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3D Face Reconstruction from a Single Image
using a Single Reference Face Shape

Ira Kemelmacher-Shlizerman, Ronen Basri, Member, IEEE

Abstract —Human faces are remarkably similar in global properties, including size, aspect ratio, and location of main features, but can
vary considerably in details across individuals, gender, race, or due to facial expression. We propose a novel method for 3D shape
recovery of faces that exploits the similarity of faces. Our method obtains as input a single image and uses a mere single 3D reference
model of a different person’s face. Classical reconstruction methods from single images, i.e. shape-from-shading, require knowledge of
the reflectance properties and lighting as well as depth values for boundary conditions. Recent methods circumvent these requirements
by representing input faces as combinations (of hundreds) of stored 3D models. We propose instead to use the input image as a guide
to ”mold” a single reference model to reach a reconstruction of the sought 3D shape. Our method assumes Lambertian reflectance
and uses harmonic representations of lighting. It has been tested on images taken under controlled viewing conditions as well as on
uncontrolled images downloaded from the internet, demonstrating its accuracy and robustness under a variety of imaging conditions
and overcoming significant differences in shape between the input and reference individuals including differences in facial expressions,
gender and race.

Index Terms —Computer vision, photometry, shape from shading, 3D reconstruction, lighting, single images, face, depth reconstruc-
tion.

✦

1 INTRODUCTION

THREE-DIMENSIONAL shape and reflectance provide
properties of objects that are invariant to the changes

caused by the imaging process including viewpoint,
illumination, background clutter and occlusion by other
objects. Knowledge of these properties can simplify
recognition, allow prediction of appearance under novel
viewing conditions, and assist in a variety of applications
including graphical animation, medical applications, and
more. A major challenge in computer vision is to extract
this information directly from the images available to
us, and in particular, when possible, from a mere single
image. In this paper, we use the shading information
(the pattern of intensities in the image) along with
rough prior shape knowledge to accurately recover the
3-dimensional shape of a novel face from a single image.

In a global sense, different faces are highly similar [17].
Faces of different individuals share the same main fea-
tures (eyes, nose, mouth) in roughly the same locations,
and their sizes and aspect ratio do not vary much.
However, locally, face shapes can vary considerably
across individuals, gender, race, or as a result of facial
expression. The global similarity of faces is exploited,
for example, in face recognition methods, to estimate
the pose of novel faces by aligning a face image to a
generic face model. In this paper we demonstrate how
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a similar idea can be exploited to obtain a detailed 3D
shape reconstruction of novel faces.

We introduce a novel method for shape recovery of a
face from a single image that uses only a single reference
3D face model of either a different individual or a generic
face. Intuitively, our method uses the input image as a
guide to ”mold” the reference model to reach a desired
reconstruction. We use the shading information to re-
cover the 3D shape of a face while using the reference
shape and albedo to extract information essential for
the recovery process that is unknown a priori, such as
lighting and pose. Specifically, we cast the problem as an
image irradiance equation [15] with unknown lighting,
albedo, and surface normals. We assume Lambertian
reflectance, light sources at infinity, and rough alignment
between the input image and the reference model. To
model reflectance we use a spherical harmonic approx-
imation (following [2], [27]), which allows for multiple
unknown light sources and attached shadows.

We begin by using the reference model to estimate
lighting and pose, and provide an initial estimate of
albedo. Consequently, the reflectance function becomes
only a function of the unknown surface normals and
the irradiance equation becomes a partial differential
equation which is then solved for depth. For this we
also employ appropriate boundary conditions. Since in
general the recovery of shape and albedo from an image
is ill-posed, we further introduce regularization terms
to seek solutions that preserve the rough shape and
albedo of the reference model. These terms will smooth
the difference in shape and albedo between the reference
model and the sought face. We provide experiments
that demonstrate that our method can achieve accurate
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Fig. 1. 3D reconstruction of a face from an image down-
loaded from the internet using our algorithm. We present
the input image (top left), the reconstructed shape viewed
from three viewpoints (top right), and the image overlay of
the reconstructed shape (bottom right).

reconstructions of novel input faces overcoming signif-
icant differences in shape between the input and refer-
ence individuals including differences in gender, race,
and facial expression. These experiments demonstrate
that our method can potentially overcome some of the
most critical problems in recovering the 3D models of
unknown individuals. In Figure 1 we show an example
of a result obtained by applying our algorithm to a real
image downloaded from the internet.

The paper is divided as follows. Section 2 describes
related work. Section 3 defines the reconstruction prob-
lem and the optimization functional. Section 4 describes
the reconstruction algorithm. Experimental evaluations
are presented in Section 5 and conclusions in Section 6.
A preliminary version of this paper appeared in [19].

2 PREVIOUS WORK

Shape from shading (SFS), the problem of three-
dimensional reconstruction from a single image using
shading information is classically defined as solving the
Irradiance Equation, which for Lambertian surfaces is
given by I(x, y) = ρ~l T~n. Here ~l is a three component
vector representing the direction and intensity of a single
point light source placed at infinity, ~n(x, y) is a three
component vector representing the surface normal at
each surface point and ρ(x, y) is the surface albedo at
each point (x, y) ∈ Ω ⊂ R2. The objective in SFS is
to recover the surface z(x, y) whose normal vectors are
specified by the unknown ~n(x, y). A regularization term
is added in some studies to enforce the smoothness of
z(x, y). In general, the SFS problem is ill-posed and its
solution requires knowledge of the lighting conditions,
the reflectance properties (albedo) of the object (in many
studies albedo is assumed to be constant), and boundary
conditions (i.e., the depth values at the occluding con-
tours and the extremal points of the underlying shape).
Such information is part of the sought 3D shape and is

usually unavailable. This limits the applicability of SFS
methods to restricted setups. Methods for solving SFS
were first introduced by Horn [15], [14]. More recent so-
lutions can be found, e.g., in [9], [20], [28], [35]. Methods
for estimating lighting and relaxing the constant albedo
assumption were proposed in [24], [37], [33]. RANSAC-
based robust methods for estimating lighting were pro-
posed in [13] in the context of multi-view photometric
stereo.

In spite of the limitations of SFS, people appear
to have a remarkable perception of three-dimensional
shapes already from single two-dimensional pictures.
Ramachandran [25] proposed that simple shapes are
perceived through the assumption that the image is
illuminated by a single light source. More complex 3D
shapes (like faces) can be perceived through the help
of prior knowledge [26]. Furthermore, it was shown
that people can successfully recognize faces from novel
images overcoming significant viewpoint and lighting
variations, while they seem to achieve significantly in-
ferior performance with images of unfamiliar objects,
such as inverted faces. This ability is often attributed
to familiarity with faces as a class [23].

Indeed many computational studies attempt to use
prior knowledge of class information to approach the
3D reconstruction problem. One approach attempts to
exploit the symmetry of faces [30], [36]. The advantage of
using symmetry is that reconstruction can rely on a mere
single image without the need for additional examples of
face models. The disadvantage is that point-wise corre-
spondence between the two symmetric portions must be
established, and this task is generally difficult. Another
method [29] renders faces in novel views by making the
restrictive assumption that different faces share the exact
same shape while they differ only in albedo.

A widely used approach is to learn the set of allowable
reconstructions from a large number of 3D laser-scanned
faces. This can be achieved by embedding all 3D faces
in a linear space [1], [4], [38], [32] or by using a train-
ing set to determine a density function for faces [31],
[34]. Similarly, Active Shape Models [7], [10], [21] seek
to construct Image-based, linear 2D representations of
faces by exploiting large datasets of prototype faces
for face recognition and image coding. These methods
can achieve accurate reconstructions, but they require
a large number (typically hundreds) of face models
and a detailed and accurate point-wise correspondence
between all the models, as well as expensive parameter
fitting. Variations of this approach combine this method
with symmetry [8]. Others simplify the parameter fitting
procedure [5] by combining surface shape and brightness
of all the models into a single coupled statistical model.
While this model was shown to generally produce accu-
rate surfaces, it however does not model lighting explic-
itly, and so it cannot extrapolate to handle novel lighting
conditions. Expressing novel faces as combinations of
stored 3D faces seems to work very well when the
difference between the shape of the novel faces and
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the stored faces is small. However, in case of larger
differences the database needs to be adjusted to fit the
particular shapes of the reconstructed faces. For example
in case the input face has a smiling expression, the
database should include various smiling face shapes.

Unlike previous work we combine shading informa-
tion along with prior knowledge of a single reference
model to recover the three-dimensional shape of a novel
face from a single image. Our method does not use
symmetry in the reconstruction process, and it does
not require correspondence between many models in a
database since it uses a mere single model as a reference.
At its core our method solves a shape from shading
problem, but it does not assume knowledge of part
of the sought 3D model. Our algorithm works with
general unknown lighting by representing reflectance
using spherical harmonics. We let the gradient in the
direction of the normal vanish on the boundaries, and
we exploit the reference model to linearize the problem
(which leads to increased robustness) and to fill in the
missing information – an initial estimate of the albedo
and for recovery of the illumination and pose. Finally
we regularize the difference between the reference model
and the sought 3D shape, instead of smoothing directly
the sought shape, which increases the accuracy of the
reconstruction.

Most face reconstruction methods assume that faces
can accurately be modeled as Lambertian. It was shown
in [22] that in many common situations the human skin
indeed exhibits nearly Lambertian reflectance properties.
Specifically, a face surface was photographed from a
sequence of positions and with different lighting direc-
tions. Then, by assuming that the face shape and the light
source position are known, the photographs were ana-
lyzed to determine the bidirectional reflectance function
(BRDF). The analysis showed that at incident lighting
angles around 30◦ the BRDF was close to Lambertian.
Deviations from the Lambertian reflectance occurred
at larger incident angles (above 60◦). Specular effects,
however, may exist, e.g., when the skin is oily.

3 PROBLEM FORMULATION

Consider an image I(x, y) of a face defined on a compact
domain Ω ⊂ <2, whose corresponding surface is given
by z(x, y). The surface normal at every point is denoted
~n(x, y) = (nx, ny, nz)T with

~n(x, y) =
1

√
p2 + q2 + 1

(p, q,−1)T , (1)

where p(x, y) = ∂z/∂x and q(x, y) = ∂z/∂y. We assume
that the surface of the face is Lambertian with albedo
ρ(x, y), and that lighting can be an arbitrary combination
of point sources, extended sources and diffuse lighting
that need not be known ahead of time. We allow for
attached shadows, but ignore the effect of cast shadows
and inter-reflections. Under these assumptions it has
been shown [2], [27] that Lambertian surfaces reflect

only the low frequencies of lighting. Consequently, to
an N th order of approximation, the light reflected by a
Lambertian surface (referred to as the reflectance function)
can be expressed in terms of spherical harmonics as

R(x, y) ≈
N∑

n=0

n∑

m=−n

lnmαnYnm(x, y), (2)

where lnm are the coefficients of the harmonic expansion
of the lighting, αn are factors that depend only on n and
capture the effect of the Lambertian kernel acting as a
low pass filter, so αn becomes very small for large values
of N , and Ynm(x, y) are the surface spherical harmonic
functions evaluated at the surface normal. Because the
reflectance of Lambertian objects under arbitrary lighting
is in general very smooth, this approximation is highly
accurate already when a low order (first or second)
harmonic approximation is used. Specifically, it has been
shown analytically that a first order harmonic approx-
imation (including four harmonic functions, N = 1)
captures on average at least 87.5% of the energy in an
image, while in practice, owing to the fact that only
normals facing the camera (the normals with nz ≥ 0)
are observed, the accuracy seems to approach 95% [11].
A second order harmonic approximation (including nine
harmonic functions, N = 2) captures on average at least
99.2% of the energy in an image.

For our general formulation, we model below the
reflectance function using a second order harmonic ap-
proximation, although throughout the text we discuss
how it can be modeled also using a first order of ap-
proximation and its advantages. In all our experiments
both orders produced very similar results. However, the
use of a first order approximation results in a significant
speedup.

We write the reflectance function in vector notation as

R(~n(x, y); ρ(x, y),~l ) ≈ ~l T ~Y (~n(x, y)), (3)

with1

~Y (~n) = (1, nx, ny, nz, nxny, nxnz, nynz, (4)

n2
x − n2

y, 3n2
z − 1)T

where nx, ny, nz are the components of the surface nor-
mal ~n. The image irradiance equation is then expressed
as

I(x, y) = ρ(x, y)R(x, y). (5)

In the first order approximation only the first four
components of ~Y (~n) are included and consequently ~l is
a four component vector. We will show in Section 4 that
using the first order approximation we can transform
the reconstruction problem to be linear in the depth

1. Formally in (2) the values of αn should be set to
α0 = π, α1 = 2π√

3
, α2 = 2π√

8
, and the spherical harmonics functions

are Y = (c0, c1nx, c1ny , c1nz , c2nxny , c2nxnz , c2nynz , c2
2

(n2
x −

n2
y), c2

2
√

3
(3n2

z −1))T , where c0 = 1√
4π

, c1 =
√

3√
4π

and c2 = 3
√

5√
12π

.
For simplicity of notation we omit these constant factors and rescale
the lighting coefficients to account for the omitted factors.
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variables, yielding a solution that is both fast and very
robust.

Note that while the first four harmonics resemble in
form to the reflectance obtained by illuminating a surface
by a point source and ambient lighting, it is still pro-
viding an accurate approximation for a variety of other
lighting conditions. Consequently, while in the former
case surface patches whose normal are 90◦ or more from
the source are only exposed to the ambient component,
and so their surface orientation cannot be recovered
(since intensity in these points is independent of normal
direction), with a different underlying lighting (possibly
with multiple sources) the surface can in principle be
reconstructed beyond 90◦ of the mode of the reflectance
function.

To supply the missing information we use either a
reference model of a face of a different individual or by
a generic face model. Let zref(x, y) denote the surface of
the reference face with ~nref(x, y) denoting the normal to
the surface and ρref(x, y) denote its albedo. We use this
information to determine the lighting and provide initial
guess for the sought albedo.

We further use the reference model to regularize the
problem. To that end we define the difference shape as

dz(x, y) = z(x, y) − zref(x, y) (6)

and the difference albedo as

dρ(x, y) = ρ(x, y) − ρref(x, y) (7)

and require these differences to be smooth. We are now
ready to define our optimization function:

min
~l,ρ,z

∫

Ω

(I−ρ~l T ~Y (~n))2+λ1(4G∗dz)
2+λ2(4G∗dρ)

2 dxdy,

(8)
where 4G∗ denotes convolution with the Laplacian
of a Gaussian, and λ1 and λ2 are positive constants.
Below we will refer to the first term in this integral
as the “data term” and the other two terms as the
“regularization terms”. Evidently, without regularization
the optimization functional (8) is ill-posed. Specifically,
for every choice of depth z(x, y) and lighting vector ~l it is
possible to prescribe albedo ρ(x, y) to make the data term
vanish. With regularization and appropriate boundary
conditions the problem becomes well-posed. Note that
we chose to regularize dz and dρ rather than z and ρ
in order to preserve the discontinuities in zref and ρref .
(This regularization is a much weaker constraint than
requiring that the sought shape is smooth.)

4 RECONSTRUCTION STEPS

We assume that the input image is roughly aligned
to the reference model and approach this optimization
by solving for lighting, depth, and albedo separately.
First, we recover the spherical harmonic coefficients ~l by
finding the best coefficients that fit the reference model
to the image. This is analogous to solving for pose by

matching the features of a generic face model to the
features extracted from an image of a different face. Next
we solve for depth z(x, y). For this we use the recov-
ered coefficients along with the albedo of the reference
model, and prescribe appropriate boundary conditions.
Finally, we use the spherical harmonics coefficients and
the recovered depth to estimate the albedo ρ(x, y). This
procedure can be repeated iteratively, although in our
experiments one iteration seemed to suffice. These steps
are described in detail in the remainder of this section.

The use of the albedo of the reference model in the
reconstruction step may seem restrictive since different
people may vary significantly in skin color. Nevertheless,
it can be readily verified that scaling the albedo (i.e.,
βρ(x, y), with a scalar constant β) can be compensated
for by scaling appropriately the light intensity. Our
albedo recovery, consequently, will be subject to this
ambiguity. Also to make sure that marks on the reference
face would not influence much the reconstruction we
first smooth the albedo of the reference model by a
Gaussian.

4.1 Step 1: Recovery of lighting coefficients

In the first step we attempt to recover the lighting coef-
ficients ~l, by fitting the reference model to the image. To
this end, we substitute in (8) ρ → ρref and z → zref (and
consequently ~n → ~nref ). At this stage both regularization
terms vanish, and only the data term remains:

min
~l

∫

Ω

(I − ρref
~l T ~Y (~nref))

2 dxdy. (9)

Discretizing the integral we obtain

min
~l

∑

(x,y)∈Ω

(
I(x, y) − ρref(x, y)~l T~nref(x, y)

)2

. (10)

This is a highly over-constrained linear least squares
optimization with only nine or four unknowns (the
components of ~l; the dimension of this vector depends on
the order of approximation used) and can be solved sim-
ply using the pseudo-inverse. The coefficients recovered
with this procedure will be used subsequently to recover
the depth and albedo of the face. It should be noted
that to avoid degeneracies the input face must be lit by
non-ambient light, since under ambient light intensities
are independent of surface orientation. In Section 5 we
show that, in practice, the error of recovering lighting by
using the 3D face model (shape and albedo) of a different
individual is sufficiently small (the mean angle is 4.9◦

with standard deviation of 1.2◦).

4.2 Step 2: Depth recovery

At this stage we have obtained an estimate for ~l. We
continue using ρref(x, y) for the albedo and turn to
recovering z(x, y). Below we will further exploit the
reference face to simplify the data term. We start by writ-
ing explicitly the expression for ~Y (~n) using the second
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order approximation to reflectance, and by represent-
ing the surface normal ~n(x, y) using partial derivatives
p(x, y), q(x, y) as in Eq. (1)

~Y (~n) = (1,
1
N

p,
1
N

q,
−1
N

,
1

N2
pq,

−1
N2

p,
−1
N2

q, (11)

1
N2

(p2 − q2),
3

N2
− 1)T

where N(x, y) =
√

p2 + q2 + 1. We will assume that
N(x, y) ≈ Nref(x, y). The data term then minimizes
the squared difference between the two sides of the
following system of equations

I = ρref l0 +
ρref

Nref
(l1p + l2q − l3) (12)

+
ρref

N2
ref

(l4pq − l5p − l6q + l7p
2 − l7q

2 + 3l8)

− ρref l8,

with p and q as the only unknowns for each (x, y) ∈ Ω. In
discretizing this system of equations we will use z(x, y)
as our unknowns, and replace p and q by the forward
differences:

p = z(x + 1, y) − z(x, y) (13)

q = z(x, y + 1) − z(x, y).

The data term thus provides one equation for every
unknown (except for the pixels on the boundary of Ω).
Note that by solving directly for z(x, y) we in fact enforce
consistency of the surface normals (”integrability”). Let
us now investigate equation (12). In case we consider the
first order of approximation to reflectance, this equation
becomes

I = ρref l0 +
ρref

Nref
(l1p + l2q − l3). (14)

By substituting (14) for p and q (14) we can see that this
equation is linear in z(x, y)

I = ρref l0 +
ρref

Nref
(l1z(x + 1, y) − l1z(x, y) (15)

+ l2z(x, y + 1) − l2z(x, y) − l3,

and so it can be solved using linear least squares opti-
mization. In case we use the second order of approxima-
tion, the data equation (12) is non-linear in z(x, y) and
therefore requires a nonlinear optimization procedure.

Next we consider the regularization term λ14G ∗ dz .
(The second regularization term vanishes at this stage
since we have substituted ρref for ρ.) We implement this
term as the difference between dz(x, y) and the average
of dz around (x, y) obtained by applying a Gaussian
function to dz . Consequently, this term minimizes the
difference between the two sides of the following system
of equations

λ1(z(x, y) − G ∗ z(x, y)) = λ1(zref(x, y) − G ∗ zref(x, y)).
(16)

This system too is linear in z(x, y).

4.3 Boundary conditions for depth recovery

The equations for the data and regularization terms
provide two equations for every unknown z(x, y). In
the case of first order approximation both equations,
(14) and (16), are linear. In the case of a second order
approximation one equation is linear (16) while the other
is nonlinear (12). This system of equations however is
still ill-posed and we need to add boundary conditions.

Shape from shading methods typically use Dirichlet
boundary conditions, which require prior knowledge of
the the depth values z(x, y) along the boundary of the
surface. In addition, these methods require knowledge of
the depth values at all the local extremal points inside
the bounded surface (e.g., in case of a face these can
include the centers of the eyes, the tip of the nose and the
center of the mouth). Due to the use of a reference shape
our algorithm does not require knowledge of the inner
extremal points. However, since our data term includes
partial derivatives of z(x, y), we do need a constraint
for the exterior boundary of the surface. Since we have
a reference model a sensible approach is to use its depth
values zref(x, y) as Dirichlet boundary conditions, or,
alternatively, the derivatives of the reference along the
boundaries as Neumann boundary conditions. These
constraints however are too restrictive since the depth
values of the reference model and their derivatives may
be incompatible with the sought solution.

Instead, to obtain boundary conditions we assume in
our algorithm that the gradient of the surface in the di-
rection perpendicular to the exterior boundary vanishes
(i.e., the surface is planar near the boundaries; note that
this does not imply that the entire bounding contour is
planar). Specifically, we add for each boundary point the
following constraint

∇z(x, y) ∙ ~nc(x, y) = 0. (17)

where ~nc(x, y) is a two-dimensional vector representing
the normal to the bounding contour. These constraints
will be roughly satisfied if the boundaries are placed in
slowly changing parts of the face. They will be satisfied
for example when the boundaries are placed along the
cheeks and the forehead, but will not be satisfied when
the boundaries are placed along the eyebrows, where the
surface orientation changes rapidly. Similar boundary
conditions were used in [6] in the context of photometric
stereo.

Finally, since all the equations we use for the data
term, the regularization term, and the boundary condi-
tions involve only partial derivatives of z(x, y), while
z(x, y) itself is absent from these equations, the solution
can be obtained only up to an additive factor. We will
rectify this by arbitrarily setting one point to z(x0, y0) =
zref(x0, y0).

4.4 Step 3: Estimating albedo

Once both the lighting and depths are recovered, we may
turn to estimating the albedo. Using the data term the
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Fig. 2. The generic face model obtained by taking the
mean shape over the entire USF database.

albedo ρ(x, y) is found by solving the following equation

I(x, y) = ρ(x, y)~l T ~Y (~n). (18)

The first regularization term in the optimization func-
tional (8) is independent of ρ, and so it can be ignored.
The second term optimizes the following set of equations

λ24G ∗ ρ = λ24G ∗ ρref . (19)

These provide a linear set of equations, in which the
first set determines the albedo values, and the second set
smoothes these values. We avoid the need to determine
boundary conditions simply by terminating the smooth-
ing process at the boundaries.

5 EXPERIMENTS

We tested our algorithm on images taken under con-
trolled viewing conditions by rendering images of faces
from the USF face database [16]. We further tested
our algorithm on images taken from the YaleB face
database [12], on images of celebrities downloaded from
the internet, and on images photographed by us.

5.1 Experimental setup

For the experiment with the USF face database we used
77 face models. These models include depth and texture
maps of real faces (male and female adult faces with a
mixture of race and ages) obtained with a laser scanner.
We used the provided texture maps as albedos. These
contain noticeable effects of the lighting conditions, and
hence could possibly introduce some errors to our recon-
structions. To render an image we illuminated a model
simultaneously by three point sources from directions
~li ∈ R3 and with intensity Li. According to the Lamber-
tian Law the intensities reflected by the surface due to
this light are given by ρ

∑
i Li max(~nT~li, 0). We also used

the 3D faces from this database as reference faces, either
by using each of the faces as a reference or by using a
generic face obtained by taking the mean shape over the
entire database (Fig. 2).

The YaleB face database includes images of faces taken
under different viewing conditions (lighting and pose),
which we used as input images. To evaluate our recon-
structions we also reconstructed each face shape using a
photometric stereo method. This was possible since the
YaleB database includes many images of each face taken
from the same viewpoint but illuminated with varying

point source lightings, and the lighting directions are
provided. We used 10 such images for photometric stereo
reconstruction of each face. The rest of the experiments
were made with input images that were downloaded
from the internet or that were photographed by us and
hence we did not have a laser scan or a photometric
stereo reconstruction available.

For the cases when a laser scan or a photometric
stereo reconstruction is available, the accuracy of our
reconstructions is demonstrated by the presented error
maps. The error maps were calculated per pixel as
|z(x, y) − zgt(x, y)|/zgt(x, y), where zgt(x, y) denotes the
”ground-truth” depth values (laser scan or photometric
stereo). In addition, under each error map we present
the overall mean and standard deviation values each
multiplied by 100 to indicate percents. In the cases that
a laser scan or photometric stereo are not available the
accuracy of our reconstruction can be evaluated only
visually.

We assume alignment between the face in the in-
put image and the reference model. With misalignment
the reconstruction results degrade, mainly when the
boundaries (occluding contours) of the face in the input
image and the reference face are not aligned. To achieve
alignment we first use marked points to determine a
rigid transformation between the reference model and
the input image. We then refine this alignment by fur-
ther applying an optical flow algorithm. We begin by
marking five corresponding points on the input face and
on the reference face, two at the centers of the eyes, one
on the tip of the nose, one at the center of the mouth
and one at the bottom of the chin. In the case of frontal
faces we then use these correspondences to determine a
2D rigid transformation to fit the image to the reference
model.

For non-frontal faces we apply an additional proce-
dure to recover a rough approximation of the 3D rigid
transformation that transforms the reference model to
the orientation of the face in the input image using the
same marked five points. Specifically, let the 2×5 matrix
p′ denote the points marked on the input image, and
let the 3 × 5 matrix P ′ denote the points marked on the
reference model. We first subtract the mean from each of
the matrices to get p = p′ − p̄′ and P = P ′ − P̄ ′. We then
let A = pP T (PP T )−1 and t = p̄′−AP̄ ′, where A is 2×3
and t is a 2-vector. To apply this transformation in 3D we
augment A and t by fitting a 3×3 scaled rotation matrix
to A, and setting the third component of t be 0. Such
a transformation may cause occlusion of parts of the
reference shape model. To remove the occluded points
we use the approximate z-buffer technique for point sets
by [18]. This method examines groups of points that
project to the same neighborhood of the depth map, and
identifies those points that are closer to the viewer.

Finally to achieve finer alignment we apply the optical
flow algorithm of [3] (with default parameters). In par-
ticular, after finding the spherical harmonics coefficients
~l we produce a reference image using these coefficients
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and the reference model. We then find the flow between
the reference and input images. This flow is applied to
the reference model that is used in the reconstruction
algorithm. After the alignment procedure all the images
are of size 360 × 480 pixels.

The following parameters were used throughout all
our experiments. The reference albedo was kept in the
range between 0 and 255. Both λ1 and λ2 were set to
30. For the regularization we used a 2-D Gaussian with
σx = σy = 3 for images downloaded from the web and
σx = σy = 2 for all the rest of the images. Our MATLAB
implementation of the algorithm takes about 9 seconds
on a quad-code AMD processor 2354 1100Mhz Linux
workstation, and the optical flow implementation takes
another 20 seconds.

This concludes the general setup. In the remainder of
this section we describe the experiments made on images
rendered from the USF database as well as images
from the YaleB database, images downloaded from the
internet, and images photographed by us.

5.2 Images rendered from the USF database

In Figure 3 we present the results of the reconstruction
obtained for images rendered from the USF models. We
show eight examples. In each example we present the
input image and two triplets (two viewpoints) of shapes:
the reference shape, the ground truth (laser scan) shape
and our reconstructed shape. We also present two error
maps: between the laser scan and the reference shape (on
the left) and between the laser scan and the reconstructed
shape (on the right). The numbers under each of the error
maps indicate the mean error and the standard deviation
(in percents). In this experiment in all reconstructions we
used the same reference face – a generic face obtained
by taking the mean shape over the entire USF database.

We observe that the recovered shapes are consistently
very similar to the laser scan shapes (visually and also
by examining the error values). By comparing the two
error maps in each example we can see how the reference
shape was modified by the algorithm to fit the image.
In most cases the reference face was molded to fit the
correct shape very closely overcoming in some cases
significant differences in shape (see,e.g., the second, fifth
and eighth rows) and in facial expression (see the sev-
enth row). Occasional errors, however, remain in some
of the cases particularly near facial features.

In Figure 4 we show the overall mean reconstruction
error for each of the 77 faces in the USF database when
we use as reference the mean face (upper plot), and
when each face is reconstructed with each of the rest
of the models in the database serving as a reference
model (bottom plot). The red squares mark the difference
between the reference and ground truth shapes, and
the blue diamonds mark the errors between the recon-
struction and ground truth. We can see that in all cases
the reconstruction errors are smaller than the differences
between the reference model and the ground-truth scans.
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Indeed the overall means and standard deviations of the
reconstruction error are 4.2± 1.2 and 6.5± 1.4 in the top
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Fig. 3. Eight examples of typical reconstructions from the USF database. In each example we show from left to right the
input image, a triplet of shapes (the reference model, the ground truth which is the laser scan and our reconstruction)
in two different viewpoints and depth error maps (100 ∙ |z(x, y) − zGT(x, y)|/zGT(x, y)) between the reference model
and the ground truth (left) and between our reconstruction and ground truth (right). The colormap goes from dark blue
to dark red (corresponding to an error between 0 and 40). The numbers under each of the error maps represent mean
and standard deviation values in percents.
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Fig. 4. Mean depth error calculated for each of the 77 models from the USF database with the generic model used as
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and bottom plots respectively, whereas the overall means
and standard deviations of the difference between the
reference model and the ground-truth are 12.9± 7.9 and
13.8 ± 2.8.

We further examined the accuracy of the process by
fitting a 2D image to a 3D reference face model (shape
and albedo) of a different individual. We have run the
following experiment. We first rendered 19 images of
each of the face models in the database, each was ren-
dered with a single point light source. We then recovered
the lighting from each image by comparing it to all
the other 3D models in the database. We calculated for
each such pair the angle between the true lighting and
the recovered one; this represents the error in lighting
recovery. The result of the experiment is shown in Fig. 5.
Azimuth and elevation are the angular displacements
in degrees from the y-axis and from the y-z plane,
respectively. We observe from the histogram that the
mean angle is 4.9◦ with standard deviation of 1.2◦, which
is sufficiently small. The plot in this figure shows how
the error changes for different point source lightings. It
appears that negative elevation values tend to produce

higher errors. Below we also observe that the reconstruc-
tion error experiences similar behaviour.

Figure 6 shows how the reconstruction error varies
with a different choice of lighting direction. For this
experiment we rendered images of 13 different face
models with 19 point source lightings, and calculated
the mean reconstruction error for each lighting direction.
We observe that the error is higher for negative elevation
values. This may be attributed to the errors in the light
recovery in Step 1 of the algorithm, which exhibit a
similar pattern (see Figure 5).

5.3 Images outside the USF database

In Figure 7 we present six example reconstructions of
faces from the YaleB database. To evaluate our recon-
structions we additionally reconstructed each face shape
using a photometric stereo algorithm. For each example
we present the input image, and two triplets (two view-
points) of shapes: the reference shape, the photometric
stereo reconstruction and our reconstruction. We fur-
ther present the two error maps, between the reference
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model and the photometric stereo reconstruction and
between the reconstruction with our algorithm and the
photometric stereo reconstruction. The numbers under
each of the difference maps indicate the overall mean
and standard deviation. We observe that our algorithm
achieved good reconstructions, overcoming significant
differences between individuals. Examples one and six
also demonstrate that our algorithm is robust to moder-
ate amounts of facial hair, although it is not designed to
handle facial hair.

In Figure 8 we further apply our algorithm to images
of non-frontal faces from the YaleB database. We present
reconstructions of three faces viewed in five viewpoints.
For each face and pose we show the reconstructed shape
and image overlay of the reconstruction. Under each
reconstruction we further present the overall mean and
standard deviation of the difference between our recon-
struction and the photometric stereo. In each case the
face is reconstructed from a single image. In principle,
such reconstructions can be combined together using 3D
alignment techniques to produce a fuller 3D shape of a
person’s face and by this overcome the visibility issues
that arise in single image reconstruction (e.g., part of the
face can be occluded in a single view).

Finally in Figure 9 we present results of our algorithm
on eight images that were downloaded from the internet
and two more images that were photographed by us. An
additional result is shown in Figure 1. While we do not
have the ground truth shapes in these experiments, we
can still see that convincing reconstructions are obtained.
Note especially the reconstruction of Tom Hanks’ face
obtained with a smile (top right), the wrinkles present
in the reconstructions of Clint Eastwood and Samuel
Beckett (2nd row on the right and 3rd row on the left),
the reconstruction of the painted Mona Lisa (2nd row
on the left), the shape details of Gerard Depardieu,
and finally the two reconstructions from images we
photographed that include two facial expressions of the
same person.

6 CONCLUSION

In this paper we have presented a novel method for
3D shape reconstruction of faces from a single image by
using only a single reference model. Our method exploits
the global similarity of faces by combining shading in-
formation with generic shape information inferred from
a single reference model and by this overcomes some of
the main difficulties in previous reconstruction methods.

Unlike existing methods, our method does not need
to establish correspondence between symmetric portions
of a face, nor does it require to store a database of
many faces with dense correspondences across the faces.
Nevertheless, although this paper emphasizes the use
of a single model of a face to reconstruct another face,
we note that our method can supplement methods that
make use of multiple models in a database. In particular,
we may select to ”mold” the model from a database

Fig. 8. Reconstruction of three faces from the YaleB
database, from 5 different poses. In each example we
present from top to bottom the input image, the re-
constructed shape and an image overlay on the recon-
structed shape. The numbers below each reconstruction
show the mean and standard deviation of the depth
difference between our reconstruction and a photometric
stereo reconstruction.
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Fig. 7. Six reconstruction examples from the YaleB database. In each example we show from left to right the input
image, a triplet of shapes (reference model, reconstruction by photometric stereo and our reconstruction) in two
different viewpoints, and depth error maps (100 ∙ |z(x, y) − zPS(x, y)|/zPS(x, y)) between the reference model and the
photometric stereo reconstruction (left) and between our reconstruction and the photometric stereo reconstruction
(right). The colormap goes from dark blue to dark red (corresponding to an error between 0 and 40). The numbers
under each of the error images represent the means and standard deviations of these differences in percents.

shape that best fits the input image. Alternatively, we
may choose the best fit model from a linear subspace
spanned by the database, or we may choose a model
based on some probabilistic criterion. In all cases our
method will try to improve the reconstruction by relying
on the selected model.

Our method handles unknown lighting, possibly
coming from combination of multiple unknown light
sources. We allow for attached shadows, however we ig-
nore cast shadows. In theory estimation of cast shadows
can be incorporated in our method, by finding an initial

estimate of shadows using the surface geometry of the
reference model and then by iterating our reconstruction
procedure to solve for the unknown depth and locations
of cast shadows concurrently.

We tested our method on a variety of images, and our
experiments demonstrate that the method was able to
accurately recover the shape of faces overcoming sig-
nificant differences across individuals including differ-
ences in race, gender and even variations in expressions.
Furthermore we showed that the method can handle
a variety of uncontrolled lighting conditions, and that
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Fig. 9. Reconstruction results on images of celebrities downloaded from the internet and two images photographed
by us (bottom row). In each example we present the input image, our 3D shape reconstruction, and an image overlay
on the reconstructed shape.
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it can achieve consistent reconstructions with different
reference models.

As our method uses a single reference model for
reconstruction, it would be interesting to see if a similar
approach can be constructed for objects other than faces,
in which a 3D prototype object is provided and used for
reconstruction of similar, yet novel shapes from single
images.
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