
Dataflow Architectures

Karin Strauss

Introduction

• Dataflow machines: programmable
computers with hardware optimized for
fine grain data-driven parallel computation

• fine grain: at the instruction granularity
• data-driven: activated by data availability

 only data dependences constrain parallelism
 programs usually represented as graphs

Terminology

• nodes (FUs)
• tokens (data)
• arcs (dependences)
• input port
• enabling
• firing
• input data + firing =

output data

+

x y

Node Types

• functional: (e.g. +, -, *…)

• conditional:

• merge:

value if control == true
nothing if control == false

control

value

value if control == false
nothing if control == true

input 1 input 2

value out

non-strict firing rule
acts as a serializer

if … then … else …

x y<

+ -

u v

if(u < v)
 z = x + y;
else
 z = x - y;

z

Iteration, Recursion, Reuse
and Reentrance

• using the same graph to perform
computation on different data sets

• assume no storage elements are used,
data is only present in wires

while example

suppose this
node takes
10x what a
regular node
takes to perform
computation

t x y
0 m m
1 <,c c
2 c,c c
3 +1 +
4 h,m +
5 <,c +
6 c,c +
7 +1 +
8 h,m +

Synchronization

• static
 locks (compound branch and merge nodes)

• nodes only fire when all inputs are ready
• loss of concurrency

 acknowledging (control flow protocol)
• extra arcs from consumer to producer
• increases resources needed

 can be reduced with detailed analysis

Synchronization II

• dynamic
 each iteration is executed in a separate

instance of the graph
 code copying

• new instance of subgraph is created per iteration
• need to direct tokens from earlier iterations to

inputs of new iteration
 tagged tokens

• attach a tag to each token, associating it with an
iteration

• fire when input tokens have all the same tag

Tagged Tokens

• create other problems
 how to manage tags (size, distribution)
 storage overhead

• tags have to be stored with tokens
• tokens that cannot be consumed at the moment

may need to be stored for later use
 too much parallelism!

• storage overflow
• deadlocks

Procedures

• procedures can be called from several
distinct calling sites
 callee node address sent in special token
 mechanism to direct the “return value” token

Processing Element
Architecture

• several processing elements (PEs) that
communicate with each other

enabling unit functional unit

memory
tokens
and
nodes

1) enabling unit receives token

2) enabling unit stores token at
addressed node

3) if node is now enabled, send
node to functional unit

4) functional unit processes node

5) output + destination address
are sent back to enabling unit

1

2

3 4

Tagged Architectures

matching
unit

functional
 unit

memory

1

2 3

4 5
fetching

unit

memory

tokens nodes

1) matching unit receives token

2) check memory; if all other inputs
with same tag are there, send all
tokens to fetching unit

3) fetching unit retrieves node from
memory

4) fetch unit assembles an executable
packet and sends it to functional unit

5) functional unit executes node with
inputs provided by packet

6) output is sent back to matching unit

One-level Architecture

• a functional unit
delivers tokens to
the enabling unit
of the correct
processing
element

Two-level Architecture

• each functional
unit consists of
several functional
elements that
can process
packets in parallel

Two-stage Architecture

• each enabling
unit can send
executable
packets to any
functional unit
 good for

heterogeneous
functional units

Manchester Dataflow Machine

• Gurd and Watson (1976-1981), two-level
machine

I/O
switch

token
queue

matching
 unit

instruction
 store

processing
 unit

overflow
unit

• pipelined ring
• matching unit pairs tokens
• large data sets overflow to
overflow units
• appropriate instruction is
fetched from instruction store
• inputs and instruction are
forwarded to processing unit

Underutilization

• poor performance
• underutilization of functional units

 imbalance
 overhead computation

• underutilization of storage space
 large data sets
 code replication
 tags, destination addresses

Dataflow Model

• Benefits:
 exposes parallelism
 can tolerate latencies
 mechanisms for fine-grain synchronization

• Drawbacks:
 loss of locality (interleaving of instructions)
 waste of resources
 space overhead

Trends

• convergence of dataflow architectures
with conventional Von-Neumann
architectures

• Ianucci’s hybrid approach
• decoupled architectures
• out-of-order processors

Ianucci’s Hybrid Approach

• scheduling quanta
 little or no parallelism among instructions
 maximize run length (more locality)
 minimize # of arcs between quanta
 increase resource utilization
 deadlock avoidance: dependence sets

Ianucci’s Hybrid Approach (II)

Network &
Global Memory

Local Memory

Registers

ALU

Local Memory

Registers

ALU

…

Decoupled Architectures and
Out-of-Order Processors

• Decoupled architectures:
 decentralized structures (distinct FUs)
 instruction steering based on input and output

dependences, and operation to be performed
• Out-of-Order processors:

 register renaming to identify “iteration”
 instruction scheduling based on ready input

operands
 predication?

Less Traditional Proposals

• Wavescalar (U. Washington, Mark Oskin)
 PIM architecture
 supports traditional Von-Neumann style memory

semantics in a dataflow model
 any programming language

• Edge/Trips (U.T. Austin, Doug Burger)
 direct instruction communication (within blocks)
 groups of 128 instructions mapped to an array of

execution units: dataflow within, sequential across
 loads and stores still do through memory ordering hw

Related OoO Techniques

• instruction collapsing (Micro’37)
 strands: dependent instructions with intermediate

computation that does not need to be committed to
architectural state (Wills - Georgia Tech)

• e.g. e = a + (b + (c + d))

 mini-graphs: sequence of instructions with at most 2
inputs, 1 output, one memory operation and 1
terminal control transfer (Roth - U. Pennsylvania)

 goal: save processor resources
• instruction queue entries
• reorder buffer entries
• registers / register file accesses

