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Abstract—Multiview structure recovery from a collection of
images requires the recovery of the positions and orientations
of the cameras relative to a global coordinate system. Our
approach recovers camera motion as a sequence of two global
optimizations. First, pairwise Essential Matrices are used to re-
cover the global rotations by applying robust optimization using
either spectral or semidefinite programming relaxations. Then,
we directly employ feature correspondences across images to
recover the global translation vectors using a linear algorithm
based on a novel decomposition of the Essential Matrix. Our
method is efficient and, as demonstrated in our experiments,
achieves highly accurate results on collections of real images
for which ground truth measurements are available.
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I. INTRODUCTION

Given a collection of images, recovering the exterior
orientation parameters (i.e., the location and orientation) of
the cameras that capture the images is an important step
toward 3D shape recovery. This, multiview Structure from
Motion (SfM) problem [1], [2], is a fundamental and well
studied problem in computer vision. Recent decades have
seen persistent progress in both problem formulation and the
development of suitable algorithms for SfM. This progress,
along with the advancement of computational power, has led
to systems that are now capable of reconstructing large scale
scenes from hundreds of thousands of images (e.g., [3], [4],
[5], [6], see review in [7]).

This paper addresses the problem of finding the exterior
camera parameters of n cameras given a collection of point
correspondences. SfM systems typically use point corre-
spondences to recover epipolar constraints between pairs of
images. The camera motion parameters are over-constrained
by these epipolar constraints. A consistent recovery of the
exterior camera parameters from a partial set of noisy epipo-
lar constraints is a challenging and well-studied problem.

Until recently, practical SfM systems have approached the
problem of motion estimation in large, multiview settings
using a sequential, greedy strategy that scans the image set
in paths that produce a spanning tree [3], [5], [6]. Several
recent studies cast the problem in a global optimization
framework that accounts simultaneously for all cameras [8],

[4], [9], [10], [11], [12], [13], [14], [15]. In this paper we
propose an approach that solves for all motion parameters
simultaneously in a framework which is both efficient and
accurate.

We follow a common pipeline of SfM methods [8], [10].
Given n input images, we use standard software to recover
point correspondences and Essential Matrices (relating some
of the image pairs). Our method then proceeds by recov-
ering the orientations of the corresponding n cameras and
subsequently the n camera locations. For the recovery of
camera orientation we use an objective similar to the one
proposed by [10] and propose two new methods to solve
this problem using (i) eigenvector decomposition and (ii)
semidefinite programming (SDP). Subsequently, we intro-
duce a new way to solve for camera locations by casting
the problem as a homogeneous linear system of equations.
To this end we introduce a novel expression for the Essential
Matrix in terms of the global motion parameters and derive
a method to recover the camera locations directly from
point correspondences. Our method is very efficient: camera
parameters are recovered by applying the MATLAB ’eigs’
command on two 3n ⇥ 3n matrices. Our method achieves
accurate estimates of the motion parameters, overcoming
errors in the initial estimates of pairwise Essential Matrices.
We demonstrate our method in experiments with standard
collections of real images.

II. BACKGROUND

We begin with a brief summary of the relevant concepts
in multiview geometry. A thorough treatment of this subject
can be found in [2]. Let I1, I2, ..., In denote a collection of
images of a stationary scene, and let ti 2 R3 and Ri 2
SO(3) (1  i  n) respectively denote the focal points
and orientations of the n cameras in some global coordinate
frame. Let fi denote the focal length of the i’th camera.
To produce the i’th image a scene point P = (X,Y, Z)

T

is transformed to Pi = RT
i (P � ti) and projected to pi =

(xi, yi, fi) in Ii with pi = (fi/Zi)Pi, where Zi is the depth
coordinate of Pi.

For a pair of images Ii and Ij (1  i, j  n) we define
Rij = RT

i Rj and tij = RT
i (tj � ti). It can readily be



verified that Pj = RT
ij(Pi�tij). Therefore, Rij and tij are

the rotation and translation that relate the coordinate frame
of image j with that of image i. Clearly, Rji = RT

ij and
tji = �RT

ijtij .
By a standard construction, the Essential Matrix Eij is

defined as Eij = [tij ]⇥Rij , where [tij ]⇥ denotes the skew-
symmetric matrix corresponding to the cross product with
tij . This construction ensures that for every point P 2 R3

its projections onto Ii and Ij , denoted pi and pj , satisfy the
epipolar constraints

pT
i Eijpj = 0. (1)

A proper Essential Matrix Eij can be decomposed into a
rotation Rij and a translation tij . This provides two possible
rotations and a scale (and sign) ambiguity for the translation,
which are determined by the chirality constraint.

III. ESTIMATING CAMERA ORIENTATION

Our formulation is based on recent estimation methods
shown in the context of 3D structure determination of macro-
molecules in cryo-electron microscopy (EM) images [16],
[17]. That work has assumed that pairwise rotations are
known for every image pair. We focus on the SfM case
where many of the pairwise rotations are missing. Our
objective function is similar to that in [10], with our objec-
tive function allowing to additionally derive a tighter SDP
relaxation. See Section III-A for discussion and comparison
with [10].

Other works that take a global approach for recovery of
camera rotation include using a reference plane (e.g. [11])
or quaternions [8], [12], which were shown in [10] to be
inferior to Frobenious-based techniques. Hartley [18] uses
a non-linear L1 minimization for rotation estimation, see
discussion in Section VI-B.

We estimate camera orientation for a set of n images
I1, ..., In. Suppose we are given estimates of some of the�n
2

�
Essential Matrices, ˆEij . (Below we use the hat accent

to denote measurements inferred from the input images.) We
factorize each Essential Matrix and obtain a unique pairwise
rotation denoted ˆRij . We can further use [19] to detect
motion degeneracies, in which case ˆEij is ignored. Our aim
is to recover camera orientation in each of the n images,
R1, ..., Rn, based on the pairwise rotations ˆRij .

A. Spectral Decomposition
Suppose all ˆRij are known. Then, following [10], we can

cast this problem as an over-constrained optimization:

min

{R1,...Rn}

nX

i,j=1

kRT
i Rj � ˆRijk2F , (2)

where k.kF denotes the Frobenius norm of a matrix. We
further require each matrix Ri (1  i  n) to be a rotation,
obtaining seven constraints for each of the rotations – six
orthonormality constraints of the form RT

i Ri = I and one

for the determinant, det(Ri) = 1 (to distinguish it from
reflections).

We solve the optimization problem (2) using the follow-
ing observation. Let G be a 3n ⇥ 3n symmetric matrix
constructed by concatenating the pairwise rotation matrices,
namely,

G =

0

BB@

I R12 ... R1n

R21 I ... R2n

... ...
Rn1 Rn2 ... I

1

CCA . (3)

Let R be a 3 ⇥ 3n matrix constructed by concatenating
rotations relative to a universal coordinate system R =⇥
R1 R2 ... Rn

⇤
. Then,

Claim 1. G has rank 3 and its three eigenvectors of nonzero
eigenvalues are given by the columns of RT .

Proof By definition Rij = RT
i Rj , and so G = RTR with

rank 3. Since RRT
= nI , GRT

= RTRRT
= nRT , and

hence the three columns of RT form the eignevectors of G
with the same eigenvalue, n. ⇤

Usually, in SfM problems some of the pairwise rotations
are missing. We then modify G to contain zero blocks for
the missing rotations. Let di denote the number of available
rotations Rij in the i’th block row of G, and let D be the
3n⇥ 3n diagonal matrix constructed as

D =

0

BB@

d1I 0 ... 0

0 d2I ... 0

...
0 0 ... dnI

1

CCA . (4)

It can be readily verified that GRT
= DRT , and so the

columns of RT form three eigenvectors of D�1G with
eigenvalue 1.

More generally, the construction of G and D can be
modified to incorporate weights 0  wij  1 that reflect
our confidence in the available pairwise rotations Rij .

In practice, however, the relative rotations ˆRij that are
extracted from the estimated Essential Matrices may deviate
from the ground truth underlying Rij . This is both because
of mismatched corresponding points and errors in their
estimated location. Similarly to G, we define ˆG as the
3n ⇥ 3n matrix containing the observed pairwise rotations
ˆRij .

Claim 2. An approximate solution to (2), under relaxed
orthonormality and determinant constraints, is determined
by the three leading eigenvectors of the 3n⇥ 3n matrix ˆG.

Details and a proof are provided in the appendix. Note
that, in general, the noisy input reduces the spectral gap
between the top three eigenvalues of ˆG and the rest of its
eigenvalues.

To extract the rotation estimates, we denote by M the 3n⇥
3 matrix containing the eigenvectors as in Claim 2. M com-
prises n submatrices of size 3⇥ 3, M = [M1;M2; ...;Mn].



Figure 1. Comparison of our spectral method (in red) to [10]’s (blue). The
figure shows angular recovery error as a function of fraction of outliers.
Of the pairwise rotations 15% are true rotations perturbed by Gaussian
noise of 20DB, corresponding to a mean angular error of 5�, and the rest
of the input rotations are either missing or drawn uniformly from SO(3),
simulating outliers.

Each Mi is an estimate for the rotation of the i’th camera.
Due to the relaxation, each Mi is not guaranteed to satisfy
MT

i Mi = I . Therefore, we find the nearest rotation (in
the Frobenius norm sense) by applying the singular value
decomposition Mi = Ui⌃iV

T
i and setting ˆRT

i = UiV
T
i [20].

We further enforce det(

ˆRi) = 1 by negating if needed.
Note that this solution is determined up to a global rotation,
corresponding to a change in orientation of the global
coordinate system.

Additionally, observe the particular structure of G. Note
that G has the form of a block adjacency matrix for the
graph G = (V, E) constructed by placing an edge (i, j) 2 E
for every available Essential Matrix Eij ; G includes a 3⇥3

block of rotation for every entry 1 in the adjacency matrix
and a zero block for every entry of zero. The matrix D�1G,
therefore, is tightly related to the graph Laplacian of G.
Consequently, it can be shown that all the eigenvalues of
D�1G are in the range [�1, 1]. In practice, however, the rank
of the estimate matrix ˆG may exceed 3, and the spectral gap
between the three leading eigenvectors and the rest of the
eigenvectors is often smaller than 1. Numerical experiments
conducted in [16] in the case that ˆG is full and theoretical
analysis based on random matrix theory demonstrate the
robustness of this approach in the context of reconstruction
of macromolecules from cryo-EM readings. Our experiments
below show similar behavior in typical SfM problems in
which ˆG is sparse.

Comparison to [10] : Our objective function (2) is equal
to [10]’s, who minimized

Pn
i,j=1 kRj � Ri

ˆRijk2F , and the
two solution methods differ in the normalizations applied to
account for the missing pairwise rotations. Moreover, our

formulation further allows for casting the problem in an
SDP framework (section III-B). The following simulation
demonstrates that our spectral method is more robust to
errors in the estimation of the Essential Matrices. We sam-
pled N = 100 rotation matrices representing true camera
orientations. We next perturbed 15% of the N(N � 1)/2
pairwise rotations with Gaussian noise with SNR of 20DB
and projected the noisy matrices to SO(3). (Similar results
were obtained with other fractions of perturbed rotations
and SNR values.) The rest of the pairwise rotations was
either considered missing or drawn uniformly from SO(3)

(simulating outliers). Figure 1 shows the angular recovery
error obtained with our spectral method compared to [10]’s,
as a function of the fraction of outliers. It can be seen that
our spectral method consistently achieved more accurate
estimation of orientation, particularly as the number of
outliers increases. We note that in our real experiment
with the Notre-Dame sequence (Section VI) the fraction of
missing pairwise rotations was 72%.

B. Estimation with SDP

The formulation above, which leads to a solution by spec-
tral decomposition, can be used also to derive a semidefinite
programming (SDP) relaxation. Our minimization (2) can be
cast as a maximization of

max

{R1,...Rn}

nX

i,j=1

trace

⇣
ˆRT
ijR

T
i Rj

⌘
, (5)

since assuming Ri 2 SO(3), kRT
i Rjk2F = k ˆRijk2F =

trace(I) = 3. Using our notation above this equation can
be written as

max

G
trace

⇣
ˆGTG

⌘
, (6)

where the unknown matrix G should be decomposable to
RTR. To allow such a decomposition G is required to be
positive semidefinite and to have 3 ⇥ 3 identity matrices
along its diagonal. In addition, G should have rank 3
and the determinant of each 3 ⇥ 3 block of G should
be 1. The problem is analogous to the problem of matrix
completion [21], as we seek to complete a rank 3 matrix
G from noisy observations ˆG, with the additional constraint
that G is positive semidefinite and composed of rotation
matrices.

To obtain a semidefinite program we drop the rank and
determinant requirements and solve

maxG trace

⇣
ˆGTG

⌘
,

s.t. G ⌫ 0 8k
Gii = I 1  i  n,

(7)

where Gii denotes the i’th 3⇥3 block along the diagonal of
G. Once the optimal G is found we use SVD to recover the
set of n rotation matrices as we did in the previous section.



Notice that the SDP relaxation can be made slightly
tighter. If G is indeed rank 3, and since its block diagonal is
paved with identity matrices, then every 3⇥3 block Gij must
be either a rotation or reflection, i.e., Gij 2 O(3). To discern
between these two possibilities we would like to require
det(Gij) = 1; these are, however, non-linear constraints that
cannot be incorporated into the SDP formulation. Instead,
we replace the determinant constraints by equivalent linear
inequality constraints. To that end we have the following
claim:

Claim 3. There exists a finite set of rotations
A1, A2, . . . , Al 2 SO(3) such that Gij 2 SO(3) iff
trace (AkGij) � �1 for all k = 1, . . . , l.

The proof, which proceeds by constructing an ✏-net over
O(3), is provided in the appendix. As a consequence, adding
the linear inequalities trace (AkGij) � �1 tightens the
SDP relaxation. The number of linear inequalities might be
relatively large in practice, and therefore could be randomly
sparsified. Constructing the optimal (i.e., minimal) design
A1, . . . , Al is beyond the scope of this paper.

Unlike the spectral decomposition in Section III-A, the
SDP approach enables introducing constraints which drive a
tighter convex relaxation of the optimization problem; thus,
explicitly promoting a solution which is less sensitive to
noise and mismatches. In practice, this becomes significant
for large-scale SfM problems, in which noise, inaccuracies
and outliers are prominent. In our experiments on the small
benchmark sets (see Section VI-A), no significant improve-
ment over the spectral methods was observed.

IV. ESTIMATING CAMERA LOCATION

Once camera orientations ˆR1, ..., ˆRn are recovered we
turn to recovering the camera location parameters, t1, ..., tn.
We do this using an efficient linear approach.

Previous approaches for estimating camera locations typ-
ically exploit the pairwise translations derived from the
Essential Matrices (1) to construct a system of equations in
the unknown translation parameters, and often also in the un-
known depth coordinates. Such methods commonly involve
a large excessive number of unknowns either involving 3D
point positions for all feature points or additional pairwise
scaling factors. Solving such systems can be computationally
demanding and sensitive to errors.

For example, Govindu [12] uses the pairwise translations
tij to estimate the camera location using tij = �ijR

T
i (ti �

tj) where �ij are unknown scale factors separate for each
pair of images. He then shows that eliminating these scaling
factors lead to unstable results, and so he estimates them us-
ing an iterative reweighting approach. Crandall et al. [4] uses
an MRF to solve simultaneously for camera locations and
structure, but relies on prior geotag locations and assumes
2D translations. Kahl & Hartley [13] and subsequently
also [8], [10] define a nonlinear, quasiconvex system of

equations in the translations and point locations and use
SOCP to solve the system under the l1 norm. Rother [11]
proposes a linear system for solving simultaneously for both
camera and 3D point locations. This adds a large number
of unknowns to the equations. For example, for the large
collection described in Section VI-B, the method in [11]
will have 120K unknowns.

Below we propose an alternative approach to solving
for the translation parameters. Our approach is based on
a simple but effective change of coordinates, which leads
to a linear system with a large number of linear equations
– an equation for every pair of corresponding points – in
a minimal number of unknowns, the sought translations
t1, ..., tn.

Claim 4. The Essential Matrix can be expressed in terms
of the location and orientation of each camera:

Eij = RT
i (Ti � Tj)Rj , (8)

where 1  i, j  n, and Ti = [ti]⇥, Tj = [tj ]⇥. This
expression generalizes over the usual decomposition of the
Essential Matrix; if we express the Essential Matrix in the
coordinate frame of the i’th image then ti = 0 and Ri = I ,
and we are left with Eij = [tij ]⇥Rij .

Proof We derive an expression for the Essential Matrix
in terms of a global coordinate system. The construction
is similar to the usual derivation of the Essential Matrix.
Let P denote a point in R3. Let Pi = RT

i (P � ti) and
pi = (xi, yi, fi) denote its projection onto the image Ii
(1  i  n). For a pair of images Ii and Ij we eliminate P
to obtain:

RjPj �RiPi = ti � tj . (9)

Taking the cross product with ti � tj and the inner product
with RiPi we obtain

PT
i R

T
i ((ti � tj)⇥RjPj) = 0, (10)

and, due to the homogeneity of this equation, we can replace
the points with their projections

pT
i R

T
i ((ti � tj)⇥Rjpj) = 0. (11)

This defines the epipolar relations between Ii and Ij . Con-
sequently,

Eij = RT
i (Ti � Tj)Rj .

⇤
The advantage of this representation of the Essential

matrix (8) is that it includes only the location and orientation
of each camera; pairwise information (Rij , tij) is no longer
required. Let p(1)i . . . p

(Mij)
i and p

(1)
j . . . p

(Mij)
j be Mij cor-

responding image points from images Ii and Ij respectively.
Then, the expression in (8) defines a homogenous epipolar



line equation for every pair of corresponding points p(m)
i

and p(m)
j , m = 1 . . .Mij :

p(m)T

i RT
i (Ti � Tj)Rjp

(m)
j = 0. (12)

This equation is linear in the translation parameters.
This epipolar equation system (12) can further be written

as follows. Note that the left hand side defines a triple
product between the rotated points Rip

(m)
i , Rjp

(m)
j and

the translation ti � tj . A triple product is invariant to
permutation (up to a change of sign if the permutation is
non-cyclic). Consequently, (12) can be written as

(ti � tj)
T
(Rip

(m)
i ⇥Rjp

(m)
j ) = 0. (13)

Therefore, every point pair contributes a linear equation
in six unknowns (three for ti and three for tj). As such, the
location of each camera is linearly constrained by each of
its feature correspondences. Weighting w

(m)
ij can be easily

incorporated to reflect the certainty of each such equation.
Clearly, ti = (1, 0, 0), ti = (0, 1, 0) and ti = (0, 0, 1)

for all (1, 0, 0) i, are three trivial solutions of this linear
system. Therefore, the sought solution is the optimal solution
orthogonal to this trivial subspace. This allows recovering
the camera locations up to a global translation and a single
global scaling factor; these are inherent to the problem and
cannot be resolved without external measurements.

Unlike alternative linear methods [12], [11], our linear
system is compact: the only unknowns are the camera loca-
tions. Thus, employing linear methods for its solution allows
for an extremely efficient implementation. Moreover, despite
the obvious drawbacks of using an L2 approach, its highly
over-constrained formulation plays a main role in promoting
its robustness, as is demonstrated in our experiments. Further
robustness can be achieved, e.g., by minimizing the L1
norm, e.g, by applying iterative reweighted least squares.
This however is left for future research

V. IMPLEMENTATION

Given a collection of images I1, ..., In, we follow the
common SfM pipeline and apply the following procedure.

• Obtain matches and pairwise rotations: Apply a
feature detector and seek pairs of corresponding points
across images (we used SIFT [22] implementation
from [6]), then compute Essential Matrices using the
RANSAC protocol. We factor ˆRij from the Essential
Matrices and define ˆRij as missing if insufficiently
many inliers are found.

• Rotation estimation: Use the pairwise rotations ˆRij to
form the matrix ˆG and to compute the set of global rota-
tions ˆR1, ..., ˆRn using either the spectral decomposition
(Section III-A) or the SDP method (Section III-B). This
step is based on the computation of the leading three
eigenvectors of the sparse 3n⇥3n matrix ˆD�1

ˆG, where
n is the number of images.

Table I
CAMERA MATRIX RECOVERY ERRORS FOR THE FOUNTAIN-P11 AND

HERZ-JESU-P25 SEQUENCES.

Location Viewpoint Rotation
Fountain-P11 (meters) (degrees) (Frobenius)
Our method (GT cal.) 0.0048 0.024 0.0007
Our method (Exif) 0.0270 0.420 0.0111
Bundler [6] 0.0072 0.112 0.0044
VisualSFM [24] 0.0099 0.116 0.0046
Sinha et al. [9] 0.1317 – –
Martinec [10] (on R25) 0.0153 – –

Location Viewpoint Rotation
Herz-Jesu-P25 (meters) (degrees) (Frobenius)
Our method (GT cal.) 0.0078 0.045 0.0012
Our method (Exif) 0.0520 0.348 0.0092
Bundler [6] 0.0308 0.110 0.0041
VisualSFM [24] 0.0233 0.104 0.0040
Sinha et al. [9] 0.2538 – –
Martinec [10] (on R25) 0.0845 – –

• Translation recovery: Use the corresponding pairs of
points and the recovered rotations to form the linear
equations and to solve for the global translation vectors
t1, ..., tn (Section IV). Although this step involves
an equation for every pair of corresponding points,
the set of equations is very sparse containing only 6
unknowns in every equation. Furthermore, as there are
3n unknowns, the linear system is solved by finding the
four eigenvectors with lowest eigenvalue of a 3n⇥ 3n
matrix.

• Bundle adjustment and dense 3D recovery: We used
the SBA code by [23] for the smaller sets and PBA [24]
for the larger sets. We apply dense reconstruction of the
scene, e.g., using [25].

VI. EXPERIMENTS

We tested our method on several real image sequences.
We first show results on two benchmark (though small)
collections of images for which ground truth rotations and
translations are provided [26]. We also tested our method
on a common large-scale image set downloaded from the
internet (images of the Notre-Dame Cathedral available
from [27]). In both experiments, we applied the pipeline
from Section V.

A. Benchmark Sets
We show results on benchmark images from [26]. The

image collections, called Fountain-P11 and Herz-Jezu-P25,
include 11 and 25 images respectively. The images are
corrected for radial distortion. For internal calibration we
used either calibration parameters supplied as ground truth
or (rough) focal lengths extracted from the Exif tags of the
raw images.

We further test the stability of our method by repeating
each experiment 10 times as the selection of point matches
depend on a random protocol (RANSAC). In all runs we
were able to recover the camera positions and orientations



Figure 2. Four of 11 images of the Fountain-p11 sequence (left) and three snapshots of the reconstruction obtained with our method (right).

Figure 3. Four of 25 images of the Herz-Jesu-p25 sequence (left) and three snapshots of the reconstruction obtained with our method (right).

Figure 4. From left to right: three of 420 images of the Notre-Dame sequence, camera locations (in blue) against a sparse reconstruction, and two
snapshots of the 3D reconstruction obtained with our method.

accurately and to obtain rich 3D reconstructions of the
scenes. Figures 2-3 show several of the input images along
with snapshots from the reconstructions we obtained using
our method. Table I shows the errors in rotation and camera
locations (averaged over the images in each sequence) of
our recovery with respect to the supplied ground truth
rotations and locations. For the two sequences, with ground
truth calibration and after bundle adjustment, our algorithm
achieved a very accurate estimation with an average error
of only 4.8mm and 7.8mm in camera location and 0.024�

and 0.045� in viewpoint orientation. Further comparisons to
other recent methods are shown in Table I. We note that
Martinec’s algorithm [10] was tested in [26] on slightly
different sequences of the same scenes, the Fountain-R25
and Herz-Jesu-R23. (Unfortunately, the ground truth values
for those exact sequences were not made available to us by
the authors.)

Our efficient linear setting allows estimating the rotations
and translations for these datasets (steps 3 and 4 in our
pipeline, Section V) between 0.1 to 0.2 seconds on a regular
desktop computer (4 core 3GHz).

B. Large-Scale Image Collection

We next applied our method to the common image set
of the Notre-Dame Cathedral available from the Photo
Tourism dataset [27]. In the first test we used the focal

lengths and radial distortion corrections produced in [6]. We
follow other large-scale SfM methods and prune images with
noisy or poor point matches. We prune images efficiently
by discarding images corresponding to nodes with small
degree in the image graph G. Similarly to other global SfM
methods, when the image graph is not connected (or very
weakly connected), our method is applied separately to each
of the connected components (stitching them is beyond the
scope of this paper).

After computing the pairwise Essential Matrices we kept
the subset of 420 images (out of 715) with degree 10 or
more (results were similar to other choices of the minimal
degree). Our method succeeded in estimating the cam-
era parameters accurately, achieving low reprojection error
(RMSE of 0.83 pixels) and similar rotations to the Bundler
software package [6] (differed by 0.7� in viewpoint angle).
Unfortunately, [6] does not provide a metric reconstruc-
tion and so camera locations could not be compared. The
achieved reconstruction can be seen in Figure 4 and in the
supplementary material.

Estimating the camera rotations and locations took only
46 seconds with our non-optimized MATLAB code, with
additional 73 seconds for the BA. We compare our running
time to VisualSFM [24], which is a highly optimized GPU
implementation of the Photo Tourism [27]’s sequential algo-
rithm. On a parallel GPU architecture, VisualSFM took 788



seconds on the same desktop PC. (This time includes also
the computation of the pairwise Essential matrices, but does
not include feature extraction and matching). Our method
achieves results that are comparable to state-of-the-art on
this sequence in substantially less time.

We repeated the Notre-Dame image set experiment, with
218 images for which Exif tags are available. We assume
the focal lengths obtained with the Exif tags are sufficiently
accurate for internal calibration, and used only these focal
lengths with no further information. Our method estimates
the camera rotations and locations correctly, with RMSE
of 0.80 pixels, and viewpoint angle different from [6]’s by
0.85�.

We additionally compared our rotation estimation on
the Notre Dame to the L1 optimization of Hartley et
al. [18]. Our L2 objective function achieves comparable
results to [18] (geodesic error of 0.66� compared to 0.82�

reported in [18]) in substantially less time on a similar laptop
platform (less than one second with our method compared
to 36 seconds in [18]).

In conclusion, as these experiments demonstrate, our
method provides an accurate and efficient means to recover
the camera location and orientation in challenging multiview
sequences. The method is very fast, with the actual estima-
tion done by a MATLAB ’eigs’ command on two 3n⇥ 3n
matrices.

VII. CONCLUSION

We presented a method for recovering the position and
orientation of n cameras given a collection of images.
The method is based on finding an optimal fit of the
camera rotations to the pairwise rotations deduced from the
geometry of point matches, and then, given the estimated
rotations, finding the set of translations that is consistent with
all the available point correspondences. We show that the
camera rotations can be recovered either by spectral or SDP
relaxations, and the camera translations can be recovered
by a linear least squares. Our experiments demonstrate that
our method can achieve fast and highly accurate recovery of
the camera locations and orientations. The method is very
efficient, yielding equation systems whose size depends only
on the number of input images. We demonstrate the effec-
tiveness of our method by experimenting with calibrated as
well as internet photo collections. Our method assumes that
the input images form a fairly connected graph and that the
calibration parameters are given. For many common image
sets the latter assumption implies only that focal lengths
need to be known. Our current implementation can further
be improved by incorporating prior knowledge into the
estimation process and by constructing algorithms to stitch
estimates obtained for different connected components.

APPENDIX

Claim. An approximate solution to (2), under relaxed or-
thonormality and determinant constraints, is determined by
the three leading eigenvectors of the 3n⇥ 3n matrix ˆG.

Proof As shown in Section III-B, assuming Ri 2 SO(3),
equation (2) can be written as (5). Denote by ri T1 , ri T2 , and
ri T3 the three rows of Ri. Then, (5) can be written as

max

{R1,...Rn}

nX

i,j=1

⇣
ri T1 ˆRijr

j
1 + ri T2 ˆRijr

j
2 + ri T3 ˆRijr

j
3

⌘
,

(14)
subject to the orthonormality of the rows of each Ri and the
determinant constraint for the triplet of rows. We rewrite this
expression in matrix form. Let ˆG be a 3n ⇥ 3n symmetric
matrix constructed by concatenating the pairwise rotation
matrices, namely,

ˆG =

0

BB@

I ˆR12 ... ˆR1n
ˆR21 I ... ˆR2n

... ...
ˆRn1

ˆRn2 ... I

1

CCA . (15)

Then, the above optimization can be expressed as

max

{m1,m2,m3}
mT

1
ˆGm1 +mT

2
ˆGm2 +mT

3
ˆGm3, (16)

where ml 2 R3n, (l = 1, 2, 3) is obtained by a concatenation
of n ril vectors, i.e., ml = [r1l ; r

2
l ; ...; r

n
l ]. The orthonormal-

ity and determinant constraints now apply to triplets of the
entries of ml.

To make this optimization tractable we relax it by requir-
ing only the (full) vectors ml to be orthonormal (reducing
the number of constraints from 7n to just 6). The obtained
maximization problem is related to the classical problem
maxm mT

ˆGm subject to kmk2 = n whose solution is given
by the eigenvector of ˆG of largest eigenvalue. We therefore
expect the solution to (16) to consist of the three leading
eigenvectors of ˆG.⇤
Claim 5. There exists a finite set of rotations
A1, A2, . . . , Al 2 SO(3) such that Gij 2 SO(3) iff
trace (AkGij) � �1 for all k = 1, . . . , l.

Proof In one direction: suppose O 2 SO(3) then
trace (O) � �1. Indeed, any rotation has one eigenvalue
equal to 1 (the corresponding eigenvector is the rotation
axis), and the magnitude of all its eigenvalues are less than or
equal to 1 (since it is an isometry); in particular, the rotation
with the minimum trace is diag[�1,�1, 1]. Clearly, AkO is
also in SO(3) and as a result trace (AkO) � �1. In the
other direction: first, recall that SO(3) is compact. There-
fore, for every ✏ > 0 there exists an ✏-net, i.e., a cover design
consisting of n = n(✏) rotations A1, A2, . . . , An 2 SO(3)

with the property that for every A 2 SO(3) there exists an
element Ak of the design such that kA�AkkF < ✏. Suppose



trace (AkO) � �1 for all k = 1, . . . , n, and assume to
the contrary that O /2 SO(3). Then A = �OT 2 SO(3),
and there exists Ak for which kA � AkkF < ✏. From
AkO = (Ak � A)O + AO = (Ak � A)O � I, it follows
that trace (AkO) = trace ((Ak �A)O) � 3. The Cauchy-
Schwarz inequality, the design property kA � AkkF < ✏,
and the orthogonality of O (kOkF =

p
3) altogether give

trace ((Ak �A)O)  kAk �AkF kOkF <
p
3✏. Therefore,

trace (AkO) <
p
3✏ � 3. Choosing ✏ = 2/

p
3 yields

trace (AkO) < �1, a contradiction. ⇤
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