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Abstract

The task of identifying 3D objects in 2D images is diffi-
cult due to variation in objects’ appearance with changes
in pose and lighting. The task is further complicated by
the presence of occlusion and clutter. Shape indexing is
a method for rapid association between features identified
in an image and their corresponding 3D features stored in
a database. Previous indexing methods ignored variations
due to lighting, restricting the approach to polyhedral ob-
Jjects. In this paper, we further develop these methods to
handle variations in both pose and lighting. We focus on
rigid objects undergoing a scaled-orthographic projection
and use spherical harmonics to represent lighting. The re-
sulting integrated algorithm can recognize 3D objects from
a single input image; furthermore, it recovers the pose and
lighting of each familiar object in the given image. The
algorithm has been tested on a database of real objects,
demonstrating its performance on cluttered scenes under a
variety of poses and illumination conditions.

1. Introduction

Shape indexing is a method of associating features found
in an image to features of 3D models stored in a database.
A key factor in indexing is the distinction between the of-
fline preprocessing stage and the online recognition stage.
In indexing, features are extracted from the objects and the
image. Each set of model features is preprocessed by con-
structing entries into an indexing table. Then, at recognition
time, collections of image features are used to compute in-
dices to access the table. Using these indices, corresponding
sets of model features are identified. The preprocessing of
model sets is performed offline, making the online recogni-
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tion stage as fast as possible (faster than a sequential scan
of the database, as in alignment [6, 11]). A further advan-
tage of indexing is its high inherent parallelism both in the
preprocessing stage and in the recognition stage. Also, en-
tries in the indexing table are constructed using small col-
lections of features, so that each set accounts for relatively
local scene information. This allows the method to over-
come occlusion and clutter.

The most efficient way to perform indexing is by using
functions that are invariant to transformations relating dif-
ferent views of an object [7, 13] (see [15]). In this case ev-
ery collection of both model and image features gives rise
to exactly one entry in the indexing table. However, due to
loss of depth information as a result of projection, invariant
functions cannot be used generically to identify 3D feature
configurations in 2D images [4, 5, 14]. Nevertheless, in-
dexing is still possible in this case by constructing indexing
functions which map either model or image features to col-
lections of entries (usually a line or a curve) in the indexing
table [12, 22]. Other approaches, based on probabilistic in-
ference and k-d tree search were proposed [2, 4, 17, 19].

Most existing indexing methods use point and line fea-
tures, restricting their applicability to polyhedral shapes or
to objects painted with prominent surface markings. The
vast information contained in the intensities of objects is
largely ignored by these methods. This not only severely
restricts the type of shapes such methods can handle, but, as
our experiments demonstrate, decreases their efficiency and
reduces their performance. Only a few studies attempt to
target smooth shapes (e.g., [20]), but this study too uses only
the silhouette boundaries of objects. Below we present an
attempt to increase the applicability of indexing to a much
wider class of common objects. Our method handles varia-
tions in both pose and lighting and can handle both polyhe-
dral and smooth shapes. It still relies on point features, but
it only needs to locate very few of those, and it makes use
of intensities to filter out incorrect matches.

There exists a sizable body of work that addresses the
problem of recognition under unknown pose and lighting,
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which uses intensity information, particularly in the con-
text of face recognition. These studies use manifold rep-
resentations [16], statistical considerations [21], morphable
models [3], or explicit lighting models (light fields [9], il-
lumination cone [8], and representations based on spherical
harmonics [1]). These methods scan a database of models
sequentially. When these methods are applied to faces, pose
can be compensated simultaneously for all models, exploit-
ing the common location of face features. But when these
methods are applied to large databases of general objects
the search for the appropriate pose and lighting parameters
may be prohibitive.

The indexing scheme we present in this paper identifies
general objects in real, cluttered scenes efficiently and accu-
rately under a wide range of poses and illumination condi-
tions. Our scheme is based on a combination of reflectance
and geometric properties of objects. In particular, we in-
corporate the spherical harmonics representation of light-
ing [1, 18] in an indexing scheme based on the 3D to 2D
matching algorithm of [12]. Our algorithm has been tested
successfully on a database of real 3D objects, recognizing
the objects in a variety of scenes. We present these exper-
iments and compare our results to results obtained using a
pure geometric approach.

2. Image formation

For our method we need to model the image formation
process as a function of pose and lighting. For pose, we
assume that images of an object are formed by applying an
arbitrary rigid transformation to the object and projecting
it using the weak-perspective projection. In particular, an
object can be rotated, translated and scaled.

For light, we use an analytically derived representation
of the images produced by a convex Lambertian object illu-
minated by distant light sources [1, 18]. According to these
derivations, the set of images of a convex Lambertian object
obtained under arbitrary lighting conditions can be approx-
imated accurately by a low dimensional linear subspace (4
or 9 dimensional). These results were accomplished by ex-
pressing lighting in terms of spherical harmonics and rep-
resenting the operation of reflection as the analog of a con-
volution of the lighting with the clamped-cosine function,
which is called the Lambertian kernel. Specifically, any im-
age of an object can be described as: I” = 17'S where I is
an n-dimensional column vector containing the intensity of
each pixel, 1 is an r-dimensional vector (r =4 or 9, depend-
ing on the approximation order) describing the low order
components of lighting, and S is 7 X n matrix whose rows
each describe an image the object produces when lighting
consists of a single spherical harmonic function. The su-
perscript 1" represents the transpose operation. For a first
order approximation to lighting, S is 4 x n with each col-

Figure 1. The affine coordinates of 2D points p3 and p4 (left) and
3D point P4 (right). Note that the basis vectors in an affine frame
need not be orthonormal.

umn containing the albedo of a pixel, and the three compo-
nents of the surface normal at the pixel scaled by the albedo,
i.e., p, png, pny, pn.. If we take a second order approxima-
tion to lighting, S is 9 x n, where the first four compo-
nents of each column are the same as for the first order and
the other five components are: p(3n? — 1), pngn., pnyn.,
p(nz—n2), pngyn,. (Normalization factors due to the spher-
ical harmonics are omitted from S. As a consequence 1 con-
tains the low order harmonic coefficients of lighting scaled

by these normalization factors.)

3. Indexing with pose

In this section we describe how we build an indexing
space to match sets of image features to corresponding sets
of objects features. We will use an indexing table based on
the work of Jacobs [12], which assumes an affine projection
model. Jacob’s scheme is described in Section 3.1. We in-
troduce certain modifications to this scheme in Section 3.2.
Finally, we remove nonrigid configurations using a rigidity
test due to Weinshall [22] (Section 3.3). Throughout this
section we assume that feature points on both an image and
a model are available to us by the application of some fea-
ture detector.

3.1. Indexing with affine projection model

For the construction of the indexing table we allow a
more general model of projection - the affine projection
model. In this model 2D image points are produced by ap-
plying an arbitrary 2 x 3 rank 2 linear transformation A to
3D object points followed by a translation t (2-dimensional
vector). Explicitly, denote a collection of model points
by Py, P4, ..., P, and their corresponding image points by
Po, P1;---s Pn, then p; = AP; + t. The affine projection
model significantly simplifies the indexing spaces (relative
to a rigid transformation), but also adds additional degrees
of freedom to the model, which may result in false positive
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matches. We show later on in this section how to remove
these false positives.

In an affine projection model any four model points can
produce any four image points. So for indexing, model and
image sets must each consist of at least five points. As the
model lies in 3D, we use the first four (non-coplanar) points
to define an affine basis, and describe the location of the
fifth point using affine coordinates derived with respect to
this basis. That is, we remove the translation by fixing the
first point as an origin of coordinate frame: Q; = P; — Py
and then find the affine coordinates of the fifth point by

ot o0 om
Qu=[Q Q Q3] Q=100 1 0 naf, (D
00 0 1 m

where the 3 x 5 matrix Q = [Qq, Q1, ..., Q4]. We apply
a similar procedure to the image set. We use the first three
points to define a basis, and describe the location of the forth
and fifth points using their affine coordinates with respect to
this basis. Explicitly, we let q; = p; — po and the 2 x 5
matrix q = [qo, dq1, ..., q4]- So that

. -1 |01 0 a3 a4
QI - [(h q2] qf 0 0 1 ﬁ?) 64 ‘

Figure 1 illustrates the affine frames constructions. Due to
the special structure of Qs and q; (which include the iden-
tity as sub-matrices) they are related by a 2 x 3 matrix:

@

1 0 a
qr = [0 1 b] Qur, 3
for some scalars a and b, and therefore
0 niy
Qs 044} . [1 0 a} 0 n
= 2| - (€]
[ﬁs Ba 0 1 o], 7

Elimination of @ and b results in two lines

Q4 = az3m + ny
Bs = Bam + na.

These two line equations are independent and describe all
image parameters that five model points can produce. Im-
age parameters form a 4-dimensional (as, vy, O3, B4) affine
space, which can be divided into two orthogonal subspaces,
an « space, and a ( space. An image with five ordered
points is mapped into a point in these spaces. So match-
ing an image set to a model set is reduced to matching a
pair of points in two 2-dimensional spaces (representing the
image set), to a pair of parallel lines in these spaces (repre-
senting the model set). Notice that in the special case that
all the model points are coplanar, the affine coordinates of
the projected model points are invariant to pose, and each
model point beyond the first three is represented by a point
in affine space. So in this case matching an image set to a
model set is reduced to matching a point to a point.

&)

Figure 2. 2D (top) and 3D (bottom) indexing tables. An image set
is represented by the sinusoid and its corresponding model set by
the black square. The gray dots represent other model sets stored
in the indexing tables.

3.2. Modifications

In our implementation we chose, unlike in [12], to mod-
ify the indexing table so as to represent a model set by a
point and an image set by a curve. Such a representation is
space efficient since we no longer need to place a pointer
to a model in every cell intersected by its line. In particu-
lar, this allows us to represent the spaces by a linked list or
sparse matrices. The disadvantage of this representation is
that during the online recognition stage every set of image
features will require accessing the table in many cells to ex-
tract all the possible models that can produce this set. How-
ever, the critical factor for the complexity of the method is
the number of model sets retrieved in this process, and this
number is the same whether we choose to represent a model
set in the indexing table by a pair of points or by a pair of
lines.

A line can be represented by its shortest (signed) distance
from the origin (denoted by 7) and its orientation (denoted
by #). From this we can obtain equations for the lines rep-
resenting a model set, equivalent to (5),

r1 = a3 cosf + aysinf ©)
ro = [B3cos6 + [ysinf.
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By combining these two line definitions we can derive an
expression for r1, 7o and € in terms of ny, ne and m:

A — 0= arctan(—%) )

(where ¢ = 1,2). Consequently, a model set is repre-
sented by a pair of points in (6, r1) and (6, r2) index spaces,
and an image set is represented by a pair of sinusoids in
these spaces. Hence, matching between them is reduced to
matching between points and sinusoids.

There are now several ways to implement indexing. In
preprocessing, for each model set of each object we com-
pute 6, r1, and 2. We then place a pointer to the set in the
(8,71) cell in the « table and the (6, r2) cell in the 0 table.
For recognition, given an image set, we access the two ta-
bles tracing a sinusoid path (see the 2D table in Figure 2)
to retrieve all the relevant model sets (possibly allowing for
small errors). Subsequently, we then intersect the two lists
retrieved to obtain all the model sets that are consistent with
our image set.

As our experiments indicate (Section 7) the number of
model sets retrieved by the a and ( tables alone can be
very large, and so tracing the two sinusoid curves to retrieve
these sets can be prohibitively time consuming. Fortunately,
intersecting the two lists dramatically reduces the number
of candidate sets. A simple modification allows us to trace
only one of the two tables. For each model set in the (6, 77)
table we can store the value of r9, and so we can immedi-
ately eliminate model sets that are incompatible in (0, 72)
already while we trace the « table. A more significant sav-
ing is obtained if we choose to represent both indexing ta-
bles in a single, 3D table (6,71, r2). In this case (see the 3D
space in Figure 2) every model set produces a single point
in this space, whose coordinates are given by (7). An image
corresponds to a 1D curve in this space of the form given by
(6). Tracing this curve will allow us to retrieve only those
model sets that are compatible with both the a and the 3
space simultaneously. This will result in a significant re-
duction of complexity, as is demonstrated in Section 7. We
further disregard sets with 71 ~ 0 and 7 = 0 since these
are usually non-discriminative.

It is important to note that for each set of model points we
store in the indexing table all the orderings of these points.
Hence, for recognition we will be able to retrieve the cor-
responding model sets using any one of these orderings of
the corresponding image set. This will further reduce the
runtime complexity by a factor of 5! = 120.

3.3. Removal of nonrigid configurations
Each set of image feature points is associated now with a

list of matching sets of model points. To eliminate the false
positive matches that are due to the affine projection model

assumption we use the inverse Gramian test proposed by
Weinshall [22]. We calculate the inverse Gramian matrix
B of three basis points of a model set Q1, Q2, Qs (after
removing the translation by fixing the origin):

1

QIQ: QiQ: QTQs]
B=Q{Q: QQ: QiQs| . ®)
QfQs QJQs Q3IQs

The elements of B~! contain all the 3D information on the
geometry of the four basis points, their angles and lengths,
so that B is invariant to rotations of the coordinate system
but not to general linear transformations. Weinshall [22]
showed that model and image sets that satisfy the relation

B "Bx - y’B
[x"By| + [x Bx —y By| _ ©)
x[[[Blly

(x and y are 3-dimensional vectors denoting the x and y co-
ordinates of the three corresponding basis points in the im-
age) are consistent geometrically. To overcome noise this
expression is allowed to deviate slightly from zero by ap-
plying a small threshold. The expression is normalized by
the denominator so that its value is insensitive to uniform
scaling of the object.

4. Consistency with lighting

The indexing scheme described until now provides us,
for every collection of image features, candidate sets of
model features whose location is consistent with the im-
age collection. We next wish to test which of these can-
didate correspondences could produce the intensity patterns
observed in the image. This will allow us to remove many
false correspondences and identify the object accurately.

We use the linear relation described in Section 2. Given
a collection of model points and their corresponding im-
age points we construct for the model the matrix S, which
contains the unscaled harmonic images of these points. De-
note the intensities of the image points by a vector I, then
I” = 17'S. To test consistency with lighting we measure
the distance between the vector I of image intensities and
the space spanned by the harmonic images (the rows of S)
normalized by the squared norm of I

T —SS*I||?

10
e e (10

where ST denotes the pseudo inverse of S, ST =
(STS)~'ST. The small scalar ¢ is added in the denomi-
nator to account for zero intensities. This measure is small
for true matches, and generally high for false ones.

Note that since the harmonic images S form an r-
dimensional linear subspace (r = 4,9 depends on the ap-
proximation order), any r model points can produce any r
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Figure 3. Illumination indexing measure (10) as a function of error
in point location. The plot shows mean values over 1000 runs
for an average error in point location in all directions. Error bars
denote standard deviations.

image intensities. So the function requires sets of at least
r + 1 points to be of any use.

To test the robustness of the measure to small perturba-
tions in the location of points we have run an experiment in
which we tested the measure under various displacements.
This is important because of inaccuracies of the feature de-
tection process. A typical behavior of the measure is shown
in Figure 3. We plot the behavior of the indexing function
up to almost 18 pixels average displacement (the length of
the object in this experiment was 450 pixels). We observe
that the minimal value is obtained at zero displacement, and
the measure slowly increases as the displacement grows. An
average perturbation of more than 5 pixels can be consid-
ered as an incorrect selection of points. Indeed, by testing
the same model set with intensities of points acquired with
large perturbations we get much larger values. This means
that our illumination test, with high probability, is able to
distinguish between true and false matches of image and
model sets even with small errors in feature location.

A straightforward approach to incorporating illumina-
tion variations is to test using (10) whether the intensities
of the feature points extracted from the image can be pro-
duced by the normals and albedos of the corresponding fea-
ture points on the model. Testing the intensities of feature
points, however, is problematic since feature points often lie
on the boundaries of the object or near corners, and so the
surface orientation near the feature may change rapidly. In
addition, some feature points may lie in dark spots on the
object which are created by deep concavities or dark mark-
ings on the object. Such locations may appear dark under a
wide variety of illumination conditions, and so these points
will not carry much information regarding the lighting.

To overcome this problem we associate with every set
of model feature points a list of several dozens additional
points that are selected at random within smooth portions

of the surface. (We select these points roughly inside the
convex hull produced by the five basis points.) We then
store their affine coordinates with respect to the model ba-
sis points, together with their harmonic basis. During the
recognition stage, when candidate correspondence between
model and image feature sets is found, we access these
affine coordinates in the image and test if the intensities
found in these locations satisfy the lighting consistency test
(10). To avoid degeneracies we store in the indexing table
only sets of such ’smooth’ points for which the condition
number of their matrix S of harmonic images, is below a
certain threshold. If the harmonic images are linearly de-
pendent, their condition number tends to infinity and the
test is usually non-discriminative. This procedure can be
performed at the preprocessing stage since it depends only
on the harmonic images which are functions of the albedos
and normals of the model points.

Sets of points that pass the illumination test are then used
to vote for their respective model. Finally all models re-
ceive scores. The scores reflect the fraction of image sets
for which a model appears as minimum. To account for
accidental minima we exclude those image sets for which
their minimum exceeds a certain threshold. Once a model
is selected by this voting procedure its corresponding sub-
sets are used to determine its pose and lighting. We recover
these parameters using a Robust Estimation technique. In
particular, we solve for pose and lighting for each image set,
obtaining a parameter vector. Then we iterate by removing
in each iteration a quarter of the vectors whose parameters
are most distant from their median. Finally, we are left with
the transformation that accounts for the majority of the im-
age sets. We use this transformation to render the model un-
der the same conditions as in the query image. In case the
query image contains several objects we divide the image
into a collection of overlapping squares and check which
model obtained the largest voting score in each square. The
shapes that receive the largest number of votes are then ren-
dered and verified against the query image.

5. Summary of the algorithm

Preprocessing: For each model object:

1. Extract feature points.
2. For each ordered set of five model features:

- compute the 0, r1, 7o coordinates (§3.2).

- calculate the normalized inverse Gramian matrix
B/|BJ| (53.3).

- select points on smooth sections on the surface
of the object and compute their affine coordinates
and harmonic images S (§4).

3. Use 6, ry, o coordinates to place pointers to the corre-
sponding cells in indexing spaces.
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Recognition: Given an image:

1. Extract feature points from the image.

2. For some sets of five image features:

- compute the affine coordinates «y,as, B4, 05
(83.1).

- calculate the curve (r1(0),r2(#)) and retrieve
candidate model sets from cells intersected by
this curve (§3.2).

- apply the inverse Gramian test (§3.3).

- locate the ’smooth’ points in the image (using the
affine coordinates calculated in preprocessing).

- use the illumination consistency test to obtain a
score for each match (§4).

3. Vote for the best model candidates.
Postprocessing

1. Recover the pose and light for the model that received
the largest number of votes over all image sets.

2. Render the output image.
3. Compare this image to the query image.

6. Experimental results

To test our method we have constructed a database of
eight real objects. Each model includes a point cloud and
surface normals acquired using a 3D laser scanner. The
shapes are presented in Figure 4. To collect model feature
points we photographed the objects, located feature points
on the images and back-projected them to the models. To
estimate the albedo, we averaged several images of the same
object taken at the same pose and with different lightings.
Feature points were collected automatically using the Harris
feature detector [10].

Figure 5 shows the results obtained with our algorithm
on four input images (each column represents a different
image). For each result we present, from top to bottom,
the original input image, the same image with image points
(both feature and ’smooth’ points) painted in colors to indi-
cate the models to which they vote, the output image with
the winning objects rendered under the recovered pose and
lighting and a difference between the input and rendered
images. The images were photographed under various nat-
ural poses and lighting conditions and with clutter and oc-
clusion. Specifically, the first three images were pictured
outdoors with the first two pictures taken at night with the
objects illuminated by street light and the third pictured in
daylight. The last image was pictured inside an office with
florescent lighting.

Large concentrations of points that vote for the correct
model are seen in regions where an object appears. The
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|
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Figure 4. Database of 3D Models

rendering shows that roughly the correct pose and lighting
were recovered. The rendered intensities (we used 9 har-
monics in these examples, although 4 harmonics essentially
resulted in similar performance) matched the actual inten-
sities to 80-88%. These accuracies are somewhat inferior
to the accuracies derived theoretically [1, 18] due to some
specularities and cast shadows.

To demonstrate the importance of the illumination con-
sistency test, we compare our method to a geometric ap-
proach that uses only the location of feature points in Table
1. We show results obtained with three methods: “Affine”,
“Gramian”, and “Light” (our method). For the first method
we calculate the fraction of image sets, for each model, that
received the maximum number of matchings. In this ap-
proach the model that received the maximum number of
matchings is the first to be considered by the verification
procedure. In the second method, the voting is performed
according to the values of the inverse Gramian function (9).
In particular, each image set votes for the model candidate
that received the minimal measure value. The third method
is our method where the lighting information is used. The
second and third methods were tested with different thresh-
olds (the thresholds applied to remove accidental matches).
We can see that the illumination test applied in our method
greatly improves the results of indexing compared to the ge-
ometric methods.

7. Complexity

We next turn to calculating the complexity of our algo-
rithm. Denote by n the number of image feature points, by
m the number of object feature points and by M the num-
ber of objects in the database. Also, note that each image or
model set consists of five feature points and let ¢ denote the
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Figure 5. Example of four different query images and the output of our algorithm (each column is a different query). From top to bottom:
The query image. The point sets that passed through all the tests colored to indicate the model to which they vote. These sets are used to
recover the pose and lighting parameters. Rendered images using the recovered pose and lighting, and the difference between the input
and rendered images. (Color index: dinosaur - red, hippo - blue, camel - green, pinokio - magenta, bear - yellow, elephant - black, shark -
brown, face - cyan.)

average number of matched queries per image set.

At preprocessing, we represent all possible orderings of
each model set in the indexing table. Thus the number of
sets to be processed at the preprocessing stage is M (?)5!.
At runtime, we consider some of the quintuples of feature
points in the image. Suppose that the number of image
sets is (g) - all possible sets with no permutations. In ad-
dition, we have to take into account the number of model
sets extracted by the indexing procedure for each image set.

Hence, the total number of queries, at runtime, are (})c.

In Table 2 we present the average number of sets
matched per image set during each stage of the algorithm,
and the fraction of correct image sets remained. This exper-
iment was performed on the leftmost query image in Fig-
ure 5, where M = 8, m = 17 and n = 35. The total num-

ber of sets stored in the indexing table was M (Z’) 5! (almost
6,000, 000). Using the a-table almost 50,000 model sets
were retrieved for every image set. The [3-table resulted in a
similar number of sets. Intersecting the a and /3 candidates
reduced the number of matches considerably, justifying the
use of a 3D indexing table (Section 3.2). The subsequent in-
verse Gramian and lighting tests further reduce the number
of potential matches. Only a few of the correct candidates
were eliminated in this process (right column).

Our implementation performed the offline preprocessing
stage preparing the database of eight objects in just 35 sec-
onds. For recognition, the critical factor is the number of
model sets retrieved from the indexing table. Our imple-
mentation performed the recognition step in 4 seconds for
n = 22 feature points and 80 seconds for n = 40. In our
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Affine Gramian Light
Thresh Naive 0.04 | 0.00002 | 0.1 0.02
No. Sets || 323,317 | 18,578 98 2,143 | 64
Dinosaur 0.13 0.06 0.31 0.25 | 0.91
Hippo 0.14 0.11 0.21 0.1 0.06
Camel 0.05 0.12 0.29 0.17 | 0.02
Pinokio 0.06 0.08 0.05 0.08 0
Bear 0.01 0.35 0.03 0.16 0
Elephant 0.42 0.1 0.07 0.09 0
Shark 0.1 0.08 0.02 0.1 0.03
Face 0.09 0.1 0.02 0.05 0

Table 1. Results of the algorithm for the first input image in Figure
5 (which contains the dinosaur) and comparison to two geometric
schemes. Indexing that uses lighting information produces favor-
able results.

] | Total [ True |
Total stored | 5,940,480 | 0.98
a-space 48,815 0.97
anpg 1916 0.94
Gramian 331 0.94
Lighting 18 0.86

Table 2. Average number of model sets matched per image set in
each stage of the algorithm, together with the fraction of correct
matches that remain after each discrimination (right column). The
[3-space produces a similar number of matches as the a-space.

experiments we automatically diluted the number of fea-
ture points extracted with the Harris detector to 40 using
criteria of distance and saliency. No segmentation or group-
ing algorithms were used, although these could reduce the
number of image sets need to be considered. The postpro-
cessing took about S5sec. These times were obtained with
a combined Matlab and Mex file implementation (using a
Pentium 4, 2.8 GHz).

8. Conclusion

We have presented an indexing algorithm for identifying
3D objects in single 2D images under unknown pose and il-
lumination and in the presence of occlusion and clutter. We
have demonstrated the importance of intensity cues to com-
plement the geometric cues in eliminating false matchings
between model and image sets of points. Our experiments
demonstrate that the method can work with general, real ob-
jects and is not restricted to polyhedral shapes as previous
methods are. It can also handle a wide variety of lighting
conditions despite the Lambertian and convexity assump-
tions. We have presented experiments in which we success-
fully detected the presence of objects in complex scenes un-
der a large variety of poses and lightings. Future work in-

cludes incorporating color information, testing the method
on a database of hundred models, and parallel implementa-
tion of the model.
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