
Accelerating Data Race Detection
with Minimal Hardware Support

Rodrigo Gonzalez-Alberquilla1 Karin Strauss2,3 Luis Ceze3 Luis Piñuel1
1 Univ. Complutense de Madrid, Madrid, Spain
{rogonzal, lpinuel}@pdi.ucm.es
2 Microsoft Research, Redmond WA, USA

kstrauss@microsoft.com
3 University of Washington, Seattle WA, USA

luisceze@cs.washington.edu

Abstract. We propose a high performance hybrid hardware/software solution
to race detection that uses minimal hardware support. This hardware extension
consists of a single extra instruction, StateChk, that simply returns the coherence
state of a cache block without requiring any complex traps to handlers. To lever-
age this support, we propose a new algorithm for race detection. This detection
algorithm uses StateChk to eliminate many expensive operations. We also pro-
pose a new execution schedule manipulation heuristic to achieve high coverage
rapidly. This approach is capable of detecting virtually all data races detected by
a traditional happened-before data race detection approach, but at significantly
lower space and performance overhead.

1 Introduction
Writing much-needed multithreaded programs often requires dealing with con-
currency bugs that result from subtle interaction between threads. Among these
bugs, data races are the most common. Unsynchronized accesses to shared data
could lead to crashes or silent data corruption, so current languages including
Java [6] and the new C++ standard [11] disallow or discourage data races.

Researchers have proposed a variety of mechanisms to detect and avoid data
races, including many hardware-only [8, 9, 12, 13, 18] and software-only [14,
15, 17] solutions. Hardware-only solutions are typically complex. They require
extensive hardware support, like changes to the cache hierarchy, extending cache
coherence messages with additional information, and modifying the cache co-
herence protocol state machine to check for events of interest. The storage re-
quirements, many times close to key processor structures, are also quite pro-
hibitive. Software-only solutions, on the other hand, require no modification to
the architecture, but are typically too slow to be an always-on feature. The anal-
ysis operations performed in software are slower, and these algorithms require
a significant amount of metadata and frequent inter-thread communication.

We propose a hybrid solution: hardware support is boiled down to the bare
minimum, reducing complexity, and making detection of inter-thread communi-
cation much faster than prior approaches. We augment the ISA with one simple
instruction that takes an address as input and returns the coherence state of the

cache block containing that address. We also propose a new algorithm that uses
this support to effectively detect data races. Our solution leverages two key in-
sights: (1) the dynamic information we need can be extracted from coherence
state already tracked by the hardware; (2) there is a well-defined category of
dynamic data races that are much cheaper to detect and yet can be proven to in-
clude all static data races given sufficient executions. We also show how to per-
turb execution schedules to speed up the exposure of data races to the detection
mechanism, achieving high accuracy compared to traditional happened-before
data race detection, but at significantly lower space and time overheads.

Sections 2, 3 and 4 explain the proposed hybrid system, Sections 5, 6 and 7
evaluate it and compare it to previous work, and Section 8 concludes.

2 Background
Terminology. A data race exists if there is no synchronization order between
any two accesses to the same address by different threads, at least one of them
being a write access. A static race is a pair of static instructions that, when exe-
cuted, may be involved in a data race, and a dynamic race is one manifestation
of a data race at execution time. An epoch is the set of dynamic instructions in
a thread executed between two consecutive synchronization operations. To sim-
plify our discussion, we assume a static direct mapping of threads to cores. We
discuss how to relax this assumption in Sections 4.1 and 4.4.
Data race detection. The basic approaches to data race detection are happened-
before-based [13, 14] and lockset-based algorithms [15, 18]. We focus on the
former, which leverage Lamport’s happened-before relation [2] (to partially or-
der memory accesses based on observed synchronization operations) and pro-
gram order to determine if conflicting accesses are logically concurrent. Due
to space constraints, we omit an explanation of happens-before race detection
(HapB) and FastTrack (FastT), a state-of-the-art software implementation of
HapB for Java, but we expect the reader to be familiar with them [1, 2, 14].
Cache coherence. Without loss of generality, we assume an invalidate-based
MESI protocol. The coherence state of a cache line implicitly carries valuable
information about recent accesses, e.g., if the block is in M state in a cache, the
line was last written by the local processor; the E state indicates the cache has
read that block before; the S state indicates the cache has read or written that
block before, and then another cache may have requested that block; the I state
indicates that a remote write happened. We leverage this implicit information
for lightweight memory access monitoring.

3 Minimal hardware support for data race detection
Our proposed minimal hardware support for data race detection consists of sim-
ply exposing the coherence state of a cache block to software via one addi-

Wr v

Wr v

Rd v

th th

v M
th Table0

v M
th Cache0

v S

S < M

1

2

3

4

5

0 1

v S

v M

v M

Race detected

2:

3:

4:

Fig. 1: Race detection with coherence state.

Transition at Access at Access at Race typelocal thread local thread remote thread
M → S write read W→R
M → I write write W→W
M → I

read write R→WE → I
S → I

Table 1: Types of downgrades and races.

tional instruction. A software layer then records and uses the state information
to detect data races. To leverage this support, we propose a new race detection
algorithm, “AccessedBefore”, or simply AccB. Its key idea is to use a software-
managed address-indexed table to track the last observed state of cache blocks
and detect if they have been downgraded within the boundaries of an epoch.
A downgraded block within an epoch indicates a potential data race: a remote
cache has issued an upgrade request to the block. Note that all state necessary to
the analysis is local to a thread, so no inter-thread communication is required;
HapB, in contrast, requires substantial inter-thread communication.

3.1 AccessedBefore (AccB) Algorithm
Figure 1 illustrates how AccB works. Thread 0 performs a synchronization op-
eration and starts an epoch (1). When thread 0 performs a write to variable
v (2), the corresponding cache block transitions to M state and the software
layer records the pair of address and state < v, M > in its local table. When
thread 1 subsequently reads variable v (3), the block cached by thread 0 is down-
graded to S state. At this point, the software layer is unaware of the downgrade.
Finally, when thread 0 is about to write v again (4), the software layer reexam-
ines the current state of v’s block (S) and the state recorded in its local table
(M), observes a downgrade has happened and detects the race. If this last write
never happens, the downgrade check is performed when the epoch ends (5).

Table 1 shows the different types of downgrade and the races they indicate.
For example, the first row corresponds to the example in Figure 1. Table 2 sum-
marizes AccB’s operation by showing the actions taken by the software layer
on each relevant event. Again, note that all analysis actions are local to a thread:
the only communication between threads happens through the cache coherence
protocol (which would be present even in the absence of AccB). Also, the in-
formation collected into the local table only pertains to a single epoch, as we
are not interested in downgrades across synchronization operations. In addition,
AccB epochs can be redefined to the instructions executed between two source
synchronization operations because AccB does not require any notion of order-
ing with previous epochs from other threads, while HapB does. These are three
important advantages of our approach when compared to HapB, which has ad-
ditional storage and communication requirements.

Event of interest Algorithm action

Beginning of epoch Clear local table.

Before memory access Check the current state of the corresponding cache block against the entry
in its local table (if any) to detect downgrades.

After memory access Record the state of the corresponding cache block in its local table.

End of epoch Check every entry in its local table and their corresponding state in the cache to
detect remaining downgrades.

Table 2: Events of interest and related algorithm actions.

In essence, AccB looks for access conflicts between concurrently running
epochs, which must be the result of a race (or false sharing as described below).
Thus, a race will be detected if the epochs with racy accesses overlap in time.

Interestingly, for every race in a program there must exist an execution in
which the epochs of the racy instructions overlap in time (we formally proved
this statement but leave it out due to space constraints). We propose an opti-
mization to quickly expose races to AccB: carefully perturbing the execution
schedule to increase the probability of overlapping racy epochs.

3.2 Sources of Inaccuracy
We now discuss the two sources of inaccuracy in AccB: (1) false sharing, and
(2) block evictions. The next section discusses optimizations to mitigate them.
False sharing. To keep the hardware support required by our proposal to a
minimum, we do not extend the memory access information to granularity finer
than what is already provided by coherence protocols: a cache block. False shar-
ing of the block may result in false positives. Other race detection approaches
at the same granularity would have the same limitation (e.g., HapB). Moreover,
our approach can be easily extended to finer granularity if necessary (at extra
cost) and is orthogonal to software techniques to mitigate false positives.
Cache block eviction. On eviction, a block loses its state thus the cache loses
its ability to detect downgrades, so races may be missed (false negatives).

4 Implementation
4.1 Hardware support
We extend the ISA of an off-the-shelf multiprocessor with a StateChk (StChk
off(base),reg) instruction, which returns the state of off(base)’s cache
block in register reg. If the block is not present in the cache, StateChk re-
turns a special NotPresent (NP) state to distinguish from a block in Invalid state.
The last valid state is returned if the cache block is in a transient state.

Implementing the StateChk instruction requires minor changes to (1)
cache data paths, and (2) cache controllers. A new multiplexer creates a path for
coherence state into the processor via the existing cache data path. Cache con-
trollers suffer one modification: if the requested block is not currently cached,
the cache controller returns the NP state without triggering a miss request.

We assume L1 caches to be the point of coherence, but other configurations
are possible. They belong to one of two categories: (1) coherence is maintained
among caches private to a hardware thread (e.g., private non-inclusive L1 and
L2 caches), and (2) coherence is maintained in caches shared by more than one
hardware thread (e.g., SMT processor with a single L1 data cache). In the first
case, the proposed mechanism works seamlessly: the state is obtained from the
private cache where a hit happens (NP in case of a miss in all private caches).
In the second case, accesses and resulting changes of state by different threads
need to be distinguished by replicating the state for each thread.

4.2 Software Layer
Data structures. A thread-local hash table records information about accesses
performed during an epoch. This table is indexed by data address and stored in
main memory. Each entry contains the expected state (based on the type of the
last access to the cache block) for the corresponding block and the address of
the instruction that performed the last local access to the address.
Instrumentation points. We use dynamic binary rewriting to instrument ev-
ery source synchronization operation (thread creation, mutex and conditional
variable creation, lock release, and waiting) and every memory operation not
involved in a synchronization operation. The epoch ending instrumentation is
inserted right before source synchronization operations. It searches the local ta-
ble for any downgraded variables in the ending epoch and subsequently clears
the table in preparation for the next epoch.

The memory access instrumentation checks the state of the corresponding
address in the cache via a StateChk instruction, and compares it with the
state recorded in the table. If it detects a downgrade, it reports the race with
the corresponding address and the instruction address of the previous access. It
then updates the state in the table with the maximum (following the order M >
E = S > I) of the recorded state and the current state. Using the maximum
is safer than executing StateChk again after the instrumented access executes
because downgrades could be missed in the window between the instrumented
access executes and the second StateChk instruction executes.

4.3 Optimizations
These optimizations improve accuracy and reduce instrumentation overhead.
Coverage improvement with schedule perturbation. AccB only detects
races between epochs that overlap in time. We perturb executions to encour-
age an increased variety of overlapping epoch sets. When an epoch starts, the
thread randomly chooses an action: (1) to continue executing normally, or (2) to
join its thread to a rescheduling barrier. The thread waits at this barrier until a
bounded random timeout occurs. At this point, all threads that joined this first

barrier start executing their epochs. Once a thread finishes its epoch, it joins a
checking barrier. When all threads that joined the first barrier join this second
barrier, or it times out, epoch checks are done and all threads continue.
Further reducing overheads with extra hardware support (AccB++). We
can further accelerate AccB with very simple modifications: we add a small
number of metadata bits to caches and use them to reduce the number of ac-
cesses to the local table. The coherence state of each cache block is augmented
with two extra bits, namely, locally read bit (lrd) and locally written bit (lwr),
and caches are augmented with a single downgraded bit (dgd). These bits record
the nature of the local accesses within the last epoch (lrd or lwr) to a particu-
lar cache block, and downgrades (dgd) to any cache block touched by the local
thread within that epoch. An additional instruction gang-clears these bits in the
local cache and is used by the software layer in the beginning of every epoch.
The cache controller is modified to set lrd or lwr on a local read or local write
access, respectively, and to set dgd on downgrades due to remote requests (but
only if either lrd or lwr for that block is set). Finally, the StateChk instruction
returns these three bits together with the regular coherence state.

The software layer uses these additional bits to detect accesses followed by
downgrades within an epoch. A StateChk instruction is inserted immediately
before each memory access and the dgd bit is checked. If the dgd bit is set, a
data race is detected. These bits optimize how the local table is used: the lrd and
lwr bits reduce the number of accesses to the table, since only information about
the first read and write accesses to a variable in each epoch need to be recorded
(this is sufficient to report one data race – others may be detected once the first
is eliminated). On every memory access, instead of checking if the address is
present in the table, the lrd and lwr bits are checked. If none are set, this is
the first access to this variable within the current epoch, so the address and the
corresponding instruction address are added to the table. If only the lrd bit is set
and the access being instrumented is a write, this is the first write access to the
variable, so the instruction address of the table entry is updated. If the lwr bit is
already set, no new updates are needed. Note this does not completely eliminate
the use of the local table because it is still necessary for end-of-epoch checks
and for recording the instruction address of accesses.

A small victim cache next to the data cache reduces the impact of cache
block evictions. Whenever a block that has its lrd and/or lwr bit set is evicted
from the data cache, it is cached in the victim cache. This allows reporting a
race even if the block involved in the race has been evicted from the data cache.

4.4 System Issues
Thread migration. Thread migration can lead to changes to the coherence
states observed by AccB, affecting its accuracy. To mitigate this potential prob-

lem, the software layer may check via an instruction like x86’s CPUID in which
core the thread is running at every epoch end and compare it with the core
identification number recorded in the previous epoch. If they are different, a
migration has taken place and the instrumentation ignores any races detected
for that epoch. Note that to preserve locality, the OS typically keeps the map-
ping between threads and cores as stable as possible. Finally, epochs typically
run much faster than context switch time scales. Therefore, thread migration is
unlikely to lead to major accuracy degradation in AccB.
Speculation. Speculative execution can cause additional false positives in
a few scenarios: (1) StateChk is executed speculatively in the local core,
(2) load is executed speculatively in a remote core, and (3) prefetch request is
issued in a remote core. The simplest solution is to allow false positives, which
are likely to be low. Other solutions to the first problem are to either reuse mech-
anisms traditionally used for load speculation (e.g., replay or snoop) or to only
set the access bit when the load retires. Solutions to (2) consist of limiting spec-
ulation to when it is safe. For example, allowing a speculative load to proceed
only when it reaches the point-of-no-return in designs like CHERRY [7] or if
the cache block is in the local cache in a valid state. (3) can be easily miti-
gated by turning prefetching off during debugging runs; an alternative is mark-
ing prefetches until later access confirmation, at the cost of extra complexity.

5 Experimental Setup
We evaluate AccB using the PIN [5] dynamic binary instrumentation framework
with a tool that includes the software layer from Section 4 and a detailed mem-
ory hierarchy: 8 32KB 8-way set associative LRU DL1s with 64-byte blocks
and MESI coherence. The latency of StateChk is the same as a cache hit.

We compare AccB with an implementation of HapB and FastT using the
same instrumentation framework. All algorithms are exposed to the same mem-
ory interleavings for accuracy comparisons. HapB is complete, so we verified
that every race found by AccB has also been found by its HapB counterpart.
HapB Implementation. We have carefully optimized HapB by using hash-sets
for read- and write-sets and Bloom-filters to speed up intersections of hash-sets.
Same-thread epochs are stored in an ordered linked list and pruned as soon as an
old epoch is ordered before all current epochs (space-optimal implementation).
Vector clocks are implemented as regular arrays.
FastT Implementation. We implemented FastT for C++. Unlike the original
implementation for Java, which embeds metadata in the object, the implemen-
tation for C++ stores metadata in a global table because C++ is not type safe.
Benchmarks. We use the SPLASH-2 benchmarks [16] and commercial work-
loads (Apache httpd server, MySQL database, AGet, PBZip) compiled with
gcc’s standard -O2 optimization flag and run with 8 threads. We do not report

brns chlsk fft fmm lu ocean radx rayt vrnd water aget pbzip
cnt ncnt cnt ncnt nsqr spt
Speedup (×— HapB/AccB)

AccB 1.11 1.03 1.02 1.16 0.98 0.95 1.19 1.21 0.98 1.08 5.71 1.23 0.99 – –
AccB++ 1.99 1.31 1.27 1.55 1.54 1.23 1.19 1.21 1.04 1.23 5.90 1.71 1.30 – –
FastT † 0.03 0.01 0.07 0.01 0.08 0.08 0.33 0.33 0.18 0.21 0.29 0.08 0.06 – –

Space overhead (%)
AccB avg 0.8 9.4 31.8 3.3 19.9 20.2 25.6 26.1 32.9 41.0 0.2 15.8 30.6 0.1 5.6
AccB max 77.1 13.0 87.5 29.6 33.3 33.2 110.6 113.3 116.5 40.4 0.4 25.7 80.1 0.1 32.1

Accuracy (%)
AccB 97.8 – – 95.4 – – 100.0 100.0 – 100.0 100.0 – – 100.0 100.0

Table 3: Performance, space overhead and accuracy comparison of AccB and HapB.

performance for AGet and PBZip because they are non-deterministic. We verify
that AccB detects races reported in the literature for Apache and MySQL [3].

6 Evaluation
6.1 AccB versus HapB
Table 3 compares AccB and HapB in terms of performance, space overhead and
accuracy. The first group of rows in Table 3 show the speedup of an application
instrumented with AccB, and with extra hardware support (AccB++), compared
to HapB. For example, barnes instrumented with AccB runs 11% faster than
when instrumented with HapB. The speedup grows to almost 2× with AccB++.
Overall, AccB++ achieves speedups of up to almost 6×. A few benchmarks
(lu, radix, and water spatial) experience modest slowdowns with AccB, caused
by the type of synchronization used in these benchmarks: most synchronization
is based on barriers, which allow HapB to clean up all information about old
epochs and significantly reduce its checking overheads. AccB incurs extra over-
heads because it performs table checks on every memory access in addition to
end-of-epoch checks. Note that AccB++ always shows speedups 4.

The second group shows average and maximum space overheads for AccB
over HapB. For example, AccB uses on average 0.8% and at most 77% of the
storage used by HapB for barnes. For most benchmarks, AccB uses significantly
less space than HapB. In some cases (ocean, radix), AccB incurs a higher max-
imum space overhead compared to HapB (but the average is still lower). This is
due to uncommon program behavior: frequent barriers and large accessed sets.

The last row shows accuracy, i.e., how many races AccB detects compared
to HapB for 500 runs. AccB detects all races for most benchmarks. Section 6.3
provides more insight into those very few races not detected by AccB.

4 † The results show that FastT is much slower than HapB. The reason is twofold: first, FastT
experiences additional overheads compared to its original Java implementation due to the
global table required by C++; second, HapB performs intersections at the end of each epoch,
FastT performs checks at every access.

AccB AccB++

Lookups 3326.7% 15.6%
Updates 100.0% 29.8%
Branches 4.2% 5.1%

Table 4: Number of operations executed by
AccB and AccB++ compared to HapB.

HapB AccB

Avg. entries per epoch 360.3 623.2
Avg. epochs in history 16.5 0
Avg. simultaneous entries 71.6k 9.1k
Size (MB) 2.15 0.28

Table 5: Overheads, storage requirements of
HapB and AccB.

6.2 Overheads Characterization
Performance. Table 4 characterizes the performance overheads of AccB and
AccB++ compared to HapB, aggregated for all benchmarks. This study is data
structure independent: it counts high level operations to each algorithm’s data
structures, i.e., lookups and updates. The numbers show the relative frequency
of events for AccB and AccB++, normalized to HapB. Lookups (row 2) and
updates (row 3) are direct accesses to AccB’s local table and to HapB’s sets.
Branches (row 4) refer to branches taken while manipulating these data struc-
tures. AccB incurs many more lookups than HapB because AccB performs
lookups at every memory access, while HapB performs them only at epoch
ends. Even though AccB’s lookups are more frequent, AccB is still faster than
HapB because there is high locality in AccB’s table accesses and most are cache
hits (besides being thread-local). Also, HapB is very control flow intensive, as
demonstrated by the large number of branches. HapB’s data structures are larger
(due to multiple epochs, not just the current), which results in worse cache be-
havior. Finally, HapB requires transferring vector clocks and epoch information,
which implies additional communication among threads, i.e., costly misses.

With simple additional support, AccB++ has lower overheads than AccB.
AccB++ reduces lookups by two orders of magnitude and updates by more than
60%. AccB++ has higher number of branches, but still much lower than HapB.
Space. Table 5 shows the space overhead of HapB and AccB averaged across
all benchmarks. It reports the number of entries per epoch (row 2), overall num-
ber of epochs kept in history (row 3), total number of entries used by all epochs
in all threads simultaneously (row 4) and overall storage requirements (row 5).

AccB records more entries per epoch than HapB (row 2). This is due to
AccB only ending epochs at synchronization sources, which makes AccB epochs
longer. AccB keeps no history while HapB keeps history on 16.5 epochs on av-
erage (row 3). AccB requires a much lower total number of entries (over 7×
fewer). Overall, AccB reduces space overhead by more than 7×. Storage re-
quirements for AccB++ are similar to AccB. In addition to being larger, the
storage HapB requires is shared and accessed by all threads when their epochs
end. Conversely, the storage AccB requires is much smaller and purely local.

brns chlsk fft fmm lu ocean radx rayt vrnd water aget pbzip
cnt ncnt cnt ncnt nsqr spt

99.1 98.3 100.0 81.3 100.0 100.0 100.0 98.6 100.0 100.0 100.0 100.0 100.0 51.8 75.0

Table 6: Relative percentage of false positives in AccB compared to HapB.

6.3 Accuracy Characterization
False positives. Table 6 shows the false positives detected by AccB relative to
HapB at the same tracking granularity. AccB never has more false positives than
HapB. False positives are inherent to the tracking granularity (cache blocks) for
both AccB and HapB and can be reduced with additional software support (e.g.,
by changing the data layout to avoid false sharing), but this is beyond the scope
of this paper.
False negatives. As explained in Section 3.2, AccB has two sources of false
negatives (i.e., missed races). The first is due to limited cache capacity, which
causes cache blocks to be evicted and the access information to be lost (CBE –
cache block evictions). The second is due to epochs with races not overlapping
on AccB executions. We separate the two effects by modifying our simulator
with unbounded space to store evicted cache blocks, such that the CBE prob-
lem is completely eliminated. No new races were found, so all races missed
by AccB for these benchmarks are due to non-overlapping epochs, a problem
that can be addressed with scheduling perturbations and/or multiple runs. Other
benchmarks with larger epochs could cause the CBE problem. However, archi-
tectures with private L2 caches are common today, so there is much more space
than the DL1s used in this evaluation. Alternatively, a victim cache that only
stores evicted downgraded lines may be sufficient to mitigate the problem.
Sensitivity to scheduling perturbations and number of runs. Figure 2(a)
shows how the aggregate number of static races detected by AccB, with and
without scheduling perturbations (AccB Mix and AccB Base), grows with the
number of executions for fmm. After about 25 runs, AccB Mix clearly shows
new races while AccB Base does not. This happens when the scheduling per-
turbations start exposing more diverse epoch overlaps. These results also show
that scheduling perturbations indeed help AccB find races faster.

Figure 2(b) shows how fast AccB Mix approximates the number of static
races detected by HapB over 500 runs. AccB detects most races in the first
few executions (about 2/3 are detected within the first 10 runs). The number
of races AccB Mix detects continues growing after that, although increasingly
more slowly. We manually inspected a few of the races that AccB had not de-
tected after 500 runs and found that for each undetected race there was another
race that originated at the same programming mistake (e.g., missing critical sec-
tion) and that was successfully detected by AccB.

 0

 40

 80

 120

 160

 200

 0 20 40 60 80 100

AccB Base

AccB Mix

(a) Aggregate number of static races found as
the number of executions increases for AccB and
AccB with scheduling perturbations (AccB Mix).

 0

 40

 80

 120

 160

 200

 240

 0 100 200 300 400 500

HapB
AccB Mix

(b) Aggregate number of static races
found as the number of executions in-
creases for AccB Mix, compared to HapB.

Fig. 2: Sensitivity to scheduling perturbations and number of runs.

7 Related Work
Conflict exceptions [4] (CE) relates to our work in the type of bugs it detects. CE
detects when a synchronization-free region (epoch) conflicts with another con-
current synchronization-free region. Such conflicts can only happen when a data
race exists. This is in essence the same type of event AccB detects. However,
CE detects these events in a fully precise way, in order to throw an exception.
This requires significantly more hardware (50% cache overhead for access bits).
We sacrifice some precision in order to keep hardware at a minimum. AVIO [3]
is an atomicity violation detector that also augments and leverages coherence
state. However, atomicity violations do not necessarily imply data races.

The works most related to ours are by Min and Choi [8], and Nagarajan and
Gupta [10]. Both propose using traps to expose certain cache coherence events
to enable analysis of parallel program behavior. Nagarajan and Gupta [10] show-
cased their mechanism with deterministic replay and barrier speculation. Min
and Choi [8] developed a limited form of happened-before detection for a sub-
class of programs (structured parallelism only). In contrast, our hardware pro-
posal does not rely on software traps; it is essentially a load operation that
returns coherence state. Software traps are arguably more flexible, but are also
much more costly to implement. Importantly, these proposals focus on other
applications of tracking coherence events. We propose a new race detection al-
gorithm that uses our novel hardware support to reduce performance overheads,
and also significantly reduce space overhead compared to happened-before.

8 Conclusions
In this paper, we propose a data race detection solution that requires minimal
hardware support. This solution captures many of the same races a more tradi-
tional mechanism based on happened-before captures, but at much lower over-
heads. We expect the overhead reductions and the hardware simplicity to make
this solution sufficiently compelling for multicore designers to include support
in their designs.

Acknowledgements: This work was supported in part by the National Science Foundation

under grant CCF-1016495, the Spanish government under CICYT-TIN 2008/00508 and an FPU

grant, a Microsoft Faculty Fellowship, and gifts from Intel.

References
1. FLANAGAN, C., AND FREUND, S. N. FastTrack: Efficient and Precise Dynamic Race

Detection. In Conference on Programming Language Design and Implementation (2009).
2. LAMPORT, L. Time, Clocks and the Ordering of Events in a Distributed System. Commu-

nications of the ACM (1978).
3. LU, S., ET AL. AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants.

In International Conference on Architectural Support for Programming Languages and Op-
erating Systems (2006).

4. LUCIA, B., ET AL. Conflict Exceptions: Providing Simple Concurrent Language Semantics
with Precise Hardware Exceptions. In International Symposium on Computer Architecture
(2010).

5. LUK, C.-K., ET AL. Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. In Conference on Programming Language Design and Implementation
(2005).

6. MANSON, J., PUGH, W., AND ADVE, S. The Java Memory Model. In Symposium on
Principles of Programming Languages (2005).

7. MARTINEZ, J., ET AL. Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors. In International Symposium on Microarchitecture (2002).

8. MIN, S. L., AND CHOI, J.-D. An Efficient Cache-based Access Anomaly Detection
Scheme. In International Conference on Architectural Support for Programming Languages
and Operating Systems (1991).

9. MUZAHID, A., ET AL. SigRace: Signature-Based Data Race Detection. In International
Symposium on Computer Architecture (2009).

10. NAGARAJAN, V., AND GUPTA, R. ECMon: Exposing Cache Events for Monitoring. In
International Symposium on Computer Architecture (2009).

11. NELSON, C., AND BOEHM, H.-J. Concurrency Memory Model. C++ standards committee
paper., October 2007.

12. PRVULOVIC, M. CORD: Cost-effective (and Nearly Overhead-free) Order-recording and
Data Race Detection. In International Symposium on High Performance Computer Archi-
tecture (2006).

13. PRVULOVIC, M., AND TORRELLAS, J. ReEnact: Using Thread-Level Speculation Mecha-
nisms to Debug Data Races in Multithreaded Codes. In International Symposium on Com-
puter Architecture (2003).

14. RONSSE, M., AND DE BOSSCHERE, K. RecPlay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems 17, 2 (1999).

15. SAVAGE, S., ET AL. Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM Transactions on Computer Systems 15, 4 (1997).

16. WOO, S., ET AL. The SPLASH-2 Programs: Characterization and Methodological Consid-
erations. In International Symposium on Computer Architecture (1995).

17. YU, Y., RODEHEFFER, T., AND CHEN, W. RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. In Symposium on Operating Systems Principles (2005).

18. ZHOU, P., ET AL. HARD: Hardware-Assisted Lockset-based Race Detection. In Interna-
tional Symposium on High Performance Computer Architecture (2007).

