctions
known to have good competitive ratios [9,11]. The cost sharing mechanism for
the basic auction problem is defined as follows:

CostShareR: Given bids b, find the largest k such that the highest k
bidders can equally share the cost R. Charge each one of those R/k.

This mechanism is truthful and, if R ≤ F(b), then CostShareR has revenue R.
Otherwise it has no revenue.

Profit Extraction for Double Auctions For the double auction problem, we
present a simple approximate profit extractor for metric F (2)(b, s).

Definition 16. The double auction profit extractor, F (2)-ExtractR, on input b
and s computes the largest k such that k(b(k) − s(k)) ≥ R, buys from the lowest
k − 1 bidding sellers at price s(k), and sells to the top k − 1 bidding buyers at
price b(k). All other buyers and sellers (including the kth) are rejected.



Note the resemblance of this mechanism to the optimal Bayesian mechanism. The
latter, knowing buyer and seller utility distributions, computes optimal prices x
and y, and for pairs b(i), s(i) such that both b(i) ≥ x and s(i) ≤ y, buys from s(i)

at price y and sells to b(i) for price x. Our auction chooses the prices x and y
adaptively, by computing R and k from the input.

We first show that this profit extractor is truthful.

Lemma 2. F (2)-ExtractR is truthful.

Proof. We show that the auction is bid-independent for buyers. The case of
sellers is analogous. Define the bid-independent function f(b−i, s) for buyers as
follows for input b−i and s:

– Compute b(i) from b by replacing bi by ∞.

– Simulate F (2)-ExtractR on b(i) and s to compute a buyer allocation and
prices.

– If buyer i is not allocated the item in the simulation, then output price ∞.

– Otherwise output pi, the price buyer i payed in the simulation.

We now show that this bid-independent mechanism,Mf , is identical to F (2)-ExtractR.

Suppose buyer i bidding bi is allocated an item at price pi by F (2)-ExtractR(b, s).
This occurs because the largest k such that k(b(k)− s(k)) ≥ R satisfies b(k) < bi.
It is easy to see that the value of k does not change if we increase bi. Thus
F (2)-ExtractR sells to bi at price b(k).

Suppose now that buyer i bidding bi is not allocated an item by F (2)-ExtractR(b, s).
This means that for all k such that b(k) < bi, k(b(k), s(k)) < R. This remains
true if we increase bi. Thus the simulation either finds a sale price that that is
more than bi or it does not sell any items. In either case buyer i is rejected by
Mf . ut

The following theorem bounds the performance of this profit extractor.

Theorem 7. On bids b and s such that F (2)(b, s) exchanges k items, F (2)-ExtractR
is a k

k−1 -profit extractor for F (2).

Proof. Suppose that F (2)(b, s) ≥ R. Let k be the number of items exchanged
by F (2) and let k′ be the number of items exchanged by F (2)-ExtractR. Note
that F (2)-ExtractR finds the largest k′ such that k′(b(k′) − s(k′)) ≥ R. By the

definition of k, F (2)(b, s) = k(b(k) − s(k)) ≥ R. Thus, k′ ≥ k. The revenue of

F (2)-ExtractR is

F (2)-ExtractR(b, s) = (k′ − 1)(b(k′) − s(k′))

≥ k′−1
k′

R ≥ k−1
k

R.

ut



Although in general profit extractors can be randomized, the applications in
this paper use deterministic extractors. From now on, we assume a deterministic
profit extractor O-ExtractR. The characterization of truthful mechanisms as
those that have bid-independent implementations ( Theorem 1) implies that
the truthful mechanism O-ExtractR is equivalent to an auction defined by a
bid-independent function peR(·).

5.3 Consensus Revenue Estimation

We turn next to the problem of truthfully computing a value R that will be
input to the profit extractor. This is done via consensus revenue estimation.

Fix a profit metric O on inputs.I. Consider a function r from masked inputs
into reals. We say that r is a consensus estimate if there is a value R ≤ O(I)
such that for all bidders i, r(I−i) = R.

Given r and peR, consider the auction,M, defined by bid-independent func-
tion

f(I−i) = per(I−i)(I−i).

If r is a consensus estimate, then M is identically O-ExtractR and its profit if
at least R/α.

Our consensus revenue estimation technique is based on the observation that
no single bidder should have a significant effect on the achievable profit. This
property holds in most cases of interest. In exceptional cases, either no truthful
mechanism is competitive or we use an alternative exception-handling technique.
This motivates the following definition:

Definition 17 (Sensitivity). For ρ > 1, an input, I, is ρ-insensitive for metric
O if for all bidders, i, we have:

O(I)/ρ ≤ O(I−i) ≤ O(I).

Consider a ρ-insensitive input I and metric O. Following [11], where it was
shown that there is no deterministic consensus estimate function, we choose the
function r(·) according to the following probability distribution:

Definition 18 (Consensus Estimate Function Distribution). Parameter-
ized by c > 1 and the metric O we define the random function r(·) as follows:

– Let U be a uniform random variable from [0, 1].
– Define r(I) as O(I) rounded down to the nearest ci+U for integer i.

Notice that on ρ-insensitive inputs, for all i,

O(I)/cρ < r(I−i) ≤ O(I),

and thus r(·) is a fairly good revenue estimator (to within a factor cρ). The
problem is that we have no means of coping with the situation where r fails
to produce a consensus. In this latter situation, we cannot count on extracting



any profit whatsover. The following lemma bounds the expected revenue of this
technique, i.e., the expectation of the consensus estimate value, assuming that
the value is zero if r fails to compute a consensus estimate. For constant ρ and
c, this expected value is a constant fraction of O(I).

Lemma 3. [11] For ρ-insensitive inputs I, let random variable X be R if r(I−i) =
R for all i and zero otherwise. Choosing r(·) as defined by the distribution , and
assuming that c > ρ, we have:

E[X ] ≥
O(I)

ln c

(

1

ρ
−

1

c

)

.

5.4 Putting it together

We are now ready to present the general definition of CORE.

Definition 19 (COREc). For constant c, metric O, and profit extractor O-ExtractR
for O, defined bid-independently by peR, the mechanism COREc is defined bid-
independently by

f(I−i) = per(I−i)(I−i)

for r sampled according to the distribution given in Definition 3.

Before we can claim that CORE performs well, we must take care of one
other potential pitfall.

Definition 20 (Safety). A profit extractor O-ExtractR is safe if it is impossible
for COREc to output an infeasible outcome (an allocation that is not in X ) or
an outcome in which the auctioneer’s profit is negative.

Of course, by construction, COREc can never output infeasible outcomes
or ones with negative profit when there is consensus. To prove that a profit
extractor is safe, one must show that no infeasible or bad situations can arise in
the event that there is no consensus. For example, for double auctions, we must
ensure that when there is no consensus the number of winning buyers and sellers
is the same.

The performance of CORE follows from the above lemmas and definitions
and is summarized in the following theorem.

Theorem 8. Given

– profit metric O,

– safe α approximate profit extractor O-ExtractR for O implemented by bid-
independent function peR, and

– and input I that is ρ-sensitive for metric O,

– c > ρ;



the COREc mechanism has an expected revenue and competitive ratio, respec-
tively, of:

E[COREc(I)] ≥
O(I)

α ln c

(

1

ρ
−

1

c

)

,
O(I)

E[COREc(I)]
≥ α ln c

(

1

ρ
−

1

c

)−1

.

Given ρ, the value of c can be chosen to give the optimal competitive ratio
when restricted to ρ-sensitive inputs.

6 Application to Double Auctions

We now specialize the results of the previous section to the double auction set-
ting.

For double auctions, we have already presented an approximate profit ex-
tractor for profit metric F (2)(b, s). Thus, we have only two loose ends to tie
up:

– We must show that F (2)-ExtractR is safe.
– We must deal with the exceptional case that the input is not ρ-insensitive

for some constant ρ.

6.1 Safety

Lemma 4. F (2)-ExtractR is safe.

Proof. We must show that COREc with F (2)-ExtractR does not effect infeasible
outcomes, i.e., outcomes where the number of winning buyers is not equal to the
number of winning sellers. Let k be the number of items sold by F (2) on input
b and s and let F = F (2)(b, s) be its profit.

1. For buyer i not allocated items by F (2) we have F (2)(b−i, s) = F . Likewise
for sellers.

2. F (2)-ExtractR for R ≤ F has at least k items exchanged.

Note that the top k buyers and sellers always exchange items regardless of con-
sensus. Further, by 1 above, the bottom n − k buyers and sellers always have
consensus. Thus the same number of these additional buyers and sellers exchange
items.

6.2 Dealing with non-sensitive inputs

As discussed above, the CORE approach only works on b and s that are ρ-
sensitive for F (2). Our goal, however, is an auction that is constant-competitive
with F (2)(b, s) for any b and s. To deal with this, we make the following ob-
servations about F (2). Let k be the number of winning buyer-seller pairs in
F (2)(b, s).



– If k ≥ 3 then b and s are k
k−1 -insensitive:

k − 1

k
F (2)(b, s) ≤ F (2)(b−i, s),F

(2)(b, s−i) ≤ F
(2)(b, s).

In this case, for c > 3/2, COREc with profit extractor F (2)-ExtractR is
constant-competitive:

E[COREc(b, s)] =
F (2)(b, s)

ln c

(

k − 1

k

) (

k − 1

k
−

1

c

)

. (3)

– For k = 2, V1 is 2-competitive with F (2).

Thus, it is possible to take a convex combination of the COREc auction with V1

to get a constant-competitive auction in worst-case.

Definition 21 (COREc,p). The double auction COREc,p parameterized by c >
3/2 and p ∈ (0, 1) with probability 1 − p runs COREc with profit extractor
F (2)-ExtractR and with probability p runs V1.

Theorem 9. With a near optimal choice of c = 2.62 and p = 0.54, the COREc,p

double auction with profit extractor F (2)-ExtractR is 3.75-competitive against
F (2).

Proof. Let k be the number of items sold by F (2)(b, s). We consider the case
k = 2 and k ≥ 3 separately.

Case 1 (k = 2): Our expected profit is pF (2)/2.

Case 2 (k ≥ 3): From Vickrey we get pF (2)/k and from COREc we get (1− p)
times the quantity in Equation (3) for a combined expected profit of:

F (2)(b, s)

(

p

k
+

1− p

ln c

(

k − 1

k

) (

k − 1

k
−

1

c

))

.

Our choice of p and c optimizes and balances the two cases. Numerical anal-
ysis gives c = 2.62 and p = 0.54 as a near-optimal choice. This choice gives a
competitive ratio of 3.75. ut

Note that the competitive ratio of the CORE basic auction is better than the
competitive ratio of the CORE double auction (3.39 vs. 3.75). This difference is
due to the fact that the former uses an exact profit extractor and the latter uses
an approximate profit extractor.

We end this section by presenting a pair of results that suggest that there is
no straightforward way to improve this result.



6.3 Can we do better?

For basic auctions, CostShareR is an exact profit extractor for metric F . In this
section we show that there is no exact profit extractor for the double auction
problem for the natural metrics. The first theorem shows that the profit extractor
F (2)-ExtractR that we have presented is best possible, in terms of the fraction
α of the profit that is guaranteed to extract. As we have seen, the lack of exact
profit extraction is the reason why the competitive ratio we obtain for the double
auction problem is worse than the corresponding ratio for the basic auction
problem.

Theorem 10. For input b and s, let k ≥ 2 be the number of items sold by
F (2)(b, s). Let MR be a truthful double auction mechanism that is guaranteed
to extract a profit of at least R/αk on any b and s with F (2)(b, s) ≥ R. Then,
αk ≥ k/(k − 1).

Proof. We prove the lemma assuming the mechanism is deterministic. Since ran-
domized truthful mechanisms are just distributions over deterministic truthful
mechanisms, the lemma follows in general from the consideration of this case.

We prove the k = 2 case that α2 ≥ 2 below. The general theorem follows by
a simple, but tedious inductive argument that follows the same lines. For the
case k = 2, with a bid vector (b1, b2, s1, s2) consisting of two buyers and two
sellers where b1 = b2 = b and s1 = s2 = s = b − R/2. If α2 < 2, then both
buyers and both sellers must win. Let f(·) and g(·) denote the bid-independent
functions defined by the truthful mechanism MR. Since all bidders must win,
we have that

b ≥ f(?, b, s, s), f(b, ?, s, s) ≥ g(b, b, ?, s), g(b, b, s, ?) ≥ s.

Now consider instead the bid vector (b, b′, s, s), where b′ > b. Then since the price
offered buyer 2 is the same as it was in the previous case, namely f(b, ?, s, s), and
both buyers and sellers must win in order to achieve a revenue which exceeds
R/2 , we still have

b ≥ f(b, ?, s, s), f(?, b′, s, s) ≥ g(b, b′, ?, s), g(b, b′, ?, s) ≥ s.

Similarly, if we consider the bid vector (b′, b, s, s), we must have

b ≥ f(?, b, s, s) , f(b′, ?, s, s) ≥ g(b′, b, ?, s), g(b′, b, s, ?) ≥ s.

Together the facts b ≥ f(b′, ?, s, s) and b ≥ f(?, b′, s, s) imply that for the bid
vector (b′, b′, s, s), with b′ > b, the price offered the buyers is at most b, which
in turn implies that the prices paid to the sellers are both at most b.

An analogous argument, starting with a bid vector in which both buyers
bid b′ and both sellers bid s′ = b′ − R/2 and then moving the seller bids down
shows that for any pair of buyers with bid values b′ and sellers with bid values
s < b′ − R/2, the sellers both win at prices that are at least b′ − R/2. This is
true in particular for the bid vector (b′, b′, s, s).



For b′ > b + R/2, this leads to a contradiction: in the first case, we argued
that the prices offered to the sellers were at most b, whereas the second argument
shows that the prices offered to the sellers are strictly greater than b. Such prices
would give negative profit. ut

The final lemma of this section shows that there is no profit extractor, exact
or approximate, for the profit metric F(b, s).

Lemma 5. For any value R and α ≥ 1, there is no truthful mechanism for the
double auction problem that achieves a profit of at least R/α on any input b and
s with F(b, s) ≥ R.

Proof. Suppose for a contradiction that such a mechanism MR did exist. Con-
sider the single buyer, single seller case with b1 = s1+R. On this input, to achieve
revenue R/α for any α ≥ 1, both the buyer and the seller must win the auction.
Theorem 1 and MR’s truthfulness implies that the price for b1 is given by a
bid-independent function f(s1). Since b1 wins the auction and the auctioneer
has a positive profit, it must be that f(s1) ∈ [s1, b1] = [s1, s1 + R]. Symmet-
rically, we must have g(b1) ∈ [b1 − R, b1]. Now consider inputs b′1 = s′1 + 2R.
Given f and g above, the sell price is in p′1 ∈ [s′1, s

′
1 + R] and the buy price is in

q′1 ∈ [b′1−R, b′1] = [s′1 + R, s′1 + 2R]. The auctioneer’s profit is p′1− q′1 ≤ 0 which
gives a contradiction. ut

7 Conclusions

In this paper we have given a game theoretic treatment of the off-line problem of
matching up buyers and sellers of a single identical commodity so as to maximize
the worst case profit of the arbitrating auctioneer. Open questions related to the
double auction problem include considering similar questions in an on-line setting
where the buyers, sellers, or both arrive one at a time and the auctioneer must
decide whether to sell and at what price before the arrival of the next customer.

The solutions we have presented are based on techniques and ideas that were
previously used for the design of competitive basic auctions. We have presented
a general reduction that shows how to construct a 2β competitive double auc-
tion given a β-competitive basic auction mechanism. We have also presented a
generalization of the CORE auction of [11] which can be used in the context of
double auctions. This approach gives the best competitive ratio known for the
double auction problem. The form in which the CORE mechanism is presented
here illustrates how it might be used for mechanism design problems where the
goal is profit maximization. Specifically, this approach is constant-competitive
against a profit metric O for auction problems with single-parameter agents for
which:

– the profit metric O is insensitive to minor changes in the relevant inputs;
– there is an approximate profit extractor for the profit metric;
– the profit extractor is safe, in that infeasible outcomes or outcomes with

negative profit can not occur.



The fundamental research direction posed by this paper is to gain an under-
standing of when these conditions hold, i.e. for what kinds of auction problems
does the CORE approach work. And specifically, for what problems and metrics
do exact or approximate profit extractors exist.
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