The Current State Of Technology for the Blind and Visually Impaired

Jeff Wilson, Andreas Stefik
Southern Illinois University Edwardsville
SIGCSE 2012
Accessibility technology is highly fractured and inconsistent

- Most major operating systems now have some kind of disabilities support built in (with varying success)
- Unfortunately, these technologies are woefully outdated, having changed little since the days of console applications
- Accessibility technologies are, almost always, incompatible with similar technologies on different platforms
 - Windows – IAccessible, COM (JAWS, Windows EYES, NVDA)
 - Mac – NSAccessible (Voice Over)
 - Linux – Varies
 - Mobile Phones – Varies
 - Java – Java Accessibility (Major technical problems)
Tools like modern screen readers work well … sometimes

- Screen readers are remarkably effective for the following kinds of applications (with notable exceptions)
 - Web pages
 - Forms
 - Console apps/Trivial apps

- Screen readers either do not work at all, or are woefully ill equipped, to handle applications like the following:
 - Video games
 - Highly visual environments (e.g., Novice Programming Environments)
 - Cross platform applications (e.g., even Microsoft PowerPoint is not accessible on Mac – it makes no sound as you type)
Blind individuals have a vested interest in solving technological problems

- Many of the problems that currently exist can potentially be solved by training blind and visually impaired individuals in technology creation.

- Training blind and visually impaired individuals may provide a lucrative employment path, which is important because:
 - Approximately 8% of families have a member with a sensory disability (e.g., blind, deaf).
 - Families with a member that has a sensory disability:
 - Make less median income (54,515 vs. 38,755)
 - Are more likely to live in poverty (11% vs. 9.2%)
 - Are more likely to be either unemployed or not in the labor force (14.9% vs. 41.3%) (2000 Census data).
 - 56% of working adults with vision loss are out of the workforce (September 2010 Bureau of Labor Statistics (BLS) data).
We are training students with visual impairments

- As part of the NSF Broadening Participation in Computing program, we have created custom technologies and social programs for working with the blind and visually impaired population.

- Multiple partners, including schools for the blind and visually impaired in five states. Each partner teaches the equivalent of CS 1 or 2 to students. These partners are in:
 - Washington
 - Texas
 - Tennessee
 - Massachusetts
 - Indiana
Custom technologies assist in training these students

- **Phonemic** – A cross-platform, unified, architecture for outputting text-to-speech

- **Sodbeans** – A cross-platform integrated development environment with features designed for the blind (e.g., talking debuggers, magnifiers, auditory code completion, auditory annotations)

- **Quorum** – A general purpose programming language. Studies have shown this language is easier to understand for novices in general compared to C-style syntax. It is also easier to “say” through a screen reader.
Even highly visual applications can be made accessible

- Using phonemic and other tools enables us to cooperate with traditional screen readers much more easily. This has allowed our lab to build:
 - An accessible, cross-platform integrated development environment
 - A fully accessible 3D computer game in the Unity 3D game engine
 - A first person shooter game for the blind and visually impaired
 - A number of smaller games (e.g., maze playing games)
 - Soon: Botball robotics platform.
The CS community needs a stronger focus on technology for the blind and visually impaired

- Notice that most major endeavors for novice computer scientists are not accessible:
 - M.I.T.’s Scratch is almost completely non-accessible (using Mac Voice Over or PC NVDA)
 - C.M.U’s Alice is “mostly” non-accessible (using Mac Voice Over or PC NVDA)
 - Other platforms, screen readers, and novice tools may vary

- Even general purpose programming languages have challenges for the blind community
 - How do Python white space rules affect the blind?
 - Typical languages use esoteric syntax.
 - Note that the common for(int i = 0; i < 10; i++) {} translates into
 - “for left paren int I equals 0 semicolon I less than ten semicolon I plus plus right paren left brace right brace,” a phrase which is aurally tedious for a screen reader user.
Improving technology for the blind is highly tractable

- Even full-animated 3D games can be made accessible
- Novice programming environments could consider the blind and visually impaired community with software changes
- Researchers could develop a new generation of technologies for the blind and visually impaired, fixing some of the core problems:
 - Significant cross-platform inconsistencies
 - Screen reader APIs are highly inflexible and screen reader specific (e.g., JAWS scripts, NVDA scripts, Windows EYES scripts, Voice over – Not extensible)