3D Shape Reconstruction of Mooney Faces

Ira Kemelmacher-Shlizerman Ronen Basti? Boaz Nadlef

'Dept. of Computer Science and Applied Math. 2Toyota Technological Institute at Chicago

The Weizmann Institute of Science 1427 East 60th Street
Rehovot 76100, Israel Chicago, lllinois 60637
Abstract

Two-tone (“Mooney”) images seem to arouse vivid 3D
percept of faces, both familiar and unfamiliar, despite their
seemingly poor content. Recent psychological and fMRI
studies suggest that this percept is guided primarily by top-

wn pr res in which r nition pr reconstruc-
down procedures chrecognition precedes reconstruc Figure 1.Three Mooney face images — initially seem difficult to

tion. In this paper we investigate this hypothesis from a interpret, but eventually lead to a rich and stable percept of the

mathematical standpo_lnt. We show thatindeed, under Stan'obje(:ts in the image (a face) on the basis of very little visual detail.
dard shape from shading assumptions, a Mooney image can

give rise to multiple different 3D reconstructions even if re-

construction is restricted to the Mooney transition curve the development of shape perception in child%EnPg], to

(the boundary curve between black and white) alone. Wedemonstrate that parts of the fusiform gyrus brain area spe-

then use top-down reconstruction methods to recover thegjalize in faces, 9,113, and to reveal synchronous activity

shape of novel faces from single Mooney images exploitingof neurons across brain are&s21].

prior knowledge of the structure of at least one face of & The remarkable perception of Mooney images raises the

different individual. We apply these methods to thresholded gestion of whether their interpretation is primarily bottom-

images of real faces and compare the reconstruction quality y, griven by image data and guided by generic assump-

relative to reconstruction from gray level images. tions, or alternatively whether it is essentially a top-down
process driven by memory and attention and preceded by
a preliminary recognition process. Psychological studies

1. Introduction seem to suggest the latter. Among the evidence supporting

o this view is that people usually fail to perceive upside-down
Two-tone (thresholded, black and white) images of faces faces, arguably due to their unfamiliaritg, [21], and that

were first introduced in the 1950s by Craig Moon&Y][  pre-exposure to original gray level (or color) image facili-
to test the ability of children to form a coherent percept of i5ies their recognitiori’} 11]. In an extensive study Moore
shape (termed. “percept_ual closure”) on the basi; of very lit- 2nd Cavanaghl] showed that shape primitives., gen-
tle visual detail. Such images (see examples in Fidire  o5)ized cones) are rarely perceivable in two-tone images,
may seem initially difficult to interpret, but eventually lead  poth in isolation and in novel configuration with other prim-
to arich and stable percept of the objects in the image.  jtives, even when the image contains explicit hints about the
Mooney images have fascinated psychologists and neujrection of the light source. These shapes, however, can
robiologists throughout the past half a century. Their am- readily be interpreted from gray level images and even from
biguous nature (is it an object or a random collection of gegraded line drawings. Familiar classes of objects, in con-
blobs?), face specificity (faces seem more readily identifi- trast, are much more often perceivable in two-tone images.
able than other objects), and sudden interpretability led togyen volumetric primitives of faces, if rearranged, cease
a flurry of studies that used Mooney images to investigate o pe perceived as coherent 3D objects. These findings

1 — . e _ strongly support the view that the interpretation of Mooney
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matical standpoint and ask whether a unique 3D shape cammain cue that remains is shading. In two-tone images only
be recovered from a single Mooney image. As Mooney pat- a single bit of information is available at every pixel, mark-
terns reflect the interaction of lighting and shape in the im- ing whether the observed surface is either bright or dark due
age it is natural to approach this problem using Shape fromto either the color of the surface, whether the surface faces
Shading (SFS) techniques. In this view the main informa- toward or away from the light, or whether the surface is in
tion available in a Mooney image is in the shape of the shadow. It is natural therefore to analyze the problem of re-
Mooney transition curvei.e., the boundary between dark construction from a Mooney image as a shape from shading
and bright regions in the image. This curve is in fact an (SFS) problem with impoverished data.

isoluminance curve. We therefore investigate whether 3D The question of uniqueness arises in SFS also when gray
shape can be recoveratbngthe Mooney transition curve.  |evel images are consideref, [19. In general, the same
By investigating the SFS equations we show that even alongimage can be produced by many different 3D shapes, and
this isoluminance curve reconstruction is not unique. We so typically SFS algorithms make the stringent assumptions
consequently turn to algorithms that use prior knowledge that the lighting configuration is known, the reflectance
of faces [B, [14] to reconstruct the 3D shape of faces from properties of the object are specified, the color (albedo) of
a single Mooney image. Our experiments show that thesethe object is known, and the appropriate boundary condi-
methods manage to work surprisingly well on these impov- tions (i.e., depth values at certain locations on the object)
erished images. This is encouraging both from a cogni- are given. Under these conditions SFS is unique up to trans-
tive perspective, and also from a practical standpoint, sincelation in depth and reflection (convex/concave) ambiguity.
Mooney images resemble images obtained under extremeBelow we make similar assumptions. We assume a sin-
lighting conditions (e.g., with saturated lighting in a dark gle point light source whose direction and magnitude are
environment). known, the observed surface is Lambertian, and albedo is

Very few computational algorithms have been proposed uniform (or otherwise known). Our formulation also al-
to handle Mooney images. Most notably, Shash2€] [  lows the introduction of boundary conditions. As a Mooney
introduced a method for face recognition from a single image is impoverished we focus on the Mooney transition
Mooney image in a fixed pose and unknown lighting. As- curve, i.e., the boundary curve between black and white in
suming the face is Lambertian and in the absence of at-the image, as we explain below.
tached shadow the set of images of the face under differ-  As an example consider a two-tone image of a Lamber-
ent lightings is 3-dimensional. A two-tone image provides tjan sphere illuminated by a frontal light source seen on a
at every pixel an inequality that is linear in both the com- pright background. It is easy to construct other simple sur-
ponents of the lighting vector and the threshold value, andfaces that are consistent with this image, such as an axial
so these parameters can be recovered by solving a lineag|jipsoid with equat:— andy— axes, or a cone. Note how-
program. This method, however, requires a 3D model of gyer that both these surfaces are circularly symmetric about
the specific individual to be identified in the image. (The the optical axis, and so they all give the sanweonst re-
method however can in principle be extended to any linear construction along the Mooney transition curve. An inter-
model.) A more recent method(] too uses linear models  esting question, therefore, is whether reconstruction is still
for object recognition from Mooney images. This method ampiguous if we restrict our attention to the Mooney transi-
finds initial values for the coefficients and the threshold by tjon curve. If such a reconstruction is unique, we might be
solving a linear system along the Mooney transition curve, ape to derive shape invariants along the curve and use them
and then uses an iterative computation to refine these valyg recognize the shape in a bottom-up fashion.
ues. None of these methods however addresses the problem
of reconstructing a novel face from a Mooney image.

In the remaining sections we first investigate the unique-
ness of reconstruction from a Mooney image (Secfihn Consider a gray level imaggx,y) of a smooth Lam-
Later on we introduce algorithms for reconstruction of 3D pertian surface (z, y) with uniform albedo illuminated by
faces from single Mooney images and present experimentak, directional sourcke 3. The image intensities are given
results (Sectio3). by I = 17n, wheren denotes the surface normal at each
point, n = (1/,/22 + 27 + 1)(—2z, —2,,1). A two-tone
image is obtained fromd by applying a threshold > T

Monocular gray level and color images contain various for some constarif’ > 0. Below we assume without loss
cues from which a 3D shape can be inferred. These includeof generality thafl” is known, and that the light source co-
perspective cues, texture distribution, bounding silhouettes,incides with the viewing direction, i.el,= (0,0,1). Note
and shading cues. As two-tone images are much more im-however that our analysis can be applied to any directional
poverished, most of these cues are rarely available, and theource by a change of coordinates, aslif|,[and the mag-

2.1. General treatment of ambiguity

2. Non-Uniqueness of Reconstruction



nitude of the light can be scaled by appropriately scaling  where the pointty, s) € B. It can be readily verified that

With these assumptions we obtain indeeda(tg, s) = 0.
1 Unfortunately, given a Mooney image we cannot (g (
I(z,y) = ——, Q) to recoverx since in generak andE’ are unknown. How-
V22 +ap+1 ever, along the transition curve, we know thate = E’,

. . , . , and so') implies
which can be rewritten in the form of an Eikonal Equation

at"y = —Zt + Zt € {O, — 22}} (7)
Vz|* = E(z,y) ) B o
) ) To produce a non-trivial ambiguity we are generally only
on some closed domain C %%, whereE = (1/1%) — 1. interested here in the negative solutief), = —2z;. Since
_Ingeneral, given a gray level imade the correspond- ' — ), the positive solutiomy,|, = 0 if applied through-
ing eikonal equation can be solved by various methods, for ot -, jeads to the trivial solutiom =const, and so along
example by upwind updates using a Dijkstra-like algorithm .. ./ — .1 const. As we are interested in smooth solu-
(e.g, the fast marching methody, 23, 27]). These solu- tions, we can restrict our search to ambiguities that satisfy
tions rely on appropriate boundary conditions. In general, e negative solution

. . . .. L . ly = —2z.
upwind solutions require Dirichlet boundary conditions in K

Note thatb) and [7) can be used to explain unigueness

which z is specified at every minimal point df (maxi-  in the general SFS problem for gray level images. In that
mal point of 7) in 2. These may include local minima, as  casey = E' at every location inf2, and the negative so-
well as any minimum point along the boundariesdfOur  |ytion corresponds to the well-known convex-concave re-

analys_is therefore will allow the introduction of boundary fjection ambiguity. In principle either of the two solutions

conditions. o _ can be selected independently at every point, but if we con-
Consider two surfacesand:’ that give rise respectively  gjger only smooth solutions such transitions can only occur

to two imaged andI’ (and as before respectively fband at places in whichVz|2 = 0, and those transitions can be

E") which are "Mooney equivalent.” By this we mean that g|iminated by supplying appropriate boundary conditions.

IVz|? = E(z,y) and|V2'|? = E'(z,y) andl = I' =const |5 qur case, however, we know only thét— E’ along-.

along an isoluminance curve Some boundary conditions While given a Mooney image we cannot compuatén

may also be specified, so that= 2’ (and at internal points  the entire domairf2, we can nevertheless still provide an

also|Vz|* = [VZ'[? = 0) in some seBB C Q. Denote by expiicit solution fora along the transition curve. Let o

a(z,y) = 2’ — z, our goal is giver: to find the possible  pe an arclength parameterization-gfand letd (o) denote

assignments OffV _ _ the angle between the tangentiand thet direction, we
By subtracting the two eikonal equations foandz’ we obtain

obtain a new eikonal equation in

Val? +2Va-Vz = E — E. ©) aly = —2L2t cos Bdo + (o). ®)
To solve for o we introduce a change of coordinates Eq. (8) implies that if we choose some characteristic direc-
(z,y) — (¢, s) such thatey, = 0 anday # 0. t there- tions for « along the transition curve then there will be

fore points in the gradient direction of, and this will be exactly two shapes along this curve that will be consistent
useful since the gradient direction is also the characteristicwith the Mooney image; andz’ = z + a. However, un-
direction of (3). In this coordinate frame3] is transformed  like in the general SFS problem, in the case of a Mooney
to image we in general are free to choose different character-
istic directions alongy and thus produce many additional

af + 2z — (B = B) =0, ) solutions. The constraints enare therefore that it must be
(4) is quadratic inv, and its solution is given by consistent with the boundary conditions if such con-
ditions are given, and that its gradients coincide vgitime
ap = —z + \/m (5) smoothly varying directional derivatives at points along

This implies that in general many ambiguities exist even
From this equation we can derive a general solution for if we restrict our attention to the Mooney transition curve
« in the entire domaif by integratinglb) with respect ta only.
along the characteristic directions as follows
2.2. Ambiguity examples
alt,s) =— z(t,8) + z(to, 8) (6) _ ) o )
In this section we demonstrate ambiguities for the sim-

t
i/ \/22+ E' — E dt, ple Mooney pattern shown in Fi@ (bottom right). Con-
to

sider the unit sphere? + y? + 22 = 1. We will use polar



Figure 2.Surfaces whose Mooney image is identical to that of a sphere. Top: (from left to right) a sphere, three surfaces that produce the
same Mooney pattern, and 3D reconstruction of the four correspordougves. Bottom: original gray-level images of the four shapes
and the common thresholded image. To produce the ambiguity surfaces wg(used ¢ with ¢ € {3, 6,10} andro = 0.3.

coordinatesy = /2 + y2 andd = tan~!(y/z), so that
z = +/1—1r2. The gradient ot is therefore given by

-Tr
V1—r2
and its magnitude i = r2/(1 — r2). We further con-
sider boundary conditions at the origin, wit0,60) = 1
andz,(0,6) = 0 for all 8. Let the curvey consists of the
circler = ry and consider a point on this circle. Let the
direction intersecp at some angle relative to the normal
to~. Then the directional derivative afatp is

Zr = 29 =0, )

z¢(ro,0) = 0 cos 0. (10)
1-— rg
Now, using [() the gradient ofx atp is
2
an(rg,0) = —22(r0,0) = ———cos .  (11)
—T

0
Projecting the gradient onto the two polar directions yields

a(re,0) = \/12710772 cos? (12)
=70
2 2
ap(ro,0) = \/% cos ¢ sin @, (13)
-7

where the factor, is squared in13) due to the use of polar
coordinates.

Our objective is to find a functiomx(r,d) such that
a(0,0) = «a,(0,0) = 0 at the origin and whose polar

The boundary conditions imply(0) = f,.(0) = 0, and the
conditions ony imply

o 27’0 1
‘= i h00) an
_ r3 1 rofe(ro)
N T R YT S e

There are many ways to sg¢fr) to satisfy these equations.
One simple way is to sef(r) = r? for ¢ > 2. In that
casec = 2/(qrl *\/1 —r2) andk = —q/2. Fig.2 shows
several ambiguities from this family.

All the ambiguities in this family yield surfaces whose
Mooney images are indistinguishable from that of the
sphere, while their shape alongoscillates at any desired
frequency. However, these ambiguities in fact introduce
new maximal values near the boundary of the sphere, and
so in principle one may expect to obtain the height of these
maximal points as part of the boundary conditions. Unfor-
tunately, a local analysis of the type presented in Setibn
cannot prevent the emergence of new maxima. However, in
general the constraints enare such that in many cases it
may still be possible to produce ambiguities that will not
produce new maxima.

While it is possible to construct ambiguities that adhere
to the supplied boundary conditions and perhaps even avoid
introducing new extremal points it is worth noting that ob-

derivatives ony assume the values above. We can achievetaining boundary values for Mooney images is arguably

this by setting:
a = cf(r) cos?(k0). (14)

for some smooth functiofi(r) and constants andk. Con-
sequently,

cfy cos?(k6)
—2ck f (r) cos(k0) sin(k0).

(15)
(16)

Qo

Qg

very difficult. While for gray level images we may simply
detect the local maxima of the image, in Mooney images
those maxima can lie anywhere within the bright regions
in the image. Moreover, while in gray level images the
surface boundaries can be identified as discontinuities, in
Mooney images they may either blend with the background
or be indistinguishable from internal transitions from black
to white.



flectance (B, 20]). Specifically it uses the first order of ap-
proximation such that image intensities can be represented
as a linear combination of the components of the surface
normals,

I(z,y) = p1"Y (n), (19)

wherel = (ly,11,1,13)" denote the harmonic coefficients
of lighting, Y (n) = (1, ns, ny,n.)* andn,,n,,n. are the
components of the surface normaléz, y) at each point.
Reconstruction is achieved by first roughly aligning the im-
age with respect to the reference model by matching a small
Figure 3.A smooth reconstruction of a face shape from a single number of feature points and then optimizing the following
Mooney image using extensive boundary conditions. The figure functional

shows the mooney image (top left), a plot of the location of bound-

ary condlthns (|n_ pl_ue) and the transition curve (in magenta) con- min/ ((I _ plTY(n))2 + M Agd, + /\gAgd,,) dzdy,

tours (top right), initial surface (ground truth, bottom left) and the 1,0,z

surface obtained with this reconstruction (bottom right). Q@

(20)

where the first term in the functional is the data term

Finally, we have sought to construct an ambiguity sur- (EQ..19) andAgd., Agd, are two regularization functions
face given a Mooney image of a face. To this end we havethat maintain the difference between the reconstructed sur-
implemented an iterative method that constructs smoothface and the reference model smooth. This optimization
shapes while adhering to boundary conditions and to con-is carried out in three steps in which lighting, shape, and
straints on the gradient magnitude. Our implementation albedo are recovered sequentially. In the initial step we
does not restrict the direction of the gradientyabut only solve for lightingl by fitting the reference model to the im-
its magnitude. The result is shown in FigeAs expected,  age. After that the main step, recovering:, y), is carried
the overall shape of the face was preserved, due to the exteneut using the formula
sive use of boundary conditions, but most of the significant

features were washed away. I =~ pref(lo + “(p,q,-1)T)  (21)

1
Vv pr2ef + qrzef +1

wherel” = (I1,13,13), p = z, andg = z,. This pro-

In the previous section we showed that 3D reconstruc- vides one equation for every unknown, and with appropriate
tion from single Mooney images is generally not unique regularization and boundary conditions it is solved directly
even if we restrict our attention to the Mooney transition using least squares. (See Kemelmacher and Eadrif¢r
curve. This further supports psychological findings that the further details).
percept of shape from a Mooney image is possible only if A Mooney image is obtained frorh by choosing some
prior knowledge is introduced. In the case of faces, suchconstant? > 0 and then by thresholding the image
prior knowledge may include for example the 3D structure I(z,y) > T. In this case every equation ig1) becomes
of known faces. In this section we describe how existing an inequality. Thus in the main step we should now solve
3D face reconstruction methods that use prior knowledge ofa system of inequalities combined with regularization and
faces can reconstruct the shape of faces from single Mooneypoundary conditions. To avoid the instabilities that can
images. We consider two types of methods: a method forarise from the use of inequalities we used the same least
3D face reconstruction that solves a shape from shadingsquares approach as [i] to solve the optimization, with
equation and uses a single reference model and a methothe Mooney image used fdr. Constructing a smooth sur-
that uses linear combinations of a database of faces. face from a binary image requires regularization; otherwise

the discontinuity at the transition curve may result in an un-
3.1. Reconstruction with a single reference model ~ smooth reconstruction. We address this by modifying the
regularization weights\|, A5 along the Mooney transition
curves to prevent discontinuities.

3. 3D Reconstruction

The first method, presented by Kemelmacher and
Basri [14] (denoted KB), was designed to recover 3D shape
and albedo of faces from single color or gray scale im-
ages using a single reference model of a different individ-
ual's face. The method allows for multiple unknown light A fair number of recent approaches use statistical mod-
sources and attached shadows by representing image inels for 3D face reconstruction. These methods learn the
tensities using a spherical harmonics approximation to re-set of allowable reconstructions from a large dataset of

3.2. Reconstruction by statistical models



Gray-level KB’s method CSH'’s method Mooney KB’s method CSH'’s method
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Figure 4.Reconstruction results with gray-level (columins- 5) and thresholded images (colunths- 8) from the YaleB database. From
left to right: gray-level input image, reconstruction results with KB’s method (shape and shape+albedo) and with CSH'’s method, then we
show Mooney input image, and again reconstruction results with both methods.

|| KB's method | CSH's method| of [24)), but due to the high dimensionality of the model
1 6.2° 12.1° this would allow a fair amount of slack. Instead, we again
2 7.8° 11.8° applied this method directly to the Mooney images. The
3 4.1° 5.6° shapes obtained with this method appeared bumpy therefore

Table 1.Average angular error of shapes reconstructed from we applied gaussian smoothing to the outputs.
Mooney images in Figdlrelative to their reconstruction from gray

scale images. 3.3. Results and discussion

For the CSH method we used for trainifid models
faces by either embedding all 3D faces in a linear spacefrom the USF databasd?] acquired with a laser scanner.
(e.g. 2.14,18,126,122,130)) or by using a training set to deter- The database contains depth and texture maps of male and
mine a density function for face®%, 29). These methods female adult faces with a mixture of race and age. For the
can achieve accurate reconstruction, but they often requireKB method a mere one of the models in this training set was
expensive alignment and parameter fitting. To simplify the used as a reference model.
process, Castelat al. [6] (denoted CSH) proposed to com- Figurel4 shows some reconstruction results. First we
bine surface shape and image brightness variations into ahow reconstruction from gray level images taken from
single, coupled statistical model. In the first step separatethe YaleB database image$0]. Both methods produce
eigenspaces are constructed for image intensities and sumice reconstructions, with Castelahalfs method produc-
face shape variations from the training data, and then theséng some ringing effects near the nose (perhaps due to mis-
two spaces are combined into a single space. Then, giveralignments in the nose area). Then we show reconstructions
of novel faces, but with lighting with which the method was

an image the coefficients that fit the model to the image is
\) ‘ hidd " !
— ., — -
‘. [ '
J i gy
= 3 -
trained. ; 4 e

found and those coefficients, due to the coupling of bright-
ness and shape in the model, can be used to recover shape

One way to apply this model to Mooney images is to cast Figure 5.Reconstruction results. Top: input images. Bottom: face
the problem as a system of linear inequalities (in the spirit shape reconstruction using KB’s method.

parameters and consequently the shape of the face itself.
The objective function obtained is linear and can be solved
efficiently. Despite its simplicity, this model was shown to
generally produce accurate surfaces from real images. This
method however is limited in scope since it does not model
lighting explicitly and cannot extrapolate to new lighting
conditions. We will therefore apply this method to images
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33.7° 37.7° 4.3° 37.8° 48.2° 28.9° 20.2° 4.3° 21.1° 29.7°
Figure 6.Reconstruction error with misplaced alignment points with KB’s method. Top: masked two-tone images used for reconstruction.
The red dots indicate the positions matched to five features of the reference model (eyes, nose, mouth, and chin). Vertical offsets are shown
on the left and horizontal on the right. Numbers represent offsets in pixels. Second row: corresponding reconstructions. The numbers

represent anglular error relative to reconstruction from a color image.

from Mooney images obtained by thresholding images from 50
the YaleB dataset. To measure the error we compared the 4|
average of the angles between corresponding surface nor-
mals in each reconstruction relative to a reconstruction with
the original gray scale image. Overall, both methods work
surprisingly well producing reasonable reconstructions that 10r
have resemblance to their gray-level counterparts. This
is further demonstrated by measuring the average angular, ™ _3¢ -0 -0 0 10 20 30 ~ 40
error between the Mooney reconstructions and their gray—El'ﬁ\ljS ;a’gl%ﬂ:?g;g%ig‘;:c;ur:]]gtr']?: (g];e%ff)et for vertical (blue
level counterparts (Tablg). We can observe that the KB's '

method is more consistent (the errors are smaller), however

in both methods the error is relatively small (upl®1°). in pixels in presented in Figl. A clear minimum in the er-

Next, we applied KB's method to images downloaded ror is obtained when the features are correctly aligned. The
from the Internet and thresholded by the same constant (ex- y aigned.

. . ~“reconstruction quality slowly degrades with shifts of up to
cept for the leftmost image, which was downloaded orig- . . .
. . . . +5 pixels (10%) from correct alignment, which shows that
inally as a two-tone image). As CSH’'s method is not de- : o .
. RN . : the method is robust to small misalignments. Further, its
signed to work with lightings that are not available in the
training dataset it did not perform well on these images and
we do not include these results. Other PCA based methodsgyss
very similar to reconstructions from color images. Note that a
the different featureg and facial expressions of each individ- 100 120 140 160 180
ual are clearly seen in these reconstructions. )
When prior knowledge is used in reconstruction there is - — - S — —
always the question of how dominant the prior knowledge ; | | /
is and how much it is modified by the data. This question is = A /‘ A =/ )
particularly relevant when impoverished data is used. This ' ' . d
by apply'ing KB’s method to shifted copies of th? image, _olds, obtained with KB's method. Original color image and two-
i.e., to misplaced face patterns. Indeed, as we shift the positone images (top images) obtained with different threshold values
tion of the alignment features in vertical and horizontal di- (indicated below), and corresponding reconstructions (bottom im-
rections the reconstruction results deteriorate fairly rapidly ages), along with angular errors relative to reconstructions from

might better deal with variations in lighting. Fi§.shows
can be tested, for example, by applying reconstruction to 7.2° 2.1° 5.3° 10.8° 14.9°
(Fig.|6). A plot of the error as a function of misalignment color image (shown on left).

30F

20

! ! ! ! ! ! !

o

reconstruction results obtained with KB's method, these are \"
non-face black and white patches. Here we implement thisgjgyre g Reconstruction results and errors with different thresh-



degradation beyond that range indicates that the shape of10]
the reference face is not imposed on the data. Finally, as
Mooney faces can be produced from gray-scale images by
using different thresholds, we demonstrate the effect of us-
ing different thresholds in Fig. [

4. Conclusion [12]

Mooney images are fascinating testimonial to the ability [13]
of biological vision systems to accurately handle and in-
terpret impoverished data. This paper provides additional
support, from a mathematical perspective, to the widely [14]
held view in cognitive psychology that the perception of [15]
Mooney images is guided primarily by top-down processes
in which prior knowledge plays a crucial role. Our main
contribution in this paper is showing that shape reconstruc- [16]
tion from a single Mooney image, under the standard Lam-
bertian assumptions, is non-unique even if reconstruction is
restricted to the Mooney transition curve alone. We have [17]
further demonstrated this by constructing families of ambi-
guities for simple shapes. Finally, we have discovered that
recent face reconstruction approaches that use prior knowl{18]
edge are capable of successfully recovering the 3D shape
of faces from single Mooney images and showed novel re-
sults on real and synthetic data. These results may furthet %]
encourage research in recognition and detection of Moone
faces in cluttered environments, provide insights on image
guantization and may also suggest to psychophysicists con-
crete ways to test this fascinating human ability. [21]
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