
Chapter 6

Models with One Job Class

6.1. Introduction

In this chapter we examine single class querreing network models. Single
class models are refinements of bounding models that provide estimates of
performance measures, rather than simply bounds. For instance, instead
of determining that the throughput of a certain system is between 1.1 and
2.0 jobs/minute (for a given population size), a single class model would
provide an estimate of the actual throughput, such as 1.7 jobs/minute.

In single class models, the customers are assumed to be indistinguish-
able from one another. Although single class models always are
simplifications, they nonetheless can be accurate representations of real
systems. There are a number of situations in which a single class model
might be used:
l increased information - The results of a bounding study might not

provide sufficiently detailed information. Single class models are the
next step in a progression of increasingly detailed models.

l single workload of interest - The computer system under consideration
may be running only a single workload of significance to its perfor-
mance. Therefore, it may not be necessary to represent explicitly the
other workload components.

l homogeneous workloads - The various workload components of a
computer system may have similar service demands. A reasonable
modelling abstraction is to consider them all to belong to a single cus-
tomer class.
Conversely, there are a number of situations in which it might be

inappropriate to model a computer system workload by a single customer
class. These situations typically arise either because distinct workload
components exhibit markedly differing resource usage, or because the
aim of the modelling study requires that inputs or outputs be specified in
terms of the individual workload components rather than in terms of the
aggregate workload. Typical instances of each are:

98

6.2. Workload Representation 99

l multiple distinct workloads - On a system running both batch and
timesharing workloads, the batch workload might be CPU bound while
the timesharing workload is I/O bound. A queueing network model
with a customer population consisting of a single class representing an
“average” job might not provide accurate projections, since jobs in the
actual system do not behave as though they were nearly indistinguish-
able.

l class dependent model inputs - In a mixed batch/timesharing system,
the timesharing workload is expected to grow by 100% over the next 2
years, while the batch workload is expected to grow by only 10%.
Since in a single class model there is only a single class of “average”
customers, it is not possible to set the input parameters such that
workload components exhibit differing growth rates. Thus, a single
class model is not an appropriate representation.

l class dependent model outputs - In a batch environment running both
production and development programs, projections about the time in
system of each workload component, rather than just an estimate of
“average” time in system, might be desired. Since there is only one
class of customers in a single class model, outputs are given in terms
of that class only, and it is difficult to interpret these measures in
terms of the original classes of the system. Thus a multiple class
model is required.

Systems having workloads with substantially differing characteristics, as
exhibited by the examples above, may be modelled more reasonably by
multiple class than by single class queueing networks. These more
sophisticated models are discussed in Chapter 7.

The next two sections of this chapter deal with the practical application
of single class queueing networks as models of computer systems. Sec-
tion 6.2 discusses the use of the workload intensity parameter to mimic
the job mix behavior of a computer system. Section 6.3 describes a
number of case studies in which single class models have been employed.

This discussion of the practice of single class models is followed by a
discussion of their theory. In Section 6.4 the algorithms required to
evaluate the models are developed and illustrated with examples. Section
6.5 presents the theoretical underpinnings upon which the models rest.

6.2. Workload Representation

The workload representation of a single class queueing network model
is given by two model inputs: the set of service demands, and the workload
intensity. In using a single class model, one inherently makes the assump-
tion that all jobs running in the system are sufficiently similar that their

100 General Analytic Techniques: Models with One Job Class

differences do not have a major effect on system performance. Thus, cal-
culating the set of service demands is fairly straightforward, as only a sin-
gle set is required. (In contrast, with multiple class models one first must
decide how many classes to represent, and then must calculate a distinct
set of service demands for each class.)

Establishing the workload intensity has two aspects: selecting an
appropriate workload type (transaction, batch, or terminal), and setting
the appropriate workload intensity parameter(s) for that type. Selecting
an appropriate workload type typically is straightforward, since the three
workload types of queueing network models correspond directly to the
three predominant workload types of computer systems. One technical
distinction that arises is that between open models (those with transaction
classes) and closed models (those with batch or terminal classes). Since
the number of customers that may be in an open model at any time is
unbounded, while the number of customers that may be in a closed
model is bounded by the population of the closed class, the response
times of open models tend to be larger than those of corresponding
closed models with the same system throughput. This occurs because in
open models the potential for extremely large queue lengths exists, while
in closed models, because of the finite population, it does not. This
difference usually is significant only when some device in the system is
near saturation.

This brings us to the question of how to set the workload intensity
parameter. In queueing network models, the workload intensity is a fixed
quantity (an arrival rate, a population, or a population and a think time).
In contrast, in a computer system the workload intensity may vary.
Despite this discrepancy, queueing network models are useful in a wide
variety of situations:
l heavy load assumption - It may be interesting to study the behavior of

a system under the maximum possible load. By hypothesis, the load is
sufficiently heavy that there always are jobs waiting to enter memory.
Thus, when one job completes and releases memory, it immediately is
replaced by another job. The workload therefore is represented as a
batch class with a constant number of customers equal to the max-
imum multiprogramming level of the system.

0 non-integer workload intens@ - The measurement data for a system
might show that the average multiprogramming level (or active
number of terminal users> is not an integer. Some algorithms for
evaluating queueing network models allow non-integer customer
populations. Other algorithms do not. For the latter, the model can

6.2. Workload Representation 101

be evaluated for the neighboring integer workload intensity values and
the non-integer solution obtained by interpolation. For instance, if the
measured multiprogramming level were 4.5, the solutions of the
model with batch populations of 4 and 5 could be computed, and their
average taken as the projection for 4.5 customers.

l workload intensity distribution - Measurement data might provide a dis-
tribution of observed workload intensities, e.g., proportions of time
P[N=nl that there were n active terminal users on the system. This
distribution could be used to weight the solutions obtained for a model
with each observed number of users. Table 6.1 gives an example.

X(n) R (n>
0 0

.0525 .787

.1031 1.546

.1515 2.213

.1974 2.961

UCPU = d P[N=nl UcpU(n> = .0645
tl=l

R=$

I

X(n)PLV= nl

fl=l E XO’)P[N=jl
R(n) = 2.492

j=l

Table 6.1 - Use of Distributional Information

l sizing studies - Because the solutions of single class models can be
obtained extremely quickly, it is feasible to evaluate a model for a
large number of workload intensities. Thus, questions such as “What
is the maximum transaction arrival rate that can be supported with
average response time below 3 seconds?” can be answered by varying
the arrival rate of a model (e.g., setting X = 1 , 2 , . ..> and observing
the reported response times.

l robustness studies - Similarly, since it often is the case that workload
growth cannot be forecast accurately, it generally is useful to evaluate
a model for a range of workload intensities surrounding the expected
one. This allows the analyst to assess the impact on projected perfor-
mance of a growth in the workload that exceeds expectations.

102 General Analytic Techniques: Models with One Job Class

6.3. Case Studies

Three applications of single class queueing network models are
described in this section. The first is a classic study in which an
extremely simple model gave surprisingly accurate performance projec-
tions. The second is an application in which the effects of modifying cer-
tain hardware and software characteristics were investigated. The third
illustrates a recent use of a single class model for capacity planning.

6.3.1. A Model of an Interactive System

We first consider what may be the earliest application of queueing net-
work modelling to computer systems. We include this study despite its
age (it was performed in 1965) because of its historical interest and
because it demonstrates vividly that extremely simple models can be
accurate predictors of performance.

The system under study was an IBM 7094 running the Compatible
Time-Sharing System (CTSS). CTSS was an experimental interactive sys-
tem based on swapping. Only a single user could be “active” at a time.
The entire system - CPU, disks, and memory - was “time-sliced”
among users as a unit.

Terminals

r+-

System

Figure 6.1 - Interactive System Model

The purpose of the study was to investigate the response time
behavior of the system as a function of the number of users. To do so,
the model of Figure 6.1 was constructed. It contains a terminal workload,

6.3. Case Studies 103

representing the user population, and a single service center representing
the system (CPU and disks). This single service center representation is
sufficient because, with only one user active at a time, there can be no
overlap in processing at the CPU and the disks (individual users on this
system did not exploit this capability). Thus, in terms of average
response time, it does not matter (in the model) whether a user spends
time at the CPU or the disks, but simply that the appropriate amount of
time transpires.

Notice that by using a single service center to represent the system,
we have solved a simple memory constraint problem. Had the model
contained separate CPU and disk service centers, it would have been less
accurate because it would have allowed customers to be processing at
both simultaneously, while in the actual system this was not possible.
This technique of collapsing a number of service centers into a single ser-
vice center to represent memory constraints can be extended in quite
powerful ways, as will be explained in Chapter 9.

The model was parameterized from measurements taken during sys-
tem use, which provided average think time, average CPU and disk pro-
cessing times, and average memory requirement. The service demand at
the system service center was set equal to the sum of the measured pro-
cessing times and the disk service required for swapping a job of average
size. The number of customers in the model then was varied, and
response time estimates for each population were obtained. Figure 6.2
compares the model projections with measured response times.

Online users

Figure 6.2 - Measured and Projected Response Times

104 General Analytic Techniques: Models with One Job Class

6.3.2. A Model with Modification Analysis

In this case study a single class model was used to evaluate the
benefits of several proposed changes to a hardware and software
configuration. The system under consideration was an IBM System/360
Model 65J with three channels. Channels one and two were connected to
8 and 16 IBM 2314-technology disks, respectively. Channel three was
connected to a drum, which was used exclusively by the operating sys-
tem. Because the use of this drum was overlapped entirely with the pro-
cessing of user jobs, it was omitted from the model. (Customers in the
model represent user jobs, which never visited the drum.)

The model of this system is shown in Figure 6.3. It is parameterized
by specifying service demands for the CPU, disks, and channels, as well
as the workload type and intensity. The model differs from our “stan-
dard” model (cf. Section 4.5) because of the inclusion of service centers
representing the channels. In general, a model of this sort can lead to
significant error (as will be explained shortly). However, because of the
characteristics of this system, good accuracy was obtained.

CPU CPU

\ 13 7-- 10
Chxmel 2 Channel 2

x>
Channel 1 Channel 1

Figure 6.3 - System Model Figure 6.3 - System Model

The base CPU service requirement per job was estimated by dividing
the total CPU busy time (both system and user time) over the measure-
ment interval by the number of jobs that completed in the interval.
Thus, system CPU overhead (such as that required to handle CPU
scheduling and user I/O> was allocated equally among all jobs.

6.3. Case Studies 105

Parameterizing the I/O subsystem (the disks and channels) was more
complicated. The disk technology of the system required that both the
disk and the channel be held during rotational latency (the period during
which the data is rotating to the read/write heads of the disk) and data
transfer, while seeks could proceed at each disk independently of its chan-
nel. In the model, the channel service demands were set to the sum of
the average latency and data transfer times, while the disk service
demands were set to the average seek time. Thus, all components of I/O
service time were represented exactly once. (If all three components of
service were represented at the disks, customers in the model would
experience latency and transfer service twice, and projected performance
measures would be seriously in error.>

There is a danger in representing multiple component I/O subsystems
in this manner. Unlike the actual system, no customer in the model ever
holds both a disk and a channel simultaneously. Thus, there is the
potential for artificial parallelism in the model, since a disk center that
logically is being used for the latency and transfer portion of one job’s
service might be used at the same time to seek by another job. Account-
ing for this inaccuracy in general is a difficult problem. (Chapter 10
discusses I/O modelling in more detail.) However, in the case of this
particular system, the effect of the potential parallelism in the model was
negligible because the utilizations of the disk devices were fairly well bal-
anced, and the total number of disks was much larger than the average
multiprogramming level. Thus, the probability that a customer would
require service from a disk already in use by another customer was small,
and consequently so was the amount of artificial parallelism.

Measurement of the system showed that the average multiprogram-
ming level varied significantly during the measurement interval. To
account for this variability, the model was evaluated once for each
observed multiprogramming level. Performance projections were
obtained by weighting the distinct solutions by the percentage of time the
corresponding multiprogramming levels were observed in the system.

The purpose of the modelling study was to evaluate the effects of the
following proposed changes to the system:
l Replace eight of the 2314-technology disks on one channel with six

IBM 3330 disks. The effect of this change was reflected in the model
by altering the service demands of the affected channel and disk ser-
vice centers, since 3330s seek and transfer data faster than 2314s and
also have rotational position sensing (RPS) capability, which allows the
disk to disconnect from the channel during rotational latency, recon-
necting only when the required sector is about to come under the
read/write heads.

106 General Analytic Techniques: Models with One Job Class

l Replace extended core storage (ECS) with faster memory. This would
result in an effectively faster CPU, since the processing rate was lim-
ited by the memory access time. As most of the programs executed
out of ECS were system routines, the effect of this change was
reflected in the model by reducing the portion of the CPU service
demand corresponding to supervisor state (system) processing.

0 Implement an operating system improvement. This improvement was
expected to reduce overhead by 8%. Thus this change was reflected in
the model by decreasing the portion of the CPU service demand
corresponding to operating system processing.
The model was pa-rameterized to reflect various combinations of the

proposed system improvements, and the effect on user (problem state)
CPU utilization was noted. (The use of lJcpu as the performance metric
is an odd aspect of this study, since UcpLI can be made to increase simply
by slowing down the processor. More typical metrics are system
throughput and system response time.) The operating system improve-
ment alone was projected to yield a 5% increase in Ucpu. In conjunction
with the ECS replacement, the gain was projected to be 25%. When the
operating system improvement was combined with the disk upgrade, a
similar 25% gain was projected. This pair of modifications actually was
implemented; subsequent measurements showed that UC,, had increased
by about 20% even though the basic CPU service demand had dimin-
ished due to an unanticipated change in the workload. Thus, the model
provided a close projection of true system behavior.

This example shows that quite simple models can be used to answer
performance questions of interest. It is important to notice how little of
the detail of the computer system is represented in the model; only those
aspects of the system that were crucial to performance and under con-
sideration for modification were represented. For example, there is no
explicit representation of memory in the model. This simplicity is a great
advantage of queueing network models.

6.3.3. Capacity Planning

The purpose of this study was to evaluate the impact on response time
of an anticipated 3% quarterly growth in the volume of the current work-
load. The system was an Amdahl 470 with 8 MB of main store, 16 chan-
nels, and 40 disks. The system was running IBM’s MVS operating sys-
tem and IMS database system, running a transaction processing workload.
IMS was supporting five message processing regi-ons: areas of main
memory allocated and scheduled by IMS, each of which can accommodate
one user request. If more than five requests were outstanding, the
remainder queued for an available region,

6.3. Case Studies 107

Many different transaction types existed in the system. However, they
were increasing in volume at about the same rate, so a single class model
was sufficient to investigate the performance question of interest. (If
various transaction types had been growing at differing rates, a multiple
class model would have been required.) The model of the system is
shown in Figure 6.4. It contains a single transaction workload, represent-
ing the aggregate of all the transaction types in the system, a memory
queue, reflecting the fact that only five message processing regions were
available, a CPU service center, and 40 disk service centers.

Departures

t /--

Arrivals 10
CPU

Y

’ CD-
40 disks

Figure 6.4 - System Model

Because this model contains a memory queue, it is not separable, and
so cannot be evaluated directly by the techniques to be introduced later in
this chapter. In Chapter 9 we discuss general methods for evaluating
models of this type. For now, it is sufficient to observe that the solution
of an open model with a saturated memory queue is roughly equivalent to
the solution of a corresponding closed model in which the open class of
customers has been replaced by a closed class with multiprogramming
level equal to maximum possible number of simultaneously active jobs.
This model is separable, so can be evaluated easily.

Parameters for the model were obtained from information gathered by
software monitors:
l The arrival rate of customers was set equal to the measured transac-

tion arrival rate.

108 General Analytic Techniques: Models with One Job Class

l The service demand at the CPU was set equal to:

DCPU = UC,, T I c

where U cpLi was the measured CPU utilization, T was the length of
the measurement interval, and C was the number of transactions that
completed during the interval.

l The service demand at each disk k was set equal to:

Dk = &T/C

Notice that because of the way the service demands were calculated,
both overhead and inherent service requirements were included. In the
case of the CPU, this means that both user and system processing time
were accounted for. In the case of the disks, this means that seek, rota-
tional latency, data transfer, and any time lost because of I/O path con-
tention were included. This approach to accounting for overhead can be
quite useful when it is anticipated that the ratio of overhead to useful pro-
cessing time will be relatively insensitive to the proposed modifications
being investigated. The advantage of this approach is the simple way in
which service demands can be computed. (For example, we do not need
to determine the duration of each component of disk service time.) The
disadvantage is that anticipated changes in the ratios of overhead to
inherent service times cannot be modelled without more detailed infor-
mation. For the modifications considered in this study, it was not felt
that this was a significant drawback.

Having set the parameters, the model was evaluated to obtain
response time projections. Figure 6.5 graphs projected response time
against year for four different memory sizes: the existing configuration,
adequate to support five message processing regions, and expanded
configurations supporting six, seven, and eight message processing
regions. On the basis of this study, it was concluded that, with the addi-
tion of memory, the system would be adequate for at least two years.

6.4. Solution Techniques

The solution of a queueing network model is a set of performance
measures that describe the time averaged (or long term) behavior of the
model. Computing these measures for general networks of queues is
quite expensive and complicated. However, for separable queueing net-
work models, solutions can be obtained simply.

The specific procedures followed to analyze separable queueing net-
works differ for open and closed models. We consider each in turn.

6.4. Solution Techniques

Number of

I I I I
lQ79 lQ80 lQ81 lQ82

Quarter and year

Figure 6.5 - Projected Response Times

6.4.1. Open Model Solution Technique

For open models (those with transaction workloads), one of the key
output measures, system throughput, is given as an input. Because of
this, the solution technique for these models is especially simple. We list
here the formulae that apply for each performance measure of interest.
l processing capacity

The processing capacity of an open model, hsOi, is the arrival rate at
which it saturates. This is given by:

In the derivations that follow, we assume that h < A,,,.
l throughput

By the forced flow law, if X customers/second enter the network, then
the system output rate must also be X customers/second. Similarly, if
each customer requires on average V, visits to device k, the
throughput at device k must be X V, visits/second. Thus:

110 General Analytic Techniques: Models with One Job Class

l utilization

By the utilization law, device utilization is equal to throughput multi-
plied by service time. Thus:

u,(h) = x,(h) s, = ADk

(In the case of delay centers, the utilization must be interpreted as the
average number of customers present.)

l residence time

The residence time at center k, Rk (A), is the total time spent at that
center by a customer, both queueing and receiving service. For ser-
vice centers of delay type, there is no queueing component, so Rk (A>
is simply the service time multiplied by the number of visits:

Rk (A) = v,s, = Dk (delay centers)

For queueing centers, Rk is the sum of the total time spent in service
and the total time spent waiting for other customers to complete ser-
vice. The former component is QS,. The latter component is the
time spent waiting for customers already in the queue when a custo-
mer arrives. Letting Ak(A> designate the average number of custo-
mers in queue as seen by an arriving customer, the queueing com-
ponent is I$ [Ak (A) Sk]. (By assumption, to be discussed in Section

6.5, the expected time until completion of the job in service when a
new job arrives is equal to the service time of the job.) Thus, for
queueing centers the residence time is given by:

1
= D”[l + A,(h)]

An implication of the assumptions made in constructing separable net-
works is that the queue length seen upon arrival at center k, A, (A), is
equal to the time averaged queue length Qk (A>, giving:

R,(h) = D&+Q&d]

which, using Little’s law to re-express Qk, is:

R,(A) = o,[l+AR,(A)]

Dk

= l---u,(h)
(queueing centers)

This equation exhibits the intuitively appealing property that as
u,(A)-& Rk (A)--‘D,, and as u, (A)-‘1, Rk (A)-+.

6.4. Solution Techniques 111

l queue length

By Little’s law: Q&i> = A& (1)

I u, (delay centers)

l- U,(A) (queueing centers)

0 system response time

System response time is the sum of the residence times at all service
centers :

R (A> = 2 Rk (A)
k=l

l average number in system

The average number in system can be calculated using Little’s law, or
by summing the queue lengths at all centers:

Q(x) = AR(A) = $Q~x)
k=l

These formulae are summarized as Algorithm 6.1.

processing capacity : A,,, = 1 / D,,

throughput : X(h) = h

utilization : uk (X) = h Dk

Dk (delay centers)
residence time : Rk (h) =

Dk
1 - u, (A>

(queueing centers)

queue length : Qk (h) = A& (A),
(delay centers)

= u, (A)
1 - u, (A>

(queueing centers)

system response time : R(A) = $Rk (A)
h-=1

average number in system : Q(A) = AR(A) = $&(h)
k=l

Algorithm 6.1 - Open Model Solution Technique

112 General Analytic Techniques: Models with One Job Class

Open Model Example

Figure 6.6 shows a simple open model with three service~centers, and
illustrates the calculation of various performance measures. (All times
are in seconds. >

6.42. Closed Model Solution Techniques

The technique we use to evaluate closed queueing networks (those
with terminal or batch classes) is known as mean value analysis (MVA).
It is based on three equations:
l Little’s law applied to the queueing network as a whole :

X(N) =
N

z + $R,(!V)
(6.1)

k=l

where X(N) is the system throughput and Rk (N) the residence time
at center k, when there are N customers in the network. (As usual, if
the customer class is batch type, we take Z = 0.1 Note that system
throughput can be computed from input parameter data if the device
residence times Rk (N) are known.

l Little’s law applied to the service centers individually :

Qk (A’) = X(N)&(N) (6.2)

Once again, the residence times must be known before Little’s law can
be applied to compute queue lengths.

l The service center residence time equations :

Dk
Rk(N> =

(delay centers)

Dk [lfAk (N)] (queueing centers) (6.3)

where Ak (N) is the average number of customers seen at center k
when a new customer arrives.
Note that, as with open networks, the key to computing performance

measures for closed networks is the set of Ak (N). If these were known,
the Rk (N) could be computed, followed by X(N) and the Qk (N). In the
case of open networks we were able to substitute the time averaged queue
lengths, Qk (N), for the arrival instant queue lengths, Ak (N). In the case
of closed networks, this substitution is not possible. To see that Ak (N)
does not equal Qk (N) in closed networks, consider the network consist-
ing of two queueing service centers and a single customer with a service

6.4, Solution Techniques

Model Inputs:

V cp(I = 121 vD,k 1 = 70 vDisk2 = 50

S (-pu = .005 SD,,, = .030 SD,,, = .027

D cp” = 0.605 i&k1 = 2.1 .&.kZ = 1.35

A = 0.3 jobslsec.

Model Structure:

Departures

113

Arrivals

1
73

CPU

:

A-J -
Disk 1

ID-
Disk2

Selected Model Outputs:

A
1 1

sai - = - = .476 jobslsec.
= D,,, 2.1

X&.3) = XV,,, = (.3)(121) = 36.3 visitdsec.

&p&3) = ADcpu = (.3)(.605) = .182

DCPU
&PC/(J) = 1- ucp, (.3) =

.605
=

.818
.740 sets.

U,,,(.3)
Qcpd.3) = 1- uCp(i ca3) =

.182= .818 .222 jobs

R C.3) = RCp,(.3) + RDjskl c.3) + RDisk2(.3)

= .740 + 5.676 + 2.269 = 8.685 sets.

QC.3) = AR (A) = (.3) (8.685) = 2.606 jobs

Figure 6.6 - Open Model Example

114 General Analytic Techniques: Models with One Job Class

demand of 1 second at each center. Since there is only one customer, the
time averaged queue lengths at the service centers are simply their utili-
zations, so Qi(l) = Q,(l) = l/2. However, the arrival instant queue
lengths Al(l) and A,(l) both are zero, because with a single customer in
the network no customers could possibly be in queue ahead of an arriving
customer. In general, the key distinction is that the arrival instant queue
lengths are computed conditioned on the fact that some customer is arriv-
ing to the center (and so cannot itself be in the queue there), while the
time averaged queue lengths are computed over randomly selected
moments (so all customers potentially could be in the queue).

As mentioned above, evaluating a model requires that we first com-
pute the Ak (N). There are two basic techniques, exact and approximate.
We emphasize that this distinction refers to how the solution relates to
the model, rather than to the computer system itself. The accuracy of the
solution relative to the performance of the computer system depends pri-
marily on the accuracy of the parameterization of the model, and not on
which of the two solution techniques is chosen.

We next examine each of the two solution methods, beginning with
the exact technique.

6.4.2.1. Exact Solution Technique

The exact MVA solution technique is important for two reasons:
l It is the basis from which the approximate technique is derived.
l There are no known bounds on the inaccuracy of the approximate

technique. While typically it is accurate to within a few percent rela-
tive to the true solution, it cannot be guaranteed that in any particular
situation the results will not be worse.
The exact solution technique involves computing the arrival instant

queue lengths Ak (N) exactly, then applying equations (6.1)-(6.3). The
characteristic of closed, separable networks that makes them amenable to
this approach is that the Ak (N) have a particularly simple form:

A,(N) = Qk(N--1) (6.4)

In other words, the queue length seen at arrival to a queue when there
are N customers in the network is equal to the time averaged queue
length there with one less customer in the network. This equation has an
intuitive justification. At the moment a customer arrives at a center, it is
certain that this customer itself is not already in queue there. Thus, there
are only N- 1 other customers that could possibly interfere with the new
arrival. The number of these that actually are in queue, on average, is
simply the average number there when only those N- 1 customers are in
the network.

6.4. Solution Techniques 115

The exact MVA solution technique, shown as Algorithm 6.2, involves
the iterative application of equations (6.1)-(6.4). These equations allow
us to calculate the system throughput, device residence times, and time
averaged device queue lengths when there are n customers in the net-
work, given the time averaged device queue lengths with n - 1 customers.
The iteration begins with the observation that all queue lengths are zero
with zero customers in the network. From that trivial solution, equations
(6.1)-(6.4) can be used to compute the solution for one customer in the
network. Since the time averaged queue lengths with one customer in
the network are equal to the arrival instant queue lengths with two custo-
mers in the network, the solution obtained for a population of one can be
used to compute the solution with a population of two. Successive appli-
cations of the equations compute solutions for populations 3 , 4 , . . . , N.

for k-l to K do Qk - 0
for n+l to N do
begin

Dk
for k-l t0 K do Rk -

(delay centers)
D,(l + Qk) (queueing centers)

X- n

zf f&k
k=l

for k-l to K do Qk - xRk
end

Algorithm 6.2 - Exact MVA Solution Technique

Figure 6.7 - Single Class Solution Population Precedence

Figure 6.7 illustrates the precedence relations of the solutions required
to apply the exact MVA solution technique. As just described, the solu-
tion of a closed model with N customers requires the solution with N- 1
customers, which requires the solution with N-2 customers, etc. Thus,

116 General Analytic Techniques: Models with One Job Class

the full solution requires N applications of equations (6.1)-(6.4). Since
each of the N applications of the equations requires looping (several
times) over the K service centers, the computational expense of the solu-
tion grows as the product of N with K. The space requirement, in con-
trast, is about K locations, since the performance measures for the net-
work with n customers can be discarded once they have been used to cal-
culate the performance measures for n + 1 customers. Note that all solu-
tions between 1 customer and N customers are computed as by-products
of the N customer solution. Thus, there is no additional expense
involved in obtaining these intermediate solutions (although of course
some additional space is required if all of them are to be retained). This
is an important characteristic of the solution technique that will be
exploited in Chapter 8 when we discuss flow equivalent service centers.

When Algorithm 6.2 terminates, the values of Rk, X, and Qk (all for
population N) are available immediately. Other model outputs are ob-
tained by using Little’s law. Here is a summary:

system throughput: X
system response time: NIX-Z
average number in system: N - XZ
device k throughput: xv,
device k utilization: x0,
device k queue length: Q/c
device k residence time: Rk

Closed Model Example (Exact Solution)

Table 6.2 shows the computation of the solution of the network of
Figure 6.6 with the transaction class replaced by a terminal class. There
are three centers, with service demands Dcpu = .605 seconds,
DDiskl = 2.1 seconds, and &j&2 = I.35 seconds. The terminal Class has
three customers (N=3) and average think time of 15 seconds (Z=15).
The algorithm begins with the known solution for the network with zero
customers, and calculates the Rk(n>, X(n), and Qkk(n) for each succes-
sively larger population n, up to three.

In studying Table 6.2, note that the sum of the queue lengths at the
three centers does not equal the customer population. This is the case
because we are dealing with a class of terminal type, and some of the cus-
tomers are “thinking”. (Algorithm 6.2 accounts for this by the inclusion
of the think time, Z, in one of its equations.) We can calculate the aver-
age number of “thinking” customers by subtracting the average number
in system, Q = N - XZ, from the total customer population, N, yield-
ing XZ (which equals zero for a batch class).

6.4. Solution Techniques 117

Table 6.2 - Exact MVA Computation

Model outputs can be computed from the results for N=3:

X(3) = .152
R (3) = 3/.152 - 15.0 = 4.74
Q(3) = N - X(3)Z = 3 - (.152)(15) = .72
X,,,(3) = X(3) v,,, = (.152)(121) = 18.39
U,,,(3) = X(3)DCp, = C.152) C.605) = .092
Qcpui3> = .098
RCpU(3) = .64

6.4.2.2. Approximate Solution Technique

The key to the exact MVA solution technique is equation (6.41, which
computes the arrival instant queue length for population n based on the
time averaged queue length with population n- 1. The nature of the
algorithm is a direct consequence of this relationship.

By replacing equation (6.4) with an approximation:

Ak(N> = h[Qk (N)]

for some suitable function h, a more efficient, iterative algorithm can be
obtained. (The function h actually might depend on values other than
Qk (N). For instance, the approximation we will propose shortly also
depends on N. However, we use this notation for simplicity, and to sug-
gest that the key requirement is the value of Qk (N).) The accuracy of
the algorithm depends, of course, on the accuracy of the function h that
is used. (A particular choice for h will be presented shortly.)

This general approach is outlined in Algorithm 6.3. It is seen easily
that the time and space requirements of this algorithm depend on the
number of centers but are independent of the customer population of the
network being evaluated (except indirectly; the number of iterations
required for convergence may be affected by the population). This can be

118 General Analytic Techniques: Models with One Job Class

a substantial improvement over the exact MVA technique, which requires
time proportional to the product of the number of centers and the
number of customers.

1. Initialize: Qk (N) - $ for all centers k.

2. Approximate: A, (N) - h Qk (N) for all centers k. [1
(The choice of an appropriate function h is discussed in the
text.)

3. Use equations (6.31, (6.11, and (6.2) in succession to com-
pUte a new Set of Qk (N) .

4. If the Qk (N) resulting from Step 3 do not agree to within
some tolerance (e.g., 0.1%) with those used as inputs in Step
2, return to Step 2 using the new Qk (N).

Algorithm 6.3 - Approximate MVA Solution Technique

Crucial to this faster solution technique is the function h. Unfor-
tunately, no function h is known that is exact for all separable networks.
Instead, an approximation must be used. A particularly simple and rea-
sonably accurate approximation is:

A,(N) = &(N--1)

= h[Qk (A’)]

_ N-l = N Q&d (6.5)

Equation (6.5) estimates the arrival instant queue length by approximat-
ing its exact value, the queue length with one fewer customer. This

Qk (NJ and approximation is based on the assumption that the ratios ~
Qk(N--l)

N

N-l
are equal for all k, i.e., that the amount that each queue

length is diminished by the removal of a single customer is equal to the
amount that customer contributes to the queue length. In general, this
assumption is quite accurate. In particular, it is asymptotically correct for
very large N, and trivially correct for models with only a single customer
(since it predicts that arrival instant queue lengths are zero>. Thus, the
approximation is guaranteed to be good at the two extremes. Experience
with the technique has demonstrated that it also gives remarkably good
results for intermediate populations, Since this error is well within the
bounds of other discrepancies inherent in the computer system analysis

6.5. Theoretical Foundations 119

process (e.g., the accuracy of parameter values), the approximate MVA
technique is satisfactory as a general solution technique.

Closed Model Example (Approximate Solution)

Table 6.3 lists the successive approximations for the device queue
lengths obtained by applying this approximate solution technique to the
same example used previously with the exact solution technique. The
stopping criterion used was agreement in successive queue lengths within
.OOl. The exact solution of the model is listed in the table for com-
parison. (Note once again- the apparent anomaly caused by the fact that
the class in this model is of type terminal. We initialize by distributing
the customers equally among the three centers. As the iteration
progresses, customers “disappear” from the table. At the conclusion of
the iteration, the difference between the full customer population and the
sum of the queue lengths at the centers represents the average number of
users “thinking”.)

exact
solution .0976

QDisk 1 Q~isa

1 .oo 1.00
.4826 .3102
.4150 .2436
.4043 .2366
.4024 .2359
.4021 .2359

.2350

Table 6.3 - Approximate MVA Computation

6.5. Theoretical Foundations

Separable queueing network models are a subset of the general class of
queueing network models obtained by imposing restrictions on the
behavior of the service centers and customers. The name “separable”
comes from the fact that each service center can be separated from the
rest of the network, and its solution evaluated in isolation. The solution
of the entire network then can be formed by combining these separate
solutions. In an intuitive sense, a separable network has the property that
each service center acts (largely) independently of the others.

There are five assumptions about the behavior of a model that, if
satisfied, guarantee that the model is separable. These are:

120 General Analytic Techniques: Models with One Job Class

l service center flow balance - Service center flow balance is the exten-
sion of the flow balance assumption (see Chapter 3) to each individual
service center: the number of arrivals at each center is equal to the
number of completions there.

l one step behavior - One step behavior asserts that no two jobs in the
system “change state” (i.e., finish processing at some device or arrive
to the system) at exactly the same time. Real systems almost certainly
display one step behavior.

The remaining three assumptions are called homogeneity assumptions.
This name is derived from the fact that in each case the assumption is
that some quantity is the same (i.e., homogeneous) regardless of the
current locations of some or all of the customers in the network.
l routing homogeneity - To this point we have characterized the

behavior of customers in the model simply by their service demands.
A more detailed characterization would include the routing patterns of
the jobs, that is, the patterns of centers visited. Given this more
detailed view, routing homogeneity is satisfied when the proportion of
time that a job just completing service at center j proceeds directly to
center k is independent of the current queue lengths at any of the
centers, for all j and k. (A surprising aspect of separable models is
that the routing patterns of jobs are irrelevant to the performance
measures of the model. Thus, we will continue to ignore them.)

l device homogeneity - The rate of completions of jobs from a service
center may vary with the number of jobs at that center, but otherwise
may not depend on the number or placement of customers within the
network.

0 homogeneous external arrivals - The times at which arrivals from out-
side the network occur may not depend on the number or placement
of customers within the network.
These assumptions are sufficient for the network to be separable, and

thus to be evaluated efficiently. However, the specific solution algorithms
we have presented thus far require one additional assumption, which is a
stronger form of the device homogeneity assumption:
0 service time homogeneity - The rate of completions of jobs from a ser-

vice center, while it is busy, must be independent of the number of
customers at that center, in addition to being independent of the
number or placement of customers within the network.

The weaker of the two assumptions, device homogeneity, permits the rate
of completions of jobs from a center to vary with the queue length there.
Centers with this characteristic are called load dependent centers. A delay
center is a simple example of a load dependent center, since the rate of
completions increases in proportion to the number of customers at the

6.6. Summary 121

center. Service time homogeneity asserts that the rate of completions is
independent of the queue length. Centers with this characteristic are
called load independent. The queueing centers we have described so far
are examples of load independent centers. The particular versions of the
MVA algorithms presented in this chapter are applicable only to networks
consisting entirely of load independent and delay centers. In Chapters 8
and 20 we discuss the modifications necessary to accommodate general
load dependent centers.

Although the assumptions above are necessary to prove mathemati-
cally that the solution obtained using Algorithm 6.2 is the exact solution
of the model, they need not be satisfied exactly in practice for separable
models to provide good results, Experience has shown that the accuracy
of queueing network models is extremely robust with respect to violations
of these assumptions. Thus, while no real computer system actually
satisfies the homogeneity assumptions, it is rare that violations of these
assumptions are a major source of inaccuracy in a modelling study. More
typically, the problems encountered in validating a model result from an
insufficiently accurate characterization by the model at the system level,
usually because of inaccurate parameter values for service demands or
workload intensities. The only important exceptions to this are cases in
which the limitations on the structure of the model imposed by the
assumptions required for separability prohibit representation of aspects of
the computer system important to performance (for example, the model-
ling of memory constraints or priority scheduling). In these cases, we
would like models that are as easy to construct and to evaluate as separ-
able networks, but that also represent the “non-separable” aspects of the
computer system. In Part III of this book we show that collections of
separable models evaluated together (typically iteratively) provide just
such tools. Thus, separable models not only are adequate simple models
of computer systems, but also are the basic building blocks out of which
more detailed models can be constructed.

6.6. Summary

In this chapter we have examined the construction and evaluation of
single class, separable queueing network models. Separable models have
the following desirable characteristics:
l e$iciency of evaluation - Performance projections can be obtained

from separable models with very little computation. General networks
of queues require so much computation to evaluate that they are not
practical tools.

122 General Analytic Techniques: Models with One Job Class

l accuracy of results - Separable models provide sufficiently accurate
performance projections for the majority of modelling studies. We
have described a number of case studies to illustrate this point. For
the most part, the inaccuracy inherent in establishing parameter values
and in projecting workload growth dominates the inaccuracy inherent
in separable models. Thus, there is little motivation to look for more
accurate models.

l direct correspondence with computer systems - The parameters of separ-
able models (service centers, workload types, workload intensities, and
service demands) correspond directly to a high level characterization
of a computer system. Thus, it is easy to parameterize these models
from measurement data in constructing a baseline model, and it is
relatively simple to alter the parameters in an intuitive way to reflect
projected changes to the computer system in the model.

l generality - In cases where the restrictions required in the construc-
tion of separable models exclude an important aspect of a computer
system from being represented in an individual separable model, col-
lections of separable models can be used. Thus, separable models are
the basic tool that we will use throughout the book as we extend our
models to include increasingly detailed aspects of computer systems.
We have studied single class separable models in this chapter because

they form a natural bridge between the bounding models of Chapter 5
and the more detailed multiple class models of Chapter 7. Important
characteristics of single class models in this regard are:
l ability to project performance - Single class models contain sufficient

detail that performance estimates, rather than performance bounds,
can be projected.

l simplicity - Single class models are the simplest models for which this
is true: the simplest to define, parameterize, evaluate, and manipu-
late. In light of this, they are the models of choice in situations where
they are sufficiently detailed to answer the performance questions of
interest.

l pedagogic value - The more detailed multiple class models presented
in Chapter 7 are considerably more cumbersome notationally than sin-
gle class models, but actually are very simple extensions of these
models. Thus, an understanding of single class models aids in under-
standing the definition, parameterization, and use of multiple class
models.
In the next chapter we extend our modelling capabilities to accommo-

date systems containing several distinct workload components, which we
represent using multiple class, separable queueing network models.

6.7. References 123

6.7. References

Single class models originally were viewed in the stochastic setting.
Jackson [19631 described networks of exponential queues and showed
that their solution was separable. Gordon and Newell [19671 obtained
similar results for closed networks, and showed that the state probabilities
have a simple solution known as “product form”.

Buzen 119731 introduced the first efficient evaluation algorithm for
closed models. Reiser and Lavenberg [19801 developed the exact mean
value analysis algorithm described here. The fact that
A, (N) = Qk (N- 1) in separable queueing networks was established by
Sevcik and Mitrani [19811, and independently by Lavenberg and Reiser
[19801. The approximate MVA algorithm is based on work by Bard
El9791 and Schweitzer [19791. Chandy and Neuse 119821 and others sub-
sequently have developed related approximations.

The case studies of Sections 6.3.1, 6.3.2, and 6.3.3 were carried out by
Scherr C19671, Lipsky and Church [19771, and Levy 119791, respectively.
Scherr’s monograph is the source of Figure 6.2, and Levy’s paper the
source of Figure 6.5.

Denning and Buzen [19781 discuss the homogeneity assumptions in
greater detail than we have presented.

[Bard 19791
Yonathan Bard. Some Extensions to Multiclass Queueing Network
Analysis. In M. Arato, A. Butrimenko, and E. Gelenbe (eds.), Perfor-
mance of Computer Systems. North-Holland, 1979.

[Buzen 19731
Jeffrey P. Buzen. Computational Algorithms for Closed Queueing Net-
works with Exponential Servers. CACM 16,9 (September 19731, 527-
531.

[Chandy & Neuse 19821
K. Mani Chandy and Doug Neuse. Linearizer: A Heuristic Algorithm
for Queueing Network Models of Computing Systems. CACM 25,2
(February 19821, 126-133.

[De&ring & Buzen 19781
Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of
Queueing Network Models. Computing Surveys 10,3 (September
1978)) 225-261.

[Gordon & Newell 19671
W.J. Gordon and G.F. Newell. Closed Queueing Networks with
Exponential Servers. Operations Research 15 (19671, 244-265.

124 General Analytic Techniques: Models with One Job Class

[Jackson 19631
J.R. Jackson, Jobshop-like Queueing Systems. Management Science
10 (19631, 131-142.

[Lavenberg & Reiser 19801
S.S. Lavenberg and M. Reiser. Stationary State Probabilities of Arrival
Instants for Closed Queueing Networks with Multiple Types of Custo-
mers. Journal of Applied Probability (December 1980).

[Levy 19791
Allan I. Levy. Capacity Planning with Queueing Network Models: An
IMS Case Study. Proc. CMG X International Conference (19791, 227-
232.

[Lipsky & Church 19771
L. Lipsky and J.D. Church. Applications of a Queueing Network
Model for a Computer System. Computing Surveys 9;3 (September
1977)) 205-222. Copyright 0 1977 by the Association for Computing
Machinery.

[Reiser & Lavenberg 19801
M. Reiser and S.S. Lavenberg. Mean Value Analysis of Closed Mul-
tichain Queueing Networks. JACM27,2 (April 19801, 313-322.

[Scherr 19671
Allan L. Scherr. An Analysis of Time-Shared Computer Systems.
Research Monograph No. 36, MIT Press, 1967. Copyright @ 1967 by
the Massachusetts Institute of Technology.

[Schweitzer 19791
P. Schweitzer. Approximate Analysis of Multiclass Closed Networks
of Queues. Proc. International Conference on Stochastic Control and
Optimization (1979).

[Sevcik & Mitrani 19811
K.C. Sevcik and I. Mitrani. The Distribution of Queueing Network
States at Input and Output Instants. JaCM 28,2 (April 1981), 358-
371.

6.8. Exercises

1. Suppose we wish to plot response time estimates obtained from a
separable single class queueing network model for all populations from
50 to 75 online users:
a. If the exact solution technique were used, how many applications

of the algorithm would be required to compute performance meas-
ures for all 26 populations?

6.8. Exercises 125

b. Using the approximate solution technique, how many applications
of the algorithm would be required?

Suppose that users of this system overlapped the preparation of each
request with the processing of the previous request, so that effective
think time varied with system response time, and thus with the user
population. (F or instance, average think time might be 10 seconds
with 50 active users, and 8 seconds with 65 active users.>
c. Under this assumption how many applications of each algorithm

would be required?
d. Why would it be incorrect simply to modify Algorithm 6.2 (the

exact solution technique) so that the think time, 2, was a function
of the user population?

2. Exercise 4 in Chapter 5 asked you to graph asymptotic and balanced
system bounds for a simple model in two cases: batch and terminal
workloads. Use Algorithm 6.2 to compute throughput and response
time for these cases for values of N from 1 to 5. Use Algorithm 6.3
for N=5 and N=lO. Compare these results with the bounds
obtained previously.
a. How much additional effort was required to parameterize the single

class model in comparison with the bounding models?
b. How do the techniques compare in terms of computational effort?
c. How do the results of the techniques differ in terms of their useful-

ness for projecting performance ? In terms of your confidence in
the information that they provide?

3. Implement Algorithm 6.3, the approximate mean value analysis solu-
tion technique. Repeat Exercise 2 twice: once using this implementa-
tion, and once using the Fortran implementation of Algorithm 6.2
(exact mean value analysis) contained in Chapter 18. Compare the
results.

4. Modify the program given in Chapter 18 to allow delay centers, and to
allow classes of transaction type.

5. Use the modified program, as follows:
a. Evaluate a model with three centers with service demands of 8, 5,

and 4 seconds, and a transaction class with arrival rate .l
requests/second.

b. Using the response time obtained in (a>, calculate an appropriate
think time for use in an equivalent model with the transaction class
replaced by a terminal class with 10 users.

126 General Analytic Techniques: Models with One Job Class

c. Evaluate the model constructed in (b).
d. Explain the differences between the performance measures obtained

in (a) and (cl.
6. Use the arrival instant theorem to show that in a balanced model (one

in which the service demands at all centers are equal to Dk = D/K),
system throughput is given by:

x= lv 1
N+K-1 -’ F

(This result is the basis of balanced system bounds, as presented in
Chapter 5.)

7. Both the exact and the approximate MVA algorithms involve four key
equations (6.1 through 6.4).
a. For each of these four equations, provideSan intuitive justification

in a few words,
b. In a few sentences, describe how the exact MVA algorithm is con-

structed from these four components.
c. In a few sentences describe how the approximate MVA algorithm

is obtained from the exact algorithm.

