
Chapter 19
3D Face Reconstruction from Single Two-Tone
and Color Images

Ira Kemelmacher-Shlizerman, Ronen Basri, and Boaz Nadler

19.1 Introduction

This chapter addresses the problem of reconstructing the three-dimensional shape
of faces from single images. We present an algorithm that uses prior knowledge of
faces—a single shape model of a face—to eliminate the ambiguities in the recon-
struction [13, 14]. The algorithm achieves veridical reconstruction results on images
taken under a wide range of viewing conditions. In addition, it can reconstruct the
shape of a face from two-tone (“Mooney”) images of faces [15]. Our algorithm
demonstrates the importance of “top-down” information in 3D shape reconstruc-
tion.

The extent to which internal representations affect perception is fundamental to
the understanding of cognitive processes. Perceiving the appearance of a 3D shape
in an image can be complicated as shapes are distorted by projection and their ap-
pearance is affected by lighting as well as by their color and texture. Yet people
can readily perceive shape (perhaps qualitatively) merely from one image. A funda-
mental question therefore is whether the perception of shape is guided primarily by
bottom-up processes, in which only image intensities are used along with generic
assumptions regarding the statistics of natural scenes, or, alternatively, if it is dic-
tated by top-down processes, which may be driven by memory and attention and
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Fig. 19.1 Two-tone
(“Mooney”) face images [1].
These images may initially
seem difficult to interpret due
to poor visual detail, but
eventually lead to a rich and
stable percept of a face

preceded by a preliminary recognition process. The example of random dot stere-
ograms [12] suggests that the perception of 3D shape in stereo vision is governed
by bottom-up processes. In contrast, two-tone images (see Fig. 19.1) suggest that
familiarity with an object can enhance the perception of its shape.

Two-tone images were introduced in the 1950s by Craig Mooney [20] to in-
vestigate the development of shape perception in children [20, 28]. A number of
recent studies suggest that the perception of Mooney images is driven by memory
and attention and preceded by a preliminary recognition process. In particular, it
was shown that people usually fail to perceive upside-down faces in two-tone im-
ages, arguably due to their unfamiliarity [8, 23], and that pre-exposure to original
gray level (or color) image facilitates their recognition [6, 9]. Moreover, Moore and
Cavanagh [21] showed that shape primitives (e.g., generalized cones) are rarely per-
ceivable in two-tone images, both in isolation and in novel configuration with other
primitives, even when the image contains explicit hints about the direction of the
light source. These shapes, however, can readily be interpreted from gray level im-
ages and even from degraded line drawings. Familiar classes of objects, in contrast,
are much more often perceivable in two-tone images. Even volumetric primitives of
faces, if rearranged, cease to be perceived as coherent 3D objects. These findings
support the view that the interpretation of Mooney images is guided by top-down
processes. Here we provide further support for this claim by showing from a math-
ematical standpoint that, in the absence of a model, the interpretation of Mooney
images is highly ambiguous.

Our further aim in this chapter is to provide an example of how top-down pro-
cessing can play a role in the reconstruction of 3D faces. We focus on faces, as the
overall similarity of faces [11] can provide a strong prior for reconstruction. Yet
despite this similarity the reconstruction task is hard, since people are sensitive to
minute shape differences across different individuals. 3D reconstruction of faces
from single images can potentially be achieved by applying shape-from-shading
(SFS) algorithms [10]. However, SFS requires knowledge of the lighting, albedo,
and boundary conditions and is ill-posed in the absence of this information. The
approach presented in this chapter uses prior knowledge about faces to achieve a
well-posed formulation in which this missing information can be inferred. For a
prior, we use a single 3D reference face model of either a different individual or a
generic face. Our method assumes Lambertian reflectance (indeed, most face recon-
struction methods assume that faces can be modeled accurately as Lambertian [19]),
light sources at infinity, and rough alignment between the input image and the ref-
erence model. To model reflectance, we use a spherical harmonic approximation
(following [3, 22]), which allows for multiple unknown light sources and attached
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shadows. We note that other work used face priors (although not in the context of
Mooney images), by combining information from hundreds of faces (e.g., [4, 5]).
We find it interesting that veridical reconstructions can be obtained with just one
model.

19.2 Reconstruction Ambiguities in Two-Tone Images

In this chapter, we ask whether a unique 3D shape can be recovered from a single
Mooney image. We examine this question under typical SFS settings. We assume
a single point light source of known magnitude and direction, the observed surface
is Lambertian, and albedo is uniform (or otherwise known). Our formulation also
accounts for boundary conditions. We focus on the Mooney transition curve, i.e.,
the boundary between bright and dark regions in the image, as the information con-
tained in a Mooney image is captured almost entirely in this curve. We show that
reconstruction is not unique even along this curve, indicating that top-down infor-
mation is essential for shape perception.

Consider a gray level image I (x, y) of a smooth Lambertian surface z(x, y)

with uniform albedo obtained with a directional illuminant l ∈ �3. The intensi-
ties I (x, y) is given by I = lT n, where n = n(x, y) denotes the surface normal

at (x, y), n = (1/
√

z2
x + z2

y + 1)(−zx,−zy,1). A two-tone image is obtained from

I by thresholding the image I ≥ T by some constant T > 0. Without loss of gener-
ality, we assume below that T is known, and that the light source direction coincides
with the viewing direction, so that l = (0,0,1). Note however that our analysis can
be applied to any directional source by a change of coordinates, as in [17], and the
magnitude of the light can be scaled by appropriately scaling T . With these assump-
tions, we obtain

I (x, y) = 1√
z2
x + z2

y + 1
, (19.1)

which can be expressed in the form of an Eikonal equation

|∇z|2 = E(x,y) (19.2)

on some closed domain Ω ⊂ �2, E = (1/I 2) − 1. Such an Eikonal equation can
be solved for example by applying an upwind update scheme using a Dijkstra-like
algorithm [17, 24, 27]. In general, such solutions require Dirichlet boundary condi-
tions so that z needs to be specified at every local minimum of E (maximum of I )
in Ω . These may include minimal points in Ω , as well as points along the boundaries
of Ω . Our analysis therefore considers the introduction of boundary conditions.

Consider two surfaces z and z′ that respectively produce two images I and I ′
(and hence E and E′) which are “Mooney equivalent.” By this we mean that |∇z|2 =
E(x,y) and |∇z′|2 = E′(x, y) and I = I ′ = const along an isoluminance curve γ .
Some boundary conditions may also be specified, so that z = z′ (and at internal
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points also |∇z|2 = |∇z′|2 = 0) in a set B ⊂ Ω . Let α(x, y) = z′ − z, our goal is
given z to characterize the possible assignments of α along γ .

Subtracting the two eikonal equations for z and z′ results in a new eikonal equa-
tion in α

|∇α|2 + 2∇α · ∇z = E′ − E. (19.3)

To solve for α, we introduce a (local) change of coordinates (x, y) → (t, s) such
that αs = 0 and αt 	= 0. In this coordinate frame, t points in the direction of the gra-
dient of α, which is also the characteristic direction of (19.3). Consequently, (19.3)
becomes

α2
t + 2ztαt − (

E′ − E
) = 0. (19.4)

This equation is quadratic in αt and can have up to two real solutions,

αt = −zt ±
√

z2
t + E′ − E. (19.5)

We can use this equation to derive a general solution for α in the entire domain Ω

by integrating (19.5) with respect to t along the characteristic directions as follows

α(t, s) = −z(t, s) + z(t0, s) ±
∫ t

t0

√
z2
t + E′ − E dt, (19.6)

where the point (t0, s) ∈ B. One can readily verify that indeed α(t0, s) = 0.
Clearly, given a Mooney image we cannot use (19.6) to recover α, since in gen-

eral neither E nor E′ are known. However, along the transition curve, γ , we know
that E = E′, and so (19.5) implies that αt |γ = −zt ± zt ∈ {0,−2zt }. In general, we
are interested here in the negative solution αt |γ = −2zt since only this solution can
produce a nontrivial ambiguity. We next use this solution to derive an explicit solu-
tion for α along the transition curve γ . Denote the arclength parameterization of γ

by σ , and the angle between the tangent to γ and the t direction by θ(σ ). Then

α|γ = −2
∫

γ

zt cos θ dσ + α(σ0). (19.7)

This solution implies that if we choose a set of characteristic directions for α along
the transition curve γ then there can be exactly two shapes along this curve that
are consistent with the input two-tone image, namely z and z′ = z + α. In general,
however, we are free to choose any set of smoothly varying characteristic directions
along γ and this way produce many additional solutions. A valid solution for α

therefore must be consistent with the boundary conditions in B, if such conditions
are provided, and its gradients must coincide with some smoothly varying direc-
tional derivatives at points along γ . This implies in general that many ambiguities
exist even if we only restrict our attention to the Mooney transition curve.
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19.3 Shape Reconstruction with a Prior Model

In the remainder of this chapter, we introduce an algorithm for reconstructing the
3D shape of a face from a single image by exploiting our familiarity with faces as
a class. Previous methods attempted to learn the set of allowable reconstructions
from a large number of 3D laser-scanned faces. This was achieved by embedding
all 3D faces in a linear space [2, 4, 26, 30] or by using a training set to determine
a density function for faces [25, 29]. Similarly, Active Shape Models [5, 7, 18]
seek to construct image-based, linear 2D representations of faces by exploiting large
datasets of prototype faces for face recognition and image coding. In contrast to this
work our method uses only a single reference model, and by that avoids the need to
establish pointwise correspondence between many face models in a database.

Consider an image I (x, y) of a face whose shape z(x, y) is defined on a compact
domain Ω ⊂ �2. We assume that the face is Lambertian with albedo ρ(x, y), and
that lighting can be an arbitrary combination of point sources, extended sources and
diffuse lighting that need not be known ahead of time. Under these assumptions,
Lambertian surfaces reflect only the low frequencies of lighting [3, 22], and so the
reflectance function can be expressed in terms of spherical harmonics as

R
(
n(x, y); l

) ≈
N∑

n=0

n∑
m=−n

lnmαnYnm

(
n(x, y)

)
, (19.8)

where lnm are the coefficients of the harmonic expansion of the lighting, αn are fac-
tors that depend only on n and capture the effect of the Lambertian kernel acting
as a low pass filter, so αn becomes very small for large values of N , and Ynm(x, y)

are the surface spherical harmonic functions evaluated at the surface normal. Be-
cause the reflectance of Lambertian objects under arbitrary lighting is in general
very smooth, this approximation is highly accurate already when a low order (first
or second) harmonic approximation is used.

For simplicity, we model the reflectance function using a first order harmonic
approximation. In [14] we present a more general formulation using also the second
order harmonics. We write the reflectance function in vector notation as

R
(
n(x, y); l

) ≈ l T Y
(
n(x, y)

)
, (19.9)

with Y(n) = (1, nx, ny, nz)
T , where nx,ny, nz are the components of the surface

normal n and l is a four vector. The image irradiance equation is then expressed as
I (x, y) = ρ(x, y)R(x, y).

We are further given a reference face model and denote respectively by zref(x, y),
nref(x, y), and ρref(x, y) the surface, the normals, and the albedo of the reference
face. We use the reference model to regularize the reconstruction problem. To that
end, we define the difference shape and albedo as dz(x, y) = z(x, y) − zref(x, y)

and dρ(x, y) = ρ(x, y) − ρref(x, y) respectively and require these differences to be
smooth. We are now ready to define our optimization function:

min
l,ρ,z

∫

Ω

(
I − ρl T Y(n)

)2 + λ1(�G ∗ dz)
2 + λ2(�G ∗ dρ)2 dx dy, (19.10)
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where �G∗ denotes convolution with the Laplacian of a Gaussian, and λ1 and λ2 are
positive constants. Below, we refer to the first term in this integral as the “data term”
and the other two terms as the “regularization terms”. Evidently, without regulariza-
tion the optimization functional (19.10) is ill-posed. Specifically, for every choice of
depth z(x, y) and lighting vector l it is possible to prescribe albedo ρ(x, y) to make
the data term vanish. With regularization and appropriate boundary conditions, the
problem becomes well-posed. Note that we chose to regularize dz and dρ rather than
z and ρ in order to preserve the discontinuities in zref and ρref.

We assume the input image is roughly aligned to the reference model and ap-
proach this optimization by solving for lighting, depth, and albedo separately.

Step 1: Recovery of Lighting Coefficients In the first step, we attempt to recover
the lighting coefficients l, by fitting the reference model to the image. To this end,
we substitute in (19.10) ρ → ρref and z → zref (and consequently n → nref). At this
stage both regularization terms vanish, and only the data term remains:

min
l

∫

Ω

(
I − ρref l T Y(nref)

)2
dx dy. (19.11)

In discrete form this produces a highly over-constrained linear least squares opti-
mization system with only four unknowns, the components of l, and can be solved
simply using the pseudo-inverse. Our experiments indicate that, in practice, the er-
ror of recovering lighting using the face of a different individual is sufficiently small
(around 4–6°).

Step 2: Depth Recovery We continue using ρref(x, y) for the albedo and turn to
recovering z(x, y). Below we exploit the reference face to further simplify the data
term. The data term thus minimizes the squared difference between the two sides of
the following system of equations

I = ρrefl0 + ρref

Nref
(l1zx + l2zy − l3), (19.12)

where Y(n) = (1, zx/N, zy/N,−1/N)T and we use Nref(x, y) to approximate

N(x,y) =
√

z2
x + z2

y + 1. Replacing zx and zy , for example, by forward differences,

the data term thus provides one equation for every unknown z(x, y) (except for the
pixels on the boundary of Ω). Note that by solving directly for z(x, y) we in fact en-
force consistency of the surface normals (“integrability”). Clearly, (19.12) is linear
in z(x, y) and so it can be solved using linear least squares optimization.

Next, we consider the regularization term λ1�G∗ dz. We implement this term as
the difference between dz(x, y) and the average of dz around (x, y) obtained by ap-
plying a Gaussian function to dz. Consequently, this term minimizes the difference
between the two sides of the following system of equations

λ1
(
z(x, y) − G ∗ z(x, y)

) = λ1
(
zref(x, y) − G ∗ zref(x, y)

)
. (19.13)

This system too is linear in z(x, y). The second regularization term vanishes since
we have substituted ρref for ρ.
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Boundary Conditions for Depth Recovery For boundary conditions, we assume
in our algorithm that the gradient of the surface in the direction perpendicular to the
exterior boundary vanishes (i.e., the surface is planar near the boundaries; note that
this does not imply that the entire bounding contour is planar). Specifically, we add
for each boundary point the following constraint

∇z(x, y) · nc(x, y) = 0. (19.14)

where nc(x, y) is a two-dimensional vector representing the normal to the bounding
contour. These constraints will be roughly satisfied if the boundaries are placed
in slowly changing parts of the face. They will be satisfied for example when the
boundaries are placed along the cheeks and the forehead, but will not be satisfied
when the boundaries are placed along the eyebrows, where the surface orientation
changes rapidly.

Finally, since the obtained equation system involves only partial derivatives of
z(x, y), while z(x, y) itself is absent from these equations, the solution can be ob-
tained only up to an additive factor. We remedy this by arbitrarily setting one point
to z(x0, y0) = zref(x0, y0).

Step 3: Estimating Albedo Using the data term the albedo ρ(x, y) is found by
solving the following equation

I (x, y) = ρ(x, y)l T Y(n). (19.15)

The first regularization term in (19.10) is independent of ρ, and so it can be
ignored. The second term optimizes the following set of equations

λ2�G ∗ ρ = λ2�G ∗ ρref. (19.16)

These provide a linear set of equations, in which the first set determines the
albedo values, and the second set smoothes these values. We avoid the need for
boundary conditions simply by terminating the smoothing process at the boundaries.

19.4 Experiments

We demonstrate our algorithm on photographs taken under uncontrolled view-
ing conditions. Additional experiments and quantitative comparisons can be found
in [14, 15]. We align the input image to the reference model by manually marking
five points (the two centers of the eyes, the tip of the nose, the center of the mouth
and the bottom of the chin), and then determine a 2 ×4 affine transformation, which
aligns 3D points on the reference model to marked 2D points in the input image. Af-
ter the alignment procedure the images are of typical size of 360 × 480 pixels. Our
MATLAB implementation of the algorithm takes about 9 seconds on a quad-core
AMD processor 2354 1100 MHz Linux workstation.
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Fig. 19.2 A face model from the USF dataset used as a reference model in our experiments. The
model is shown with uniform texture (left) and with an image overlay on the model (right)

Fig. 19.3 Reconstruction results on images from the YaleB dataset (left column) and images pho-
tographed by us (right column). In each example we present the input image, our 3D shape recon-
struction, and an image overlay on the reconstructed shape

Fig. 19.4 Reconstruction from color (top) and two-tone (bottom) images. Each pair shows an
input image and a reconstruction result

In Figs. 19.2–19.4, we show a few illustrative results obtained with our algorithm.
The reference model used in our experiments is shown in Fig. 19.2. Figure 19.3
shows results on two images from the YaleB dataset and two more that were pho-
tographed by us. Figure 19.4 shows reconstruction results from three color images
and from three two-tone images obtained by thresholding the intensity values.
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We can see that convincing reconstructions are obtained for these images despite
differences in identity, head orientation and facial expressions relative to the ref-
erence model. In addition, our reconstruction results for the two-tone images are
similar to those obtained for the color images. These results are encouraging given
the ill-posedness of the single view reconstruction problem and particularly recon-
struction from two-tone images.

19.5 Conclusion

In this chapter, we explored the role of top-down information in the 3D reconstruc-
tion of faces from single images. We provided mathematical evidence that two-tone
images provide ambiguous shape information and presented a novel method for re-
construction of faces from single image by using only a single reference model. Our
results demonstrate that familiarity with faces as a class can help overcoming the
difficulties in applying SFS algorithms and achieve veridical reconstructions even
for Mooney images in which only two-tone intensity information is available.

We can foresee a number of potential directions to further extend over our
method. One natural extension is to incorporate information from several images of
the same individual, as in [16]; this could also address degeneracies of the current
approach occurring under particular lighting conditions (see more details in [14]).
Additionally, while facial expression is captured in the reconstruction, this is not
directly targeted by the method and pixel-wise correspondence is not established.
Establishing such correspondence can be useful also if we wish to generalize our
ideas and apply them to other classes of objects. Finally, it will be interesting to
further explore to what extent our algorithmic objectives are indeed achieved by the
visual cortex.
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