Kechun Liu

Paul G. Allen School of Computer Science & Engineering, University of Washington, Box 352355, Seattle, WA 98195-2355

- kechun@cs.washington.edu
- https://kechunl.github.io/
- https://www.linkedin.com/in/kechun-liu-4227a21a0/

Education

2019 – present	 Ph.D. student, Computer Science & Engineering, University of Washington. Advisor: Linda Shapiro
2019 - 2021	 M.S., Computer Science & Engineering, University of Washington. Overall GPA: 3.87/4.0
2015 - 2019	 B.Eng., Electronic Engineering, Tsinghua University. Overall GPA: 3.73/4.0 (Rank 20/216)

Publications

- **Liu**, K., Mokhtari, M., Li, B., Nofallah, S., May, C., Chang, O., ... Shapiro, L. (2021). Learning melanocytic proliferation segmentation in histopathology images from imperfect annotations. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition* (pp. 3766–3775).
- 2 Zong, Z., Feng, J., **Liu**, **K.**, Shi, H., & Li, Y. (2019). Deepdpm: Dynamic population mapping via deep neural network. In *Proceedings of the aaai conference on artificial intelligence* (Vol. 33, pp. 1294–1301).

Research Experience

Ongoing Research

2019.7 – present	\$	 Applying AI to Assess Histologic Features to Improve Melanoma Diagnosis Paul G. Allen School of Computer Science and Engineering, Advisor: Linda Shapiro In-depth knowledge curating medical image dataset including histological image registration and data annotation based on medical knowledge. Two year experience working with dermatopathologists from 4 institutions ¹. Held weekly meetings on building efficient data annotation protocols and improving dataset quality. I'm currently pursuing 3 directions: Melanocyte Detection in Skin Histopatholocial Images: Propose a GAN-based model for virtual staining on whole slide images to detect melanocytes. Segmenting Melanocytic Proliferations on Skin Biopsy Images: Propose a melanocytic
Draviava Daga	k	 proliferation segmentation framework by leveraging noisy and sparse labels. Achieved state-of-the-art performance on this specific task. [paper][1] Cell Feature Analysis with Computer-assisted Morphometry: Analyze morphological features of melanocytes and non-melanocytes to aid melanoma diagnosis.
Previous Resea	arch	1
2020.7 – 2020.9	\$	Sedeen Viewer Plugins for Cancer Diagnosis <i>Paul G. Allen School of Computer Science and Engineering, Advisor: Linda Shapiro</i> Built plugins in Sedeen Viewer, a whole slide image viewer, for cancer diagnosis. The backend and frontend are Python and C++ respectively. [website] [github]
2018.11 – 2019.5	\$	Unsupervised Multimodal MRI Segmentation of Stroke Lesion <i>MMDP Lab, Advisor: Weibei Dou</i> Proposed an unsupervised segmentation method based on multimodal brain magnetic resonance images (MRI) of chronic stroke patients to segment stroke lesions including both ischemic and chronic stroke.

¹Pathology Associates, Dermatopathology Northwest, VA Puget Sound, and Isfahan University of Medical Sciences

Research Experience (continued)

2018.7 – 2018.9	Conronary Calcium Segmentation on Dual Energy CT Images The Li Laboratory of Codera Singi and UCLA Advisory Debigo Li and Vibin Via
	Worked on the segmentation and sub-voxel resolution algorithms to extract coronary calcified
	plaques in dual-energy CT images.
2017.11 – 2018.7	 DeepDPM: Dynamic Population Mapping via Deep Neural Network The FIB Lab at Tsinghua University, Advisor: Yong Li Proposed the idea to generate dynamic population distributions in full-time series. Designed DeepDPM, an overall model that describes both spatial and temporal patterns based on coarse data and point of interest information [paper][2]

Teaching Experience

2021 \diamond CSE 576 Computer Vision, TA, University of Washington, S	, Seattle
--	-----------

Awards

2019	\diamond	Excellent Honors Graduate, Tsinghua University.
2018	\diamond	Outstanding Student Award, Electronic Engineering, Tsinghua University.
	\diamond	ICBC Scholarship, Industrial and Commercial Bank of China.
2017	\diamond	Jiang Nanxiang Scholarship, Tsinghua University.
2016	\diamond	National Scholarship, the government of China.

Skills

Languages	◊ English, Mandarin Chinese.
Programing	◊ Python, C/C++, MATLAB, shell scripts, JavaScript, R, Verilog
Technology	◊ PyTorch, LaTeX, Tensorflow, OpenCV
Relevant Coursework	 Computer Vision, Deep Learning, Image Processing, Data Visualization, Statistical Learn- ing, Data Structure, Stochastic Modeling, Machine Learning, Probability, Linear Algebra, Calculus.