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Abstract

We propose a novel formulation for the scene labeling problem which is able to com-
bine object detections with pixel-level information in a Conditional Random Field (CRF)
framework. Since object detection and multi-class image labeling are mutually informa-
tive problems, pixel-wise segmentation can benefit from powerful object detectors and
vice versa. The main contribution of the current work lies in the incorporation of top-
down object segmentations as generalized robust PN potentials into the CRF formula-
tion. These potentials present a principled manner to convey soft object segmentations
into a unified energy minimization framework, enabling joint optimization and thus mu-
tual benefit for both problems. As our results show, the proposed approach outperforms
the state-of-the-art methods on the categories for which object detections are available.
Quantitative and qualitative experiments show the effectiveness of the proposed method.

1 Introduction
Recently, there has been increased interest in combining object class detection (“things”) and
texture segmentation (“stuff”) for scene understanding (see Fig. 1). There is mutual benefit
from such a combination. Object detectors can be improved by context (“from stuff”) [12].
In return, segmentation can be improved by semantic information provided by the object
detector. Moreover, the appearance of many object classes is so complex that segmentation
decisions are only well-defined on an object level and not on a pixel or patch level.

In particular, the CRF based approach by Ladicky et al. [17] has shown very good per-
formance in practice. The particular appeal of this approach lies in its property of seam-
lessly integrating into a CRF framework that can be optimized using the popular Graph-Cuts
method [3] (in contrast to previous attempts by [7, 28]). This integration was made possible
by the introduction of robust PN potentials [13]. Those potentials enable the formulation of
grouping constraints on a set of pixels (e.g. defined by a superpixel or a detector response)
by considering the penalty of mislabeling as a linear function of the number of pixels that
disagree with the majority vote.
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(a) (b) (c) (d)

Figure 1: Top-down segmentations improve multi-class image labeling. (a) Test image
with object detections. (b) Ground truth labeled image. Our algorithm uses top-down seg-
mentations (c) to produce segmentation results (d). (Best viewed in color)

Ladicky et al. [17] propose to obtain the support region for a detected object by apply-
ing GrabCut [23] on the detector bounding box. This GrabCut segmentation introduces an
additional, separate CRF segmentation step prior to the final image-level CRF segmenta-
tion, even though both decisions are based on the same color potentials. We argue that there
should be only one segmentation decision made as a result of the joint inference. Further-
more, the GrabCut segmentation step ignores any specific information about the detected
object class. In particular, it does not take into account how important a certain pixel was for
the initial detection decision. We propose to bring in this information by feeding back soft,
class-specific top-down segmentation information from the object detector for a single-stage
optimization in a common CRF.

In particular, we propose to integrate class-specific information in the form of gener-
alized robust higher order potentials [13]. These potentials make it possible to specify a
per-pixel weight which expresses how important a pixel is for preserving object consistency.
We show how top-down segmentations from a densely sampled part-based detector [9, 21]
can be used to define those weights. As our results demonstrate, the proposed approach
yields improved segmentation and image labeling performance.

The paper is structured as follows. The following section discusses related work. Sec-
tion 2 then introduces the CRF framework for multi-label image segmentation. Section 3
presents our extended approach using generalized robust PN potentials and Section 4 ex-
plains how we obtain the top-down segmentation information. Finally, Section 5 presents
experimental results.

Related Work. Graphical models, and CRFs in particular, have proven to be a successful
tool for multi-class image labeling. Texton features combined using joint boosting [25] or
random forests [24] form strong discriminative classifiers. The output of these classifiers is
then fed into a CRF framework in the form of unary potentials to create powerful segmenta-
tion systems such as TextonBoost [25].

The introduction of higher order potentials into the CRF framework, as proposed in [13],
makes it possible to include context information in a joint optimization scheme. As a re-
sult, finer details can still be preserved and contour detail information can successfully be
captured. Extensions to this approach have mostly focused on two directions. The first is
the use of features which are not based uniquely on color information, such as structure-
from-motion (SfM) [4, 26] and stereo depth information [18]. The second direction is the
use of multiple hierarchies in the CRF framework. The separate levels of each hierarchy
correspond to different image quantizations such as pixels, superpixels, segments, etc. The
resulting graphical model is then jointly optimized using an associative strategy [16].

The observation that most of the aforementioned methods achieve poor performance on
classes containing objects, gave rise to combinations of segmentation algorithms with object
detections [12]. The class-specific information that an object detector can provide has been
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(a) (b) (c) (d)
Figure 2: Failure case for GrabCut segmentation. (a) Test image with two detected cars.
GrabCut (c) fails to segment a car from the background, resulting in a suboptimal segmenta-
tion compared to the ground truth labeling (b). Our method (d) obtains better results using
information from top-down segmentations in the form of generalized robust PN potentials

used to segment an object from its background [15, 20, 22] in images which contain at least
one instance of the known object class.

However, very recently multi-class image labeling algorithms have been also combined
with object detectors for the goal of building systems for scene analysis and scene under-
standing. This has first been done by Wojek et al. [28] and Ess et al. [7], who take advantage
of the temporal consistency of a video sequence and combine image labeling with object de-
tection for analyzing an urban environment scene. However, the resulting graphical models
become quite complex and therefore difficult to optimize with standard Graph-Cuts methods.
Recently, other works integrate also geometry [10] and physics information [11] to improve
performance on the scene understanding task.

The work that is most closely related to our approach is that of Ladicky et al. [17]. In this
work, object detections are incorporated into a CRF framework and inference is performed
using Graph-Cuts. The integration of object detections at the pixel-level is achieved using
hard segmentations provided by the GrabCut algorithm [23]. Classcut [1] and Grabcut in
combination with the sum-product algorithm for doing the probabilistic inference could be
also used as alternatives to provide soft segmentations in case the objects of interest are of an
unknown class. However, there are object detection systems available which provide more
detailed, object-specific, soft, top-down segmentations [21]. In this paper, we use a dense
extension of the ISM detector [21] that is based on the idea of Hough Forests [9].

2 CRFs for Multi-Class Image Labeling
Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) have been exten-
sively used for modeling multi-class image labeling problems. In this section we provide
a brief description of the CRF framework and the relevant notation. We closely follow the
notation convention used in [14].

Consider a set of random variables Y = {Y1,Y2, ...,YN}. The random field is defined on
a graph G = (V,E) consisting of N pixels (i.e., |V | = N), where each node of the graph is
associated with a random variable Yi. Each variable Yi ∈ Y has a domain L = {l1, l2, ..., lk},
where the value of Yi represents a region assignment for pixel i (e.g., building, car, road, sky).
A label assignment y = {Yi|i ∈ V} with components lying in L represents a sample from
the configuration space YN .

We denote the probability assigned to vector y of the configuration space by p(y). The
random variables are said to form an MRF if p(y) is strictly positive for all y and p(yi|yNi) =
p(yi|yV\i), where Ni represents all neighboring nodes of i in G , while V \ i denotes all nodes
of the graph G except for i.

A CRF is an MRF globally conditioned on the set X of observed variables [19]. The

Citation
Citation
{Kumar, Torr, and Zisserman} 2005

Citation
Citation
{Larlus, Verbeek, and Jurie} 2008

Citation
Citation
{Levin and Weiss} 2006

Citation
Citation
{Wojek and Schiele} 2008

Citation
Citation
{Ess, Mueller, Grabner, and van Gool} 2009

Citation
Citation
{Gould, Fulton, and Koller} 2009

Citation
Citation
{Gupta, Efros, and Hebert} 2010

Citation
Citation
{Ladick{unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {yglobal mathchardef accent@spacefactor spacefactor }accent 0 yegroup spacefactor accent@spacefactor }, Sturgess, Alahari, Russell, and Torr} 2010{}

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Alexe, Deselaers, and Ferrari} 2010

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Leibe, Leonardis, and Schiele} 2008

Citation
Citation
{Gall and Lempitsky} 2009

Citation
Citation
{Koller and Friedman} 2009

Citation
Citation
{Lafferty, McCallum, and Pereira} 2001



4 FLOROS ET AL.: MULTI-CLASS IMAGE LABELING WITH TOP-DOWN SEGMENTATIONS

distribution p(y|X) over the discrete random vector y of the CRF is a Gibbs distribution and
has the following form: p(y|X) = 1

Z exp(−∑C∈C VC (y)), where Z is a normalizing constant
and C denotes the set of all maximal cliques in the graph G . A clique is defined to be any
complete subgraph of the nodes V of G . The symbol VC (y) represents the clique potentials
which constitute real functions depending only on the random variables contained in the
clique C . According to Maximum A Posteriori (MAP) estimation, the most probable label
assignment ŷ of the CRF is obtained as ŷ = argmaxy∈YN p(y|X) = argminy∈YN E(y), where
E(y) is the corresponding Gibbs energy.

The formulation of the energy function E(y) in a higher order CRF, consisting of unary
(ψi), pairwise (ψi j), and robust PN (ψc) potentials, takes the following form

E(y) = ∑
i∈V

ψi(yi)+ ∑
(i, j)∈E

ψi j(yi,y j)+ ∑
c∈S

ψc(yc), (1)

which has been shown to achieve state-of-the art performance for the multi-class image la-
beling problem [13]. While the unary and pairwise potentials are defined on the pixel level,
the robust PN potentials are defined over a set of segments S . In [13], those segments are
created by an unsupervised multi-level mean-shift segmentation [6]. The PN potentials in-
troduce a cost for assigning different label classes to pixels that are part of the same segment,
while taking into account the quality of the entire segment. More specifically, the robust PN

potentials are defined as:

ψc(yc) =

{
Ni(yc)

1
Q γmax if Ni(yc)≤ Q,

γmax otherwise ,
(2)

where Ni(yc) represents the number of pixels in the segment c that are inconsistent with the
majority label; Q is the truncation parameter; and γmax = |c|θa(θ h

p +θ h
v G(c)), as defined in

[13].
The particular strength of this formulation lies in the fact that higher order potentials

capture the fine texture and contour details better than the pairwise potentials, thus provid-
ing impressive results particularly on label classes that represent stuff [12] (e.g. road, sky,
grass). However, lacking any object specific information, such methods underperform on
classes representing things (e.g. cars, pedestrians). Recently, Ladicky et al. [17] proposed
to incorporate the output of an object detector into the CRF framework as a higher order
potential. In particular, GrabCut segmentation [23] is used to obtain the foreground and
background pixels inside the detection bounding box provided by a sliding window object
detector. Each detection hypothesis hd consists of a detection score Hd and a set of pixels
belonging to the specific object. An auxiliary binary variable xd is introduced for each object
detection hypothesis indicating whether this hypothesis should be adopted or not. Hypothe-
ses having a low score are filtered using a threshold Ht .

The detector potential then takes the following form:

ψd(yd ,Hd , ld) = min
xd∈{0,1}

(− f (yd ,Hd)xd +g(Nd ,Hd)xd) (3)

where f (yd ,Hd) = wd |yd |max(0,Hd−Ht) represents the strength of the hypothesis and
g(Nd ,Hd) =

wd
pd

max(0,Hd−Ht)Nd represents the cost for partial inconsistency as a linear
function of the number of inconsistent pixels. As a result, this method manages to integrate
object detections into a CRF framework, which can be optimized using standard Graph-Cuts
algorithms like α-expansion [13].
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(a) (b) (c) (d)
Figure 3: Top-down segmentations. (a) Results of the part-based detector of [8] applied to
a test image, producing two detections for cars and one for pedestrians. The detection bound-
ing boxes are then fed into the Hough Forests framework described in Section 3, which pro-
vides top-down segmentations (c) together with foreground probabilities (d) in the form of
per-pixel weighting factors. As can be seen, the top-down segmentations are of comparable
quality as the ground truth annotation (b).

However, the integration of the object detections is not optimal in several respects.
Firstly, the introduction of the GrabCut segmentation makes a hard decision for the fore-
ground/background pixels inside each detection bounding box without considering object-
specific nor context information. Secondly, the later CRF optimization may not be able to
compensate for errors made during the assignment of foreground and background labels to
the pixels inside the object, since only the number of consistent pixels counts, but not their
importance for the detection. We argue that only one segmentation stage should take place
in the processing pipeline, enabling joint optimization for the object existence and the scene
segmentation. Figure 2 illustrates an example where the GrabCut segmentation fails to ex-
tract the pixels corresponding to the object inside the bounding box. Using more detailed
information about the object from a detector-specific top-down segmentation, these prob-
lems can be overcome.

3 Image Labeling with Generalized Higher Order
Potentials

As discussed in the previous section, we argue that object detections should be integrated
into the CRF in a fashion that enables joint optimization in a single segmentation stage. For
this, we build upon the idea of generalized robust PN potentials [13].

Definition. Generalized robust PN potentials provide a structured framework for incorpo-
rating the class-specific information provided by an object detector. As introduced in [13],
they take the following form:

ψc(yc)=min
{

min
k∈L

((P− fk(yc))θk + γk),γmax

}
. (4)

The parameters P and functions fk(yc) are defined as:

P = ∑
i∈c

wk
i , ∀k ∈L (5)

fk(yc) = ∑
i∈c

wk
i δk(yi) (6)

δk(yi) =

{
1 if yi = k,
0 otherwise,

(7)
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where the weights wk
i should have the following properties: wk

i ≥ 0, i ∈ c,k ∈ L . These
weights provide a nice interface to naturally introduce a per-pixel factor which expresses the
importance of each object pixel in the preservation of object consistency.

Generalized Top-Down Segmentation Potentials. Top-down figure-ground segmentations
provide output from an object detector in the form of soft decisions on whether an image
pixel belongs to a specific object or not (Fig. 3). These soft decisions can also be interpreted
as weights indicating the importance of each pixel in the preservation of the object’s label
consistency. In particular, if a pixel has a high foreground probability p f ig then a higher cost
should be assigned in the case that this pixel takes a label different from the object’s. On the
other hand, in the case that a pixel has a low probability being part of the foreground a lower
cost is assigned for this pixel not taking the object’s label.

It is, therefore, intuitive to propose the use of the foreground probability p f ig of each
pixel as a weight wk

i in the generalized robust PN potentials. Thus, the new energy function
of our proposed model takes the form:

E(y) = Epix(y)+ ∑
c∈S ′

ψc(yc), (8)

where Epix(y) summarizes the pixel-based energy terms from eq. (1). S ′ = S ∪D is the
union of the segments S produced by unsupervised mean-shift segmentations (similar to
[13]) and the detections D , together with their corresponding top-down segmentations given
by an object detector.

The generalized higher order potentials used in our model can be divided into two cate-
gories. The first category contains the higher order potentials capturing the consistency of the
image segments coming from the unsupervised segmentations. In this case the pixels within
the segment are weighted uniformly and the definition of γmax and γk follows the approach
of [13]. The second category contains the higher order potentials coming from object de-
tection. The weights in this category come from the p f ig probability of the top-down object
segmentations. Following [17], we define γmax to be proportional to the detection hypothesis’
strength and γk inversely proportional to the cost taken for partial inconsistency.

Implementation. The unary potentials are a combination of densely computed local fea-
tures such as location, color, texton and HOG features. We follow the procedure of [25] to
extract a bag of textons by convolving a 17-dimensional filter bank with the training images.
The filter responses are then clustered and a texton map is formed by assigning each pixel to
the closest cluster center. Similar maps are obtained by clustering other types of features. A
set of shape filters are formed as triplets of the feature type, the cluster number and a rectan-
gular region. The responses to these filters are collected and corresponding weak classifiers
are formed by comparing the shape filter responses to a set of predefined thresholds. The
weak classifiers are then fed into a joint boosting framework which learns a strong classi-
fier out of the weak ones. For pairwise potentials between the pixels of the image a standard
contrast sensitive Potts model is used [23]. Inference is performed in the CRF using standard
α-expansion [2, 3, 13]. The values of the variables xd are then computed similar to [17].

4 Obtaining the Top-Down Segmentation
An important question is how to obtain the top-down segmentations, such that they fulfill
the properties described in the previous section. In the following, we show how this can
be realized using the ISM top-down segmentation formalism [21] on top of a dense Hough
Forest classifier [9].
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This approach builds up a random forest classifier that processes densely sampled image
patches. Each internal node of each tree performs a simple binary test, comparing the values
of two pixel locations in one of 32 feature channels (we use the same features as [9]). As
patches are passed down the tree, they are sorted into visually similar groups. The leaf nodes
thus correspond to the entries of a discriminatively trained visual codebook. The idea behind
Hough Forests is to now store for each leaf node the spatial occurrence distribution (relative
to the object center) of all patches that were assigned to this node. During testing, those
stored locations are then used to cast probabilistic votes for the object center in a Generalized
Hough Transform, similar to [21].

As shown in [21], the votes corresponding to a local maximum in the Hough space can
then be backprojected to the image in order to propagate top-down information back to the
patches they were originating from. This process can be used to infer local figure-ground
labels [21], object part annotations, or even depth maps or surface orientations from a single
image [27]. In our approach, we extend the Hough Forest classifier with this top-down seg-
mentation formalism, using figure-ground labels learned from annotated training examples.
The resulting procedure is very intuitive to implement. Each vote v j contributing to a Hough
space maximum h is backprojected to its originating patch P, augmented with a local figure-
ground label patch Seg(v j). We can then obtain the figure and ground probabilities for each
pixel p by averaging over all patches Pi containing this pixel and summing the backprojected
figure-ground labels, weighted by the weight of the corresponding vote wv j .

p(p = fig|h) =
1

∑v j∈h wv j
∑

Pi(p)

1
|Pi| ∑

v j∈votes(Pi)

wv j Seg(v j) (9)

p(p = gnd|h) =
1

∑v j∈h wv j
∑

Pi(p)

1
|Pi| ∑

v j∈votes(Pi)

wv j(1−Seg(v j))

As shown in [21], this results in the correct probabilities. In practice, the top-down procedure
thus boils down to a simple weighted summation of figure-ground patches, which can be
implemented very efficiently on the GPU. Example results are shown in Fig. 3.

In our experiments, we build up Hough Forest detectors for pedestrians and cars using
the procedure described above. In principle, the detector outputs, together with their top-
down segmentations, can directly be used to define the generalized PN potentials. However,
we later on want to compare to a baseline using the part-based detector of [8]. In order to
provide a fair comparison, we therefore use the detection bounding boxes returned by [8]
in order to query the corresponding location in the Hough voting space and compute the
resulting top-down segmentations for those locations.

5 Experimental Results
Datasets. We evaluate our method on the CamVid database [5]. The CamVid database con-
tains over 10 minutes of high quality 30 Hz footage at 960×720 pixel resolution. The videos
were captured by a driving car equipped with a camera mounted inside the vehicle. The
database is divided in four video sequences, three captured at daylight (0006R0, 0016E5,
Seq05VD) and one captured at dusk (0001TP). Ground truth labeled frames are provided
for these four sequences at a rate of 1 fps. The pixels in the annotated frames take one of
32 label classes. We closely follow the experimental setup of [4, 17, 26] by using the same
subset of 11 class categories, dividing the data into 367 training and 233 test images, and
downscaling all images by a factor of 3. Object detections are provided for two classes,
namely cars and pedestrians, which are the main traffic participants.
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Recall
[4] (SfM) 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 69.1 53.0
[26] (SfM) 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 83.8 59.2
[17] (no det.) 79.3 76.0 96.2 74.6 43.2 94.0 40.4 47.0 14.6 81.2 31.1 83.1 61.6
[17] (with det.) 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 83.8 62.5
Our reimpl. [17] 79.0 75.2 95.7 74.1 20.2 93.7 39.7 46.7 8.3 78.1 18.3 82.3 57.2
Our approach 80.4 76.1 96.1 86.7 20.4 95.1 47.1 47.3 8.3 79.1 19.5 83.2 59.6
Inter. vs Union
[26] (SfM) 71.6 60.4 89.5 58.3 19.4 86.6 26.1 35.0 7.2 63.8 22.6 - 49.2
[17] (no det.) 70.0 63.7 89.5 58.9 17.1 86.3 20.0 35.8 9.2 64.6 23.1 - 48.9
[17] (with det.) 71.5 63.7 89.4 64.8 19.8 86.8 23.7 35.6 9.3 64.6 26.5 - 50.5
Our reimpl. [17] 69.7 62.7 89.0 58.7 13.1 86.2 20.0 35.3 6.6 62.3 15.3 - 47.2
Our approach 70.8 63.2 89.3 71.2 13.2 86.8 25.7 35.8 6.7 63.8 16.1 - 49.3

Table 1: Quantitative results on the CamVid sequence. ’Global’ performance refers to the
overall percentage of pixels correctly classified, and ’Average’ is the average of all the class
measures. ’no det’ indicates that no detections are availabale and ’with det’ indicates that
detections are available. Percentages in italics indicate results obtained from methods using
SfM features. These approaches are not directly comparable to our method, because we do
not include this cue in our approach. It can be clearly seen that our method performs better
than the baseline approach on all categories. The inclusion of the top-down segmentations
in the form of generalized PN potentials is shown to be beneficial, as we outperform [17] on
the categories for which object detections are available (cars, pedestrians). It is important
to mention that results from [17] have been computed using detector responses for all the 5
things classes. This fact explains their superior performance on bicyclists, sign-symbols and
column-poles.

Experimental setup. In order to make a fair comparison to the approach of [17], we use
the following experimental setup. We employ the state-of-the-art part-based object detector
from [8] to obtain the same detection bounding boxes for cars and pedestrians. We then
tried to faithfully reimplement the algorithm proposed in [17] as a baseline. For that we
perform GrabCut segmentation inside each detection bounding box to assign foreground
or background labels to the pixels inside it. The higher-order potentials are finally formed
exactly as in [17]. The difference in the implementation lie in the fact that we do not use a
hierarchical CRF. Since there will invariably be small differences between Ladicky’s original
parameters and our reimplementation, we report comparisons to both baselines wherever
possible.

For our method we take as input the same detections bounding boxes [8], from which we
query top-down segmentations, as described in Section 4. The higher-order potentials are
then formed as described in Section 2. The unary and pairwise potentials are the same for
both approaches. Both the baseline method and the proposed one have been implemented in
C++. The current implementation takes around 6.5 hours to train on the CamVid dataset and
20-25 seconds for solving the graph-cuts optimization problem to infer the image labeling
of a test image on a Intel Core 2 Duo, 2.0GHz, 3GB RAM laptop.

Discussion of Results. An overview of the experimental results on the CamVid dataset is
shown in Table 1. For comparison, we list the results of [4, 17, 26] reported on the same
dataset. Note that [4, 26] use structure-from-motion (SfM) features, which are not available
for our approach. It can be seen that our baseline implementation achieves slightly lower
performance than [17] on some stuff categories. This can be explained by two reasons.
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(a) (b) (c) (d)
Figure 4: Qualitative results on CamVid. (a) Test images. (b) Ground truth labeled images.
(c) Segmentations obtained using the baseline approach of [17]. (d) Segmentations obtained
using our method. As can be seen, our approach achieves better segmentations for the cars
and pedestrians classes. (Best viewed in color)

Firstly, we use a simple one-layer CRF, instead of a two-level hierarchical CRF as in [17].
Second, we do not use dedicated detectors for column poles, sign-symbols, and
bicyclists, since those classes would require additional training data that we do not
have. The global performance level is however very similar (82.3% vs. 83.8%), which is
why we are confident our results will transfer also to the full system of [17].

When replacing the GrabCut segmentations by our proposed top-down segmentations,
our approach consistently improves upon the baseline, indicating that the proposed integra-
tion of top-down segmentations indeed improves the overall results. Also compared to [17],
our approach achieves significant improvements for the car, pedestrian, and road cat-
egories, where our improved segmentations show most effect. Even though the baseline we
started from was slightly below the one from [17], this improvement is strong enough such
that our approach reaches a similar global performance level (83.2% vs. 83.8%). The im-
provement is also seen visually in the form of more accurate segmentations, as illustrated in
Fig. 4 and in the supplementary material. Together, those results demonstrate the advantage
of our proposed use of generalized robust PN potentials.

6 Conclusions
We have presented a novel framework for combining object detections with a CRF frame-
work for the multi-class image labeling problem. Top-down segmentations in the form of
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generalized higher order potentials deliver soft object segmentations on the pixel-level and
therefore enable joint optimization in a single energy minimization formulation. We have
evaluated our approach on the CamVid dataset achieving state-of-the-art performance, as
well as good generalization capabilities. We achieve better performance on the classes for
which object detections are available, which indicates the potential of the proposed approach.

As future work, we will explore extensions of our current system into the time domain, as
we believe that temporal consistency conveys important information from which our system
could benefit.
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