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Abstract

Face recognition has the perception of a solved problem,
however when tested at the million-scale exhibits dramatic
variation in accuracies across the different algorithms [11].
Are the algorithms very different? Is access to good/big
training data their secret weapon? Where should face
recognition improve? To address those questions, we cre-
ated a benchmark, MF2, that requires all algorithms to be
trained on same data, and tested at the million scale. MF2
is a public large-scale set with 672K identities and 4.7M
photos created with the goal to level playing field for large
scale face recognition. We contrast our results with findings
from the other two large-scale benchmarks MegaFace Chal-
lenge and MS-Celebs-1M where groups were allowed to
train on any private/public/big/small set. Some key discov-
eries: 1) algorithms, trained on MF2, were able to achieve
state of the art and comparable results to algorithms trained
on massive private sets, 2) some outperformed themselves
once trained on MF2, 3) invariance to aging suffers from
low accuracies as in MegaFace, identifying the need for
larger age variations possibly within identities or adjust-
ment of algorithms in future testings1

1. Introduction

All that glisters is not gold
Often have you heard that told.

William Shakespeare

According to Google Scholar, in just the year 2016, 938
face recognition algorithms were published, 34 patents were
filed, and dozens of face recognition startups were estab-
lished. Given such colossal resources, let’s say one wishes
to create an application that uses the best face recognition
algorithm out there, how would they know which algorithm
is better to implement or buy?

1Benchmark is updated frequently and available at http://
megaface.cs.washington.edu.

Two prominent problems in face recognition are verifica-
tion and identification. Verification is the problem of verify-
ing if two images of faces are the same person, while identi-
fication is the problem of determining the identity of a face
image. Public benchmarks help rank algorithms and indeed
on smaller test sets, e.g., Labeled Faces in the Wild (LFW)
[9], YouTube Faces Database (YFD) [30], and IJB-A [14],
computers have reached phenomenal accuracies in both ver-
ification and identification. Recent large-scale benchmarks
[11, 8], however, consistently indicate these problems are
not solved on a global scale (where millions, even billions
of identities are to be distinguished). Moreover, there is a
dramatic difference in accuracy across the algorithms.

High variation in accuracy across algorithms raises an in-
teresting question. Is it really that some particular algorithm
outperforming others or access to big/good training data is
the key to success? That’s what we aim to investigate in
this paper. The idea is the following: let’s create a training
set which can be used by everyone (publicly available), re-
quire groups to train only on that data and evaluate at scale
(unlike [11, 8] which allow to train on any data, including
private sets). This should potentially level the playing field
and benchmark the actual algorithms rather than the data
they use. Creating a large public training set is a challenge
though.

The ImageNet competition [24] showed that neural net-
works [15] approaches dominate, and tend to perform better
as 1) deeper networks are developed and 2) more data is pro-
vided to accurately tune network weights. It is important,
therefore, for a benchmark to provide big enough data for
algorithms to be successful. Private companies have access
to millions of labeled identities, however these can not be
made public. [21, 8, 31] are among the biggest public sets
(Table 1). One interesting direction would be to combine
those into a single training set. Instead we chose to create
a new set from Flickr photos due to: 1) most public sets
(training and testing) are photos of celebrities; to remove
dataset bias we chose to use mostly non-celebs for training,
2) based on the success of FaceNet [25], in [11], we aimed
for large number of identities (to span the diversity in hu-

http://megaface.cs.washington.edu
http://megaface.cs.washington.edu


Dataset Celebrity? Identities Size
LFW Yes 5K 13K
FaceScrub Yes 530 106K
YFD Yes 1.5K 3.4K Videos
CelebFaces Yes 10K 202K
UMDFaces Yes 8.5K 367K
CASIA-WebFace Yes 10K 500K
MS-Celeb-1M Yes 100K 10M
VGG-Face Yes 2.6K 2.5M
Ours No 672K 4.7M
Facebook† No 4K 4.4M
Google † No 8M 200M+
Adience No 2.2K 26K

Table 1. Representative face datasets that can be used for training.
† Denotes private dataset.

man population); max number of identities before MF2 was
100K, while MF2 has 672K. Given these considerations we
discuss several key aspects in the paper:

1. An automatic 672K identity labeling algorithm. For
contrast, ImageNet and the Google Open Images [1]
sets include 10K classes. Human annotation of small
datasets is more accurate, however, scaling up to mil-
lions photos is challenging [19]. Using compact em-
beddings, we are able to cluster millions of faces pro-
vided assumptions based on the data structure hold.

2. Baselines trained on MF2 and the different approaches
in dealing with 672K classes during training.

3. Benchmarking with MF2 and provide insights con-
trasting with MegaFace and MS-Celebs-1M chal-
lenges.

2. Related Work
We focus on training datasets and benchmarks, labeling

of large scale data, and large-scale training.

2.1. Data and Benchmarks

Table 1 summarizes representative datasets for train-
ing. Notably, VGG-Face, CASIA-Webface [32], UMD-
Faces [2], or MS-celebs-1M [8] would be typically used for
training (since they are bigger than others), unless access
to private data is available. Private sets, e.g.,Google, Face-
book, or governmental databases can not be made public.
Private data can get to as many as 8M identities and 200M+
photos [25], while the largest public dataset has 100K iden-
tities and 10M photos [8]. Public sets are mostly created
from celebrity photographs, thus the labeling problem in-
volves harvesting many celebrity names, collecting pho-
tographs pertaining to these labels, and utilizing a combina-
tion of automated and manual data verification and cleaning

to produce the final data set. Since the label is known, well-
curated websites such as IMDB, knowledge graphs such as
Google Freebase, and search engines are leveraged.

By training only on celebrity photographs, we risk con-
structing a bias to particular photograph settings. For ex-
ample, it is reasonable to assume that many celebrity pho-
tographs were obtained with high quality professional cam-
eras, or that many celebrities photographs are not of chil-
dren. Algorithms learned with this bias may perform differ-
ently when tested on photographs of non-celebrities.

The most recent benchmarks in large-scale face recog-
nition are MegaFace [11] and MS-celebs-1M [8]. Both
allow training on any data. Interestingly results from the
two benchmarks are consistent, i.e., highest score is around
75%, and there is dramatic difference across algorithms. In
this paper, we experiment with a fixed training set (no out-
side data is allowed).

2.2. Large-scale labeling

Labeling million-scale data manually is challenging and
while useful for development of algorithms, there are al-
most no approaches on how to do it while controlling costs.
Companies like MobileEye, Tesla, Facebook, hire thou-
sands of human labelers, costing millions of dollars. Ad-
ditionally, people make mistakes [10, 5] and get confused
with face recognition tasks, resulting in a need to re-test
and validate further adding to costs. We thus look to auto-
mated, or semi-automated methods to improve the purity of
collected data.

There has been several approaches for automated clean-
ing of data. [21] used near-duplicate removal to improve
data quality. [16] used age and gender consistency mea-
sures. [3] and [33] included text from news captions de-
scribing celebrity names. [20] propose data cleaning as a
quadratic programming problem with constraints enforcing
assumptions that noise consists of a relatively small portion
of the collected data, gender uniformity, identities consist
of a majority of the same person, and a single photo cannot
have two of the same person in it. All those methods proved
to be important for data cleaning given rough initial labels,
e.g., the celebrity name. In our case, rough labels are not
given. We do observe that face recognizers perform well
at a small scale and leverage embeddings [29] to provide a
measure of similarity to further be used for labeling.

2.3. Large-scale training

Large-scale training optimization considers large num-
bers of samples per class where batching and online ap-
proaches, e.g., stochastic gradient descent, are valuable [4].
[18] suggested to augment the number of samples per iden-
tity using domain specific techniques, such as expression
altering or pose warping. In such case, samples can be
parametrized and trained more effectively.



A complementary problem is how to scale and optimize
training in case the number of classes (rather than sam-
ples in each class) is big. Fully connected softmax net-
works [21], performed training on only 2.6K classes (iden-
tities) at once. Optimizing directly for embeddings, without
predicting all classes at once, showed to scale better [25].
MS-celebs-1M [8] leveraged smaller pre-trained networks
as starting points for larger data, i.e., bootstrap a network
trained on 2.6K identities to train further on 10K+ identi-
ties.

3. Data Collection for MF2

To create a data set that includes hundreds of thousands
of identities we utilize the massive collection of Creative
Commons photographs released by Flickr [26]. This set
contains roughly 100M photos and over 550K individual
Flickr accounts. Not all photographs in the data set con-
tain faces. Following the MegaFace challenge [11] and [6],
we sift through this massive collection and extract faces de-
tected using DLIB’s face detector [12]. To optimize hard
drive space for millions of faces, we only saved the crop
plus 2 % of the cropped area for further processing. After
collecting and cleaning our final data set, we re-download
the final faces at a higher crop ratio (70%). As the Flickr
data is noisy and has sparse identities (with many exam-
ples of single photos per identity, while we are targeting
multiple photos per identity), we processed the full 100M
Flickr set to maximize the number of identities. We there-
fore employed a distributed queue system, RabbitMQ [22],
to distribute face detection work across 60 compute nodes
which we save locally. A second collection process aggre-
gates faces to a single machine. In order to optimize for
Flickr accounts with a higher possibility of having multiple
faces of the same identity, we ignore all accounts with less
than 30 photos. In total we obtained 40M unlabeled faces
across 130,154 distinct Flickr accounts (representing all ac-
counts with more than 30 face photos). The crops of photos
take over 1TB of storage. As the photos are taken with dif-
ferent camera settings, photos range in size from low reso-
lution (90x90px) to high resolution (800x800+px). In total
the distributed process of collecting and aggregating photos
took 15 days.

4. Automatic Identity Labeling

Our next task is to cluster the unlabeled faces into identi-
ties. While faces are unlabeled we do have their respective
Flickr IDs. The key idea, then, is that while face recog-
nition is unsolved on large scale, it works well on a small
scale, e.g., clustering small number of people in a single ID.
For example [21] obtains over 99% accuracy on the LFW
benchmark. Thus we first run a face recognizer on each
Flickr ID. Each Flickr ID has on average 307 photos per

account. Then we develop a clustering algorithm that can
distinguish between the small number of identities in each
ID. Our face recognizer utilizes the pre-trained VGG-Face
model [21], and further augments the performance by train-
ing a triplet projection layer over the data set released by
VGG-Face. A 1024-dimensional triplet embedding is used
to extract euclidean distance comparable features over our
entire set of 40M faces.

4.1. Clustering considerations and assumptions

Unlike celebrity data set construction, the identity of the
individuals in Flickr data is unknown thus we must directly
cluster a large set of unlabeled data instead of growing ex-
isting clusters based on search terms. The task of clustering
all 40 million faces in the same space is enormous, and er-
ror prone. On a local Flickr account scope, however, face
recognition can be expected to perform well with current
available algorithms, thus we can achieve strong results by
aggregating a series of smaller clustering problems, and run
those in parallel. We also make cluster size assumptions in
order to alleviate noise. In particular we make the assump-
tions:

1. Identities cannot be found across Flickr accounts.
2. Identity cannot be found more than once in a photo.
3. An identity must have > Z photos for an integer Z.

The assumption that identities cannot be found across Flickr
accounts is one to bootstrap the quality our data set rela-
tive to the algorithm used. Current available algorithms do
not perform well on the millions-scale using clustering ap-
proaches on the entire unlabeled data corpus directly. When
tried, the example clusters we inspected were simply incor-
rect as the problem was too large. Instead we made this as-
sumption to reduce the scale of clustering to the hundreds,
in which the triplet tuned VGG-Face features excelled at
separating. In this way we gain information from the struc-
ture of the Flickr data itself. Additionally, this allowed us to
run our clustering algorithm in parallel, drastically reducing
computation time.

These assumptions are not valid for all cases. For exam-
ple, celebrities may be found within the Flickr data, or “col-
lage” images can be formed which contain multiple copies
of one identity. However, in practice we found these as-
sumptions hold well.

Under these conditions, it is also not known how many
clusters (identities) exist within a particular Flickr account.
Thus we limit ourselves to clustering algorithms which can
discover the number of clusters. We have tried a num-
ber of approaches. Iterative clustering algorithms, such as
cop-kmeans and kmeans with elbow detection [28, 17, 27],
obtained poor results in the hypersphere embedding. DB-
SCAN [7], a simple distance thresholding algorithm pro-
duced promising results for particular distance parameters



in particular Flickr ID, but generalized poorly across multi-
ple Flickr IDs due to variations in embedding distance. The
layout (and therefore relative distances) of faces in the em-
bedding varies by ID. For example, for some IDs a set of
faces may exhibit an average distance of 0.90, and same-
identity faces are on average 0.14 apart which is perfect sep-
aration, but these specific numbers are not observed across
Flickr accounts making it hard to generalize. Using strict
DBSCAN [7] or absolute distance thresholding also fails to
encode our assumptions such as that multiple instances of
the same identity cannot be in the same photo.

4.2. Our clustering algorithm

We therefore created our own modified clustering al-
gorithm leveraging a simple relative-distance thresholding
model, but also incorporating our assumptions. This algo-
rithm can be broken down into the following steps, treat-
ing the embedding as a graph of faces, where edges signify
common identity:

1. The graph of faces within a Flickr account is initialized
with no edges between faces.

2. A no-link constraint matrix is constructed: N ×N bi-
nary matrix, where N is the number of faces in the
Flickr account. It is populated with the results of our
assumptions, i.e., entry at i, j signifies that faces i and
j can be linked with an edge signifying they are the
same identity.

3. Compute D, where D is the average pairwise eu-
clidean distance in the Flickr account (across all pairs
of faces), using the feature embedding.

4. For every pair of faces i, j we threshold on parame-
ter β as follows: if their entry in the no-link matrix is
false, and their distance is less than βD, place an edge
between the faces.

5. Obtain connected components C in this new graph.
6. For every connected component ci ∈ C, if the size

of the connected component is less than Z, remove it
from the graph as it is too small to be an identity. In our
work we choose a minimum component size Z = 3.

7. Save each connected component remaining as a cluster
(identity).

The parameter β was chosen automatically via validation
with ground truth (on independent labeled sets LFW and
FGNET), more details in Sec. 4.4.

4.3. Clustering Optimization:

We validate our clustering approach with ground truth
(on independent labeled sets LFW and FGNET). The above
algorithm produced over 85% purity, i.e., correct identities.
There are two key observations and patterns, however, in
the clustering embedding. Based on those we have further

Figure 1. Example of a noise cluster containing “garbage” im-
ages (low resolution, non-faces). These tend to appear in clusters
together as the embedding places them in close proximity. How-
ever, the average pairwise distance of such a cluster is much higher
than a valid identity.

created two noise reduction mechanisms which increased
the accuracy to 98% purity on both LFW and FGNET sets.

We identified two types of noise that survive the initial
clustering algorithm:

• Garbage clusters. The embedding tends to place low
resolution faces and non-faces (e.g. noise from the de-
tector) in close proximity, and thus they end up form-
ing an identity. Example in Figure 1.

• Noise in otherwise pure clusters. These impurities
arise from the embedding incorrectly placing faces
within thresholding distance of other identities.

Impure Cluster Detection: Given a cluster, we estimate
the average pairwise distance between faces in the cluster.
The garbage clusters contain a much higher average pair-
wise distance than the regular identities. This is due to the
similarity embedding not placing noise images closer to-
gether than a legitimate identity. Further, we found that
pure clusters that contain small amounts of noise also have a
significantly higher average pairwise distance, as the mean
pairwise distance is not resistant to outliers. We thus use
this metric (mean pairwise distance) to flag clusters as im-
pure if they deviate by some parameter from the median
metric (since the median is much more resistant) across all
clusters.

To compute outliers, we use Median Absolute Deviation
(MAD), which is a more robust statistic when compared to
the Standard Deviation. In particular, the MAD is defined
as MAD(X) = Median(X ′) where X ′ is the vector of
absolute deviations from the median:

x′i = |xi −Median(X)|, xi ∈ X,x′i ∈ X ′. (1)

Thus, a cluster ci ∈ C with average pairwise distance di ∈
D is flagged impure if:

|di −Median(D)|
MAD(D)

> α (2)

Inner-Cluster Purification: Once clusters are detected
as impure, it could be the case that it is a normal cluster with
a small amount of noise. We purify it by searching for faces
which contribute most to the pairwise distance average. I.e.,



Figure 2. Left: Using distance optimization, cluster purity as outlier threshold α and distance threshold β vary. Center: Using distance
optimization, the fraction of photos kept as outlier threshold α and distance threshold β vary. Right: Purity as distractor count increases
with and without post-clustering optimization to detect impure clusters and performing inner-cluster purification. As expected, using
purification based on distance allows maintaining cluster purity as noise increases.

We construct a distance matrix dk for a specific cluster ck.
The i, j entry in dk is the L2 between the feature vectors of
faces i and j. The matrix dk, is then summed row-wise (or
equivalently column-wise), such that we obtain a vector v
that has one score for each face measuring how much dis-
tance it contributes. We again apply MAD, and formulate a
similar threshold to equation 2 to find outliers and remove
them. For simplicity, we used the same threshold, α for
both impure cluster detection and inner-cluster purification:

|vi −Median(v)|
MAD(v)

> α. (3)

These outliers are ejected from the cluster and, then once
removed, we evaluate equation 2 to determine if there are
still any impure clusters. If this subsequent check fails, we
reject the entire cluster. Similarly to β, the parameter α
is estimated automatically using the ground truth datasets
FGNET and LFW, explained in Sec. 4.4.

4.4. Parameter Tuning and Validation

To validate our clustering approach and tune the α, β pa-
rameters, we constructed a series of fake clusters using la-
beled faces from FG-Net and LFW. We also included ran-
dom samples from our collection of 1M Megaface photos
for artificial noise. We sampled the parameters (α, β) on a
linear scale in steps of 0.5, and for each sample pair we ran
the clustering algorithm on 100 randomly generated identi-
ties. We measured 1) cluster purity and 2) fraction of faces
kept. We averaged these measurements for each parameter
setting. The result is a two dimensional purity surface with
respect to our two clustering parameters, and an analogous
surface for the fraction kept. See Figure 2 for illustration.
We then selected β = 5.5 and α = 1.5 since this pair gave
the max purity (98%) and max fraction of faces kept (35%)
in our experiment.

Additionally, we tested invariance to noise, i.e., testing
if impure cluster detection and inner-cluster purification are

Figure 3. A set of FaceScrub impurities revealed by our outlier
detection. Some due to alignment artifacts, low resolution while
others are incorrect identities.

robust to noise, by increasing the ratio of MegaFace dis-
tractors to legitimate identities. For this, we increased the
ratio of noise to labeled images and measured the accuracy
with, and without cluster distance optimization. We found
that using post-clustering optimization favorably affect pu-
rity (from 90% degrading as distractors were added, to over
98% purity hardly degrading as distractors were added).
The right image of Figure 2 shows the degradation of pu-
rity in the final set as distractors increase.

Finally, we tested how our automated purification
method generalizes to other data sets. Specifically, we ran
the clustering to detect outliers in FaceScrub [20] by run-
ning the optimization over each identity in FaceScrub as if it
was a cluster. Even though FaceScrub is labeled, it is known
to include noise. Our clustering algorithm was able to auto-
matically detect the noisy clusters, e.g., Figure 3. These are
example faces from different celebrity clusters which were
found to be outliers in the embedded feature space from the
rest of the cluster. 186 images were found to be outlier faces
in total, representing 0.17% of the data set. No distractors
were used in this experiment.

5. Final Dataset Statistics
In total, once clustered and optimized MF2 contains

4,753,320 faces and 672,057 identities. On average this
is 7.07 photos per identity, with a minimum of 3 pho-
tos per identity, and maximum of 2469. Example identity
is shown in Figure 4. We expanded the tight crop ver-



Figure 4. Example of a randomly selected identity,
78799744@N00, in the loosely cropped version of our dataset
(MF2). This cluster was not flagged as impure and therefore made
it through to the final dataset. Note that the identity is found in
many different lighting, expression, and camera conditions.

sion by re-downloading the clustered faces and saving a
loosely cropped version. The tightly cropped dataset re-
quires 159GB of space, while the loosely cropped is split
into 14 files each requiring 65GB for a total of 910GB.
In order to gain statistics on age and gender, we ran the
WIKI-IMDB [23] models for age and gender detection over
the loosely cropped version of the data set. We found that
females accounted for 41.1% of subjects while males ac-
counted for 58.8%. The median gender variance within
identities was 0. The average age range to be 16.1 years
while the median was 12 years within identities. The distri-
butions can be found in the supplementary material.

A trade off of this algorithm is that we must strike
a balance between noise and quantity of data with the
parameters. It has been noted by the VGG-Face work
[21], that given the choice between a larger, more impure
data set, and a smaller hand-cleaned data set, the larger
can actually give better performance. A strong reason for
opting to remove most faces from the initial unlabeled
corpus was detection error. We found that many images
were actually non-faces (see Figure 1). There were also
many identities that did not appear more than once, and
these would not be as useful for learning algorithms. By
visual inspection of 50 randomly thrown out faces by the
algorithm: 14 were non faces, 36 were not found more than
twice in their respective Flickr accounts. In a complete
audit of the clustering algorithm, the reason for throwing
out faces are follows:

69% Faces which were below the < 3 threshold for
identity
4% Faces which were removed from clusters as impurities
27% Faces which were part of clusters which were still
impure even after purification

6. MF2 Benchmark

Participants are required to train their algorithms on MF2
dataset and test in the up to 1M distraction-probe scheme
proposed by the MegaFace challenge [11]. This effectively

levels the playing field between algorithms in hopes of
showing which algorithms can perform best with the same
amount of data. Specifics:

1. A participant downloads the 670K identities, and be-
gins training their algorithm as appropriate on this
data. We provide both tight crop and loose crop ver-
sions, as well as download links to the full images, face
detection locations, and fiducial points.

2. The participant extracts euclidean comparable features
from their trained algorithm on three different datasets:
a new 1M disjoint Flickr distraction face set (contain-
ing faces which are not found in the challenge training
set), FaceScrub, and FG-Net. The latter two are used
as probes (since the identity is known).

3. We then evaluate each set of features as described by
MegaFace Challenge: We predict several metrics (e.g.
rank-1 and rank-10 identification of probe images, as
well as verification) over varying levels of distractors
to evaluate the algorithms’ performance on the million
scale.

To help ensure no test-train overlap, we produce our 1M
distractor list entirely by using Flickr accounts that did not
have any samples in our final clustered set., and used a
small amount of probe images which are either celebrities
(FaceScrub) or from private study (FG-Net). If one of test
identities were to appear in the Flickr data, the sparseness
of our training identities (over 672K) would help mitigate
the overfitting.

7. Baseline Training Algorithms
To provide an initial result, 4 VGG networks were used

as baselines. In VGG-Face [21], training has been accom-
plished with class prediction per identity (softmax loss).
This is equivalent to learning a function ψ(x) for image
x which maps it to feature l and is a non-linear func-
tion IRW×H → IRL. Features ψ(x) are the fully con-
nected activations just before the softmax prediction layer.
L-dimensional feature vectors can be compared with eu-
clidean distance or cosine similarity, but [21] showed that
stronger results can be achieved by additionally learning a
triplet mapping of these features, i.e., γ(l) from feature rep-
resentation l to t which is a mapping IRL → IRT where
T << L and is L2 normalized as a unit hypersphere.
We follow the guidelines in the original paper and choose
L = 1024 as our triplet dimension for this experiment.

Similar to experience of [8] on 100K identities, we were
unable to output a prediction for all 670K identities, as the
VGG network contains a softmax output layer that is fully
connected. Thus, we trained the following four models:

Model A: Trained on random 20,000 identities (140K
photos) via softmax loss. The model outputs features
ψ(x) are the 4096-dimensional feature activations behind



FaceScrub FG-Net
Method Name Rank-1 Rank-10 Rank-1 Rank-10
GRCC 75.772% 92.666% 21.039% 35.781%
NEC 62.122% 78.658% 29.294% 43.233 %
Team 2009 58.933% 78.724% 38.208% 51.714%
3DiVi 57.045% 77.955% 35.790% 49.765%
VeraID 44.191% 61.827 % 16.086% 28.572%
TSEC 28.716% 43.030% 11.566% 22.853%
Baseline - Model C 5.357% 15.810% 5.873% 16.772%
Baseline - Model D 3.954% 14.326% 2.770% 12.694%
Baseline - Model A 2.130% 11.699% 0.334% 9.428%
Baseline - Model B 1.846% 11.313% 0.189% 9.230%

Table 2. Rank-1 and Rank-10 identification rates for participating methods (trained on the MF2 data set). Results are reported for two
probe sets: FaceScrub (celebrities) and FGNET (age invariance) with 1M distractors.

Figure 5. MF2: rank-1 identification rates under up to 1M distractions (varying by factors of 10) using FaceScrub (left) and FG-Net
(right) as probe images. For comparison, see corresponding plots from MegaFace challenge in the sup. material.

the 20K softmax output layer. Model was trained for 100
epoches. In our experiments we were only able to converge
training on up to 20,000 identities in the span of 48 hours.
With more resources (most notably GPU memory), this ap-
proach can be scaled further.

Model B: Triplet tuned Model A on all 670k identi-
ties via triplet loss. An additional triplet layer is placed in
front of the 4096-dimensional feature layer from a frozen
Model B. The model outputs 1024-dimensional triplet fea-
tures γ(ψ(x)). Model was trained for 20K iterations over
the span of 24 hours (at which point the training converged).

Model C: Trained a rotating softmax model with 2,600
identities which are randomly sampled every 20th epoch.
After each rotation the output layer is randomly re-
initialized and fine-tuned (e.g. all other layers are not
trained) for 5 of the 20 epoches. For the remaining 15
epoches the entire model is trained. The model outputs fea-
tures ψ(x) are the 4096-dimensional feature activations be-
hind the rotating softmax output. Model was trained for 400
epoches over the course of 72 hours.

Model D: Apply the same triplet tuning strategy of
Model B, but instead using a frozen trained Model C.

We augmented our data by randomly flipping left and

right, and train on non-aligned tight crop photos (96x96),
we used a learning rate of 0.001 and Adam as our optimiza-
tion algorithm [13]. Triplet tuning used a learning rate of
0.25.

A 1M disjoint distraction face set is computed from the
original 40M faces and used as a new MegaFace distraction
set. Features are extracted by each model for this set and the
two probe sets: FaceScrub and FG-Net. Rank-1 identifica-
tion rates under varying distractions are shown in Figure 5.
While these baselines did not account for the entire dataset
they provide a useful metric for comparison. All models
were trained across 4 NVIDIA Titan X GPUs.

8. Competition Results
Results of the groups participating in the MF2 bench-

mark are stated in Table 2, and Figures 5 and 6. There are a
number of interesting results which we discuss in this sec-
tion.

The most interesting result is that competitors scored
comparably to MegaFace and MS-Celebs-1M where any
private training sets were allowed. The highest scoring team
on MF2, GRCC, obtained a rank-1 accuracy of 75.771%,
with 1M distractors in the FaceScrub probe set. By compar-



Figure 6. MF2 verification performance rates with 1M distractors using FaceScrub (left) and FG-Net (right) as probe images. For
comparison, see corresponding plots from MegaFace challenge in the sup. material.

ison, the highest scoring team in MegaFace, Vocord, scored
75.127% also in FaceScrub with their private training set.

On the FGNET probe set (age invariant testing) algo-
rithms perform slightly worse than when private sets are al-
lowed. But more generally, on both challenges algorithms
do not perform as well as with FaceScrub. Since on MF2
we can not claim a dataset bias (trained on celebs and tested
on celebs) the issue may be deeper. It is possible that the
data does not provide enough variance in age. Although the
data set has people of diverse ages (shown by the distribu-
tion of ages in the Supplementary material), their individ-
ual photo collections may not span enough characteristics
across ages to provide accurate recognition as obtainable by
private data sets. This could be a point for future creation of
training sets. Alternatively, algorithms may need to account
for ages as an additional training feature.

FaceScrub FG-Net
Trained on MF1 MF2 MF1 MF2
3DIVI 33.705% 57.045% 15.780% 35.790%
SphereFace 75.766% 58.933% 47.582% 38.208%
GRCCV 77.147% 75.772% 24.783% 21.039%

Table 3. Rank-1 identification rates for methods that have both
participated in MegaFace and MF2: although in the original
MegaFace benchmark these algorithms may have been trained on
different datasets, MF2 allows for a more fair comparison of the
algorithms themselves.

Some of the groups participated in both MegaFace
(MF1) and MF2, and outperformed themselves once using
MF2 training data (See Table 3, which compares several
groups which participated in both benchmarks). For exam-
ple, the 3DIVI group increased their performance from 15%
to 35% on FGNET and 35% to 57% on FaceScrub (with
1M distractors). This is a significant increase that suggests
that once good training data is available to the public, al-
gorithms can be evaluated much better. The current winner
in the competition achieved around 75% in MF2 and about

74% in the MegaFace challenge [11] which suggests their
algorithm is particularly good and invariant to the type of
training data used.

Observing the results as a function of size of the distrac-
tor set in Figures 5 and 6 we see that, as expected, all algo-
rithms are doing very well with 10 distractors (comparable
to the LFW benchmark), and performance decreases with
increase of noise (up to 1M). This is similar to MegaFace
benchmark which means that MF2 is as good as other pri-
vate sets used for training.

Interestingly, all three recent large-scale benchmarks re-
port max accuracy of about 75%, and none of the state of
the art methods were able to outperform that accuracy.

9. Summary
Advance in neural networks, have made it clear that ac-

cess data is important to performance and the advancement
of recognition. Small scale benchmarks and challenges are
saturated. Many strong face recognition results have been
achieved using techniques such as softmax loss (class pre-
diction) as a training mechanism over a fully connected neu-
ral network layers; however, this approach scales poorly to
hundreds of thousands of labels (identities). In this paper
we have presented a new broad face data set featuring over
0.5M identities. We provided insights into how such a data
set can be labeled and constructed and released a benchmark
to level the playing field across algorithms and remove bias.
Preliminary results on this competition has shown compa-
rable results to MegaFace and MS-Celebs-1M (which allow
private data sets), and important issues that need more con-
sideration are discussed.
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