
Chapter 6 

Models with One Job Class 

6.1. Introduction 

In this chapter we examine single class querreing network models. Single 
class models are refinements of bounding models that provide estimates of 
performance measures, rather than simply bounds. For instance, instead 
of determining that the throughput of a certain system is between 1.1 and 
2.0 jobs/minute (for a given population size), a single class model would 
provide an estimate of the actual throughput, such as 1.7 jobs/minute. 

In single class models, the customers are assumed to be indistinguish- 
able from one another. Although single class models always are 
simplifications, they nonetheless can be accurate representations of real 
systems. There are a number of situations in which a single class model 
might be used: 
l increased information - The results of a bounding study might not 

provide sufficiently detailed information. Single class models are the 
next step in a progression of increasingly detailed models. 

l single workload of interest - The computer system under consideration 
may be running only a single workload of significance to its perfor- 
mance. Therefore, it may not be necessary to represent explicitly the 
other workload components. 

l homogeneous workloads - The various workload components of a 
computer system may have similar service demands. A reasonable 
modelling abstraction is to consider them all to belong to a single cus- 
tomer class. 
Conversely, there are a number of situations in which it might be 

inappropriate to model a computer system workload by a single customer 
class. These situations typically arise either because distinct workload 
components exhibit markedly differing resource usage, or because the 
aim of the modelling study requires that inputs or outputs be specified in 
terms of the individual workload components rather than in terms of the 
aggregate workload. Typical instances of each are: 
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l multiple distinct workloads - On a system running both batch and 
timesharing workloads, the batch workload might be CPU bound while 
the timesharing workload is I/O bound. A queueing network model 
with a customer population consisting of a single class representing an 
“average” job might not provide accurate projections, since jobs in the 
actual system do not behave as though they were nearly indistinguish- 
able. 

l class dependent model inputs - In a mixed batch/timesharing system, 
the timesharing workload is expected to grow by 100% over the next 2 
years, while the batch workload is expected to grow by only 10%. 
Since in a single class model there is only a single class of “average” 
customers, it is not possible to set the input parameters such that 
workload components exhibit differing growth rates. Thus, a single 
class model is not an appropriate representation. 

l class dependent model outputs - In a batch environment running both 
production and development programs, projections about the time in 
system of each workload component, rather than just an estimate of 
“average” time in system, might be desired. Since there is only one 
class of customers in a single class model, outputs are given in terms 
of that class only, and it is difficult to interpret these measures in 
terms of the original classes of the system. Thus a multiple class 
model is required. 

Systems having workloads with substantially differing characteristics, as 
exhibited by the examples above, may be modelled more reasonably by 
multiple class than by single class queueing networks. These more 
sophisticated models are discussed in Chapter 7. 

The next two sections of this chapter deal with the practical application 
of single class queueing networks as models of computer systems. Sec- 
tion 6.2 discusses the use of the workload intensity parameter to mimic 
the job mix behavior of a computer system. Section 6.3 describes a 
number of case studies in which single class models have been employed. 

This discussion of the practice of single class models is followed by a 
discussion of their theory. In Section 6.4 the algorithms required to 
evaluate the models are developed and illustrated with examples. Section 
6.5 presents the theoretical underpinnings upon which the models rest. 

6.2. Workload Representation 

The workload representation of a single class queueing network model 
is given by two model inputs: the set of service demands, and the workload 
intensity. In using a single class model, one inherently makes the assump- 
tion that all jobs running in the system are sufficiently similar that their 
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differences do not have a major effect on system performance. Thus, cal- 
culating the set of service demands is fairly straightforward, as only a sin- 
gle set is required. (In contrast, with multiple class models one first must 
decide how many classes to represent, and then must calculate a distinct 
set of service demands for each class.) 

Establishing the workload intensity has two aspects: selecting an 
appropriate workload type (transaction, batch, or terminal), and setting 
the appropriate workload intensity parameter(s) for that type. Selecting 
an appropriate workload type typically is straightforward, since the three 
workload types of queueing network models correspond directly to the 
three predominant workload types of computer systems. One technical 
distinction that arises is that between open models (those with transaction 
classes) and closed models (those with batch or terminal classes). Since 
the number of customers that may be in an open model at any time is 
unbounded, while the number of customers that may be in a closed 
model is bounded by the population of the closed class, the response 
times of open models tend to be larger than those of corresponding 
closed models with the same system throughput. This occurs because in 
open models the potential for extremely large queue lengths exists, while 
in closed models, because of the finite population, it does not. This 
difference usually is significant only when some device in the system is 
near saturation. 

This brings us to the question of how to set the workload intensity 
parameter. In queueing network models, the workload intensity is a fixed 
quantity (an arrival rate, a population, or a population and a think time). 
In contrast, in a computer system the workload intensity may vary. 
Despite this discrepancy, queueing network models are useful in a wide 
variety of situations: 
l heavy load assumption - It may be interesting to study the behavior of 

a system under the maximum possible load. By hypothesis, the load is 
sufficiently heavy that there always are jobs waiting to enter memory. 
Thus, when one job completes and releases memory, it immediately is 
replaced by another job. The workload therefore is represented as a 
batch class with a constant number of customers equal to the max- 
imum multiprogramming level of the system. 

0 non-integer workload intens@ - The measurement data for a system 
might show that the average multiprogramming level (or active 
number of terminal users> is not an integer. Some algorithms for 
evaluating queueing network models allow non-integer customer 
populations. Other algorithms do not. For the latter, the model can 
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be evaluated for the neighboring integer workload intensity values and 
the non-integer solution obtained by interpolation. For instance, if the 
measured multiprogramming level were 4.5, the solutions of the 
model with batch populations of 4 and 5 could be computed, and their 
average taken as the projection for 4.5 customers. 

l workload intensity distribution - Measurement data might provide a dis- 
tribution of observed workload intensities, e.g., proportions of time 
P[N=nl that there were n active terminal users on the system. This 
distribution could be used to weight the solutions obtained for a model 
with each observed number of users. Table 6.1 gives an example. 
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Table 6.1 - Use of Distributional Information 

l sizing studies - Because the solutions of single class models can be 
obtained extremely quickly, it is feasible to evaluate a model for a 
large number of workload intensities. Thus, questions such as “What 
is the maximum transaction arrival rate that can be supported with 
average response time below 3 seconds?” can be answered by varying 
the arrival rate of a model (e.g., setting X = 1 , 2 , . ..> and observing 
the reported response times. 

l robustness studies - Similarly, since it often is the case that workload 
growth cannot be forecast accurately, it generally is useful to evaluate 
a model for a range of workload intensities surrounding the expected 
one. This allows the analyst to assess the impact on projected perfor- 
mance of a growth in the workload that exceeds expectations. 
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6.3. Case Studies 

Three applications of single class queueing network models are 
described in this section. The first is a classic study in which an 
extremely simple model gave surprisingly accurate performance projec- 
tions. The second is an application in which the effects of modifying cer- 
tain hardware and software characteristics were investigated. The third 
illustrates a recent use of a single class model for capacity planning. 

6.3.1. A Model of an Interactive System 

We first consider what may be the earliest application of queueing net- 
work modelling to computer systems. We include this study despite its 
age (it was performed in 1965) because of its historical interest and 
because it demonstrates vividly that extremely simple models can be 
accurate predictors of performance. 

The system under study was an IBM 7094 running the Compatible 
Time-Sharing System (CTSS). CTSS was an experimental interactive sys- 
tem based on swapping. Only a single user could be “active” at a time. 
The entire system - CPU, disks, and memory - was “time-sliced” 
among users as a unit. 

Terminals 

r+- 

System 

Figure 6.1 - Interactive System Model 

The purpose of the study was to investigate the response time 
behavior of the system as a function of the number of users. To do so, 
the model of Figure 6.1 was constructed. It contains a terminal workload, 



6.3. Case Studies 103 

representing the user population, and a single service center representing 
the system (CPU and disks). This single service center representation is 
sufficient because, with only one user active at a time, there can be no 
overlap in processing at the CPU and the disks (individual users on this 
system did not exploit this capability). Thus, in terms of average 
response time, it does not matter (in the model) whether a user spends 
time at the CPU or the disks, but simply that the appropriate amount of 
time transpires. 

Notice that by using a single service center to represent the system, 
we have solved a simple memory constraint problem. Had the model 
contained separate CPU and disk service centers, it would have been less 
accurate because it would have allowed customers to be processing at 
both simultaneously, while in the actual system this was not possible. 
This technique of collapsing a number of service centers into a single ser- 
vice center to represent memory constraints can be extended in quite 
powerful ways, as will be explained in Chapter 9. 

The model was parameterized from measurements taken during sys- 
tem use, which provided average think time, average CPU and disk pro- 
cessing times, and average memory requirement. The service demand at 
the system service center was set equal to the sum of the measured pro- 
cessing times and the disk service required for swapping a job of average 
size. The number of customers in the model then was varied, and 
response time estimates for each population were obtained. Figure 6.2 
compares the model projections with measured response times. 

Online users 

Figure 6.2 - Measured and Projected Response Times 
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6.3.2. A Model with Modification Analysis 

In this case study a single class model was used to evaluate the 
benefits of several proposed changes to a hardware and software 
configuration. The system under consideration was an IBM System/360 
Model 65J with three channels. Channels one and two were connected to 
8 and 16 IBM 2314-technology disks, respectively. Channel three was 
connected to a drum, which was used exclusively by the operating sys- 
tem. Because the use of this drum was overlapped entirely with the pro- 
cessing of user jobs, it was omitted from the model. (Customers in the 
model represent user jobs, which never visited the drum.) 

The model of this system is shown in Figure 6.3. It is parameterized 
by specifying service demands for the CPU, disks, and channels, as well 
as the workload type and intensity. The model differs from our “stan- 
dard” model (cf. Section 4.5) because of the inclusion of service centers 
representing the channels. In general, a model of this sort can lead to 
significant error (as will be explained shortly). However, because of the 
characteristics of this system, good accuracy was obtained. 

CPU CPU 

\ 13 7-- 10 
Chxmel 2 Channel 2 

x> 
Channel 1 Channel 1 

Figure 6.3 - System Model Figure 6.3 - System Model 

The base CPU service requirement per job was estimated by dividing 
the total CPU busy time (both system and user time) over the measure- 
ment interval by the number of jobs that completed in the interval. 
Thus, system CPU overhead (such as that required to handle CPU 
scheduling and user I/O> was allocated equally among all jobs. 
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Parameterizing the I/O subsystem (the disks and channels) was more 
complicated. The disk technology of the system required that both the 
disk and the channel be held during rotational latency (the period during 
which the data is rotating to the read/write heads of the disk) and data 
transfer, while seeks could proceed at each disk independently of its chan- 
nel. In the model, the channel service demands were set to the sum of 
the average latency and data transfer times, while the disk service 
demands were set to the average seek time. Thus, all components of I/O 
service time were represented exactly once. (If all three components of 
service were represented at the disks, customers in the model would 
experience latency and transfer service twice, and projected performance 
measures would be seriously in error.> 

There is a danger in representing multiple component I/O subsystems 
in this manner. Unlike the actual system, no customer in the model ever 
holds both a disk and a channel simultaneously. Thus, there is the 
potential for artificial parallelism in the model, since a disk center that 
logically is being used for the latency and transfer portion of one job’s 
service might be used at the same time to seek by another job. Account- 
ing for this inaccuracy in general is a difficult problem. (Chapter 10 
discusses I/O modelling in more detail.) However, in the case of this 
particular system, the effect of the potential parallelism in the model was 
negligible because the utilizations of the disk devices were fairly well bal- 
anced, and the total number of disks was much larger than the average 
multiprogramming level. Thus, the probability that a customer would 
require service from a disk already in use by another customer was small, 
and consequently so was the amount of artificial parallelism. 

Measurement of the system showed that the average multiprogram- 
ming level varied significantly during the measurement interval. To 
account for this variability, the model was evaluated once for each 
observed multiprogramming level. Performance projections were 
obtained by weighting the distinct solutions by the percentage of time the 
corresponding multiprogramming levels were observed in the system. 

The purpose of the modelling study was to evaluate the effects of the 
following proposed changes to the system: 
l Replace eight of the 2314-technology disks on one channel with six 

IBM 3330 disks. The effect of this change was reflected in the model 
by altering the service demands of the affected channel and disk ser- 
vice centers, since 3330s seek and transfer data faster than 2314s and 
also have rotational position sensing (RPS) capability, which allows the 
disk to disconnect from the channel during rotational latency, recon- 
necting only when the required sector is about to come under the 
read/write heads. 
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l Replace extended core storage (ECS) with faster memory. This would 
result in an effectively faster CPU, since the processing rate was lim- 
ited by the memory access time. As most of the programs executed 
out of ECS were system routines, the effect of this change was 
reflected in the model by reducing the portion of the CPU service 
demand corresponding to supervisor state (system) processing. 

0 Implement an operating system improvement. This improvement was 
expected to reduce overhead by 8%. Thus this change was reflected in 
the model by decreasing the portion of the CPU service demand 
corresponding to operating system processing. 
The model was pa-rameterized to reflect various combinations of the 

proposed system improvements, and the effect on user (problem state) 
CPU utilization was noted. (The use of lJcpu as the performance metric 
is an odd aspect of this study, since UcpLI can be made to increase simply 
by slowing down the processor. More typical metrics are system 
throughput and system response time.) The operating system improve- 
ment alone was projected to yield a 5% increase in Ucpu. In conjunction 
with the ECS replacement, the gain was projected to be 25%. When the 
operating system improvement was combined with the disk upgrade, a 
similar 25% gain was projected. This pair of modifications actually was 
implemented; subsequent measurements showed that UC,, had increased 
by about 20% even though the basic CPU service demand had dimin- 
ished due to an unanticipated change in the workload. Thus, the model 
provided a close projection of true system behavior. 

This example shows that quite simple models can be used to answer 
performance questions of interest. It is important to notice how little of 
the detail of the computer system is represented in the model; only those 
aspects of the system that were crucial to performance and under con- 
sideration for modification were represented. For example, there is no 
explicit representation of memory in the model. This simplicity is a great 
advantage of queueing network models. 

6.3.3. Capacity Planning 

The purpose of this study was to evaluate the impact on response time 
of an anticipated 3% quarterly growth in the volume of the current work- 
load. The system was an Amdahl 470 with 8 MB of main store, 16 chan- 
nels, and 40 disks. The system was running IBM’s MVS operating sys- 
tem and IMS database system, running a transaction processing workload. 
IMS was supporting five message processing regi-ons: areas of main 
memory allocated and scheduled by IMS, each of which can accommodate 
one user request. If more than five requests were outstanding, the 
remainder queued for an available region, 
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Many different transaction types existed in the system. However, they 
were increasing in volume at about the same rate, so a single class model 
was sufficient to investigate the performance question of interest. (If 
various transaction types had been growing at differing rates, a multiple 
class model would have been required.) The model of the system is 
shown in Figure 6.4. It contains a single transaction workload, represent- 
ing the aggregate of all the transaction types in the system, a memory 
queue, reflecting the fact that only five message processing regions were 
available, a CPU service center, and 40 disk service centers. 

Departures 

t /-- 

Arrivals 10 
CPU 

Y 

’ CD- 
40 disks 

Figure 6.4 - System Model 

Because this model contains a memory queue, it is not separable, and 
so cannot be evaluated directly by the techniques to be introduced later in 
this chapter. In Chapter 9 we discuss general methods for evaluating 
models of this type. For now, it is sufficient to observe that the solution 
of an open model with a saturated memory queue is roughly equivalent to 
the solution of a corresponding closed model in which the open class of 
customers has been replaced by a closed class with multiprogramming 
level equal to maximum possible number of simultaneously active jobs. 
This model is separable, so can be evaluated easily. 

Parameters for the model were obtained from information gathered by 
software monitors: 
l The arrival rate of customers was set equal to the measured transac- 

tion arrival rate. 
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l The service demand at the CPU was set equal to: 

DCPU = UC,, T I c 

where U cpLi was the measured CPU utilization, T was the length of 
the measurement interval, and C was the number of transactions that 
completed during the interval. 

l The service demand at each disk k was set equal to: 

Dk = &T/C 

Notice that because of the way the service demands were calculated, 
both overhead and inherent service requirements were included. In the 
case of the CPU, this means that both user and system processing time 
were accounted for. In the case of the disks, this means that seek, rota- 
tional latency, data transfer, and any time lost because of I/O path con- 
tention were included. This approach to accounting for overhead can be 
quite useful when it is anticipated that the ratio of overhead to useful pro- 
cessing time will be relatively insensitive to the proposed modifications 
being investigated. The advantage of this approach is the simple way in 
which service demands can be computed. (For example, we do not need 
to determine the duration of each component of disk service time.) The 
disadvantage is that anticipated changes in the ratios of overhead to 
inherent service times cannot be modelled without more detailed infor- 
mation. For the modifications considered in this study, it was not felt 
that this was a significant drawback. 

Having set the parameters, the model was evaluated to obtain 
response time projections. Figure 6.5 graphs projected response time 
against year for four different memory sizes: the existing configuration, 
adequate to support five message processing regions, and expanded 
configurations supporting six, seven, and eight message processing 
regions. On the basis of this study, it was concluded that, with the addi- 
tion of memory, the system would be adequate for at least two years. 

6.4. Solution Techniques 

The solution of a queueing network model is a set of performance 
measures that describe the time averaged (or long term) behavior of the 
model. Computing these measures for general networks of queues is 
quite expensive and complicated. However, for separable queueing net- 
work models, solutions can be obtained simply. 

The specific procedures followed to analyze separable queueing net- 
works differ for open and closed models. We consider each in turn. 
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Figure 6.5 - Projected Response Times 

6.4.1. Open Model Solution Technique 

For open models (those with transaction workloads), one of the key 
output measures, system throughput, is given as an input. Because of 
this, the solution technique for these models is especially simple. We list 
here the formulae that apply for each performance measure of interest. 
l processing capacity 

The processing capacity of an open model, hsOi, is the arrival rate at 
which it saturates. This is given by: 

In the derivations that follow, we assume that h < A,,,. 
l throughput 

By the forced flow law, if X customers/second enter the network, then 
the system output rate must also be X customers/second. Similarly, if 
each customer requires on average V, visits to device k, the 
throughput at device k must be X V, visits/second. Thus: 
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l utilization 

By the utilization law, device utilization is equal to throughput multi- 
plied by service time. Thus: 

u,(h) = x,(h) s, = ADk 

(In the case of delay centers, the utilization must be interpreted as the 
average number of customers present.) 

l residence time 

The residence time at center k, Rk (A), is the total time spent at that 
center by a customer, both queueing and receiving service. For ser- 
vice centers of delay type, there is no queueing component, so Rk (A> 
is simply the service time multiplied by the number of visits: 

Rk (A) = v,s, = Dk (delay centers) 

For queueing centers, Rk is the sum of the total time spent in service 
and the total time spent waiting for other customers to complete ser- 
vice. The former component is QS,. The latter component is the 
time spent waiting for customers already in the queue when a custo- 
mer arrives. Letting Ak(A> designate the average number of custo- 
mers in queue as seen by an arriving customer, the queueing com- 
ponent is I$ [Ak (A) Sk]. (By assumption, to be discussed in Section 

6.5, the expected time until completion of the job in service when a 
new job arrives is equal to the service time of the job.) Thus, for 
queueing centers the residence time is given by: 

1 
= D”[l + A,(h)] 

An implication of the assumptions made in constructing separable net- 
works is that the queue length seen upon arrival at center k, A, (A), is 
equal to the time averaged queue length Qk (A>, giving: 

R,(h) = D&+Q&d] 

which, using Little’s law to re-express Qk, is: 

R,(A) = o,[l+AR,(A)] 

Dk 

= l---u,(h) 
(queueing centers) 

This equation exhibits the intuitively appealing property that as 
u,(A)-& Rk (A)--‘D,, and as u, (A)-‘1, Rk (A)-+. 
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l queue length 

By Little’s law: Q&i> = A& (1) 

I u, (delay centers) 

l- U,(A) (queueing centers) 

0 system response time 

System response time is the sum of the residence times at all service 
centers : 

R (A> = 2 Rk (A) 
k=l 

l average number in system 

The average number in system can be calculated using Little’s law, or 
by summing the queue lengths at all centers: 

Q(x) = AR(A) = $Q~x) 
k=l 

These formulae are summarized as Algorithm 6.1. 

processing capacity : A,,, = 1 / D,, 

throughput : X(h) = h 

utilization : uk (X) = h Dk 

Dk (delay centers) 
residence time : Rk (h) = 

Dk 
1 - u, (A> 

(queueing centers) 

queue length : Qk (h) = A& (A), 
(delay centers) 

= u, (A) 
1 - u, (A> 

(queueing centers) 

system response time : R(A) = $Rk (A) 
h-=1 

average number in system : Q(A) = AR(A) = $&(h) 
k=l 

Algorithm 6.1 - Open Model Solution Technique 
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Open Model Example 

Figure 6.6 shows a simple open model with three service~centers, and 
illustrates the calculation of various performance measures. (All times 
are in seconds. > 

6.42. Closed Model Solution Techniques 

The technique we use to evaluate closed queueing networks (those 
with terminal or batch classes) is known as mean value analysis (MVA). 
It is based on three equations: 
l Little’s law applied to the queueing network as a whole : 

X(N) = 
N 

z + $R,(!V) 
(6.1) 

k=l 

where X(N) is the system throughput and Rk (N) the residence time 
at center k, when there are N customers in the network. (As usual, if 
the customer class is batch type, we take Z = 0.1 Note that system 
throughput can be computed from input parameter data if the device 
residence times Rk (N) are known. 

l Little’s law applied to the service centers individually : 

Qk (A’) = X(N)&(N) (6.2) 

Once again, the residence times must be known before Little’s law can 
be applied to compute queue lengths. 

l The service center residence time equations : 

Dk 
Rk(N> = 

(delay centers) 

Dk [lfAk (N)] (queueing centers) (6.3) 

where Ak (N) is the average number of customers seen at center k 
when a new customer arrives. 
Note that, as with open networks, the key to computing performance 

measures for closed networks is the set of Ak (N). If these were known, 
the Rk (N) could be computed, followed by X(N) and the Qk (N). In the 
case of open networks we were able to substitute the time averaged queue 
lengths, Qk (N), for the arrival instant queue lengths, Ak (N). In the case 
of closed networks, this substitution is not possible. To see that Ak (N) 
does not equal Qk (N) in closed networks, consider the network consist- 
ing of two queueing service centers and a single customer with a service 
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Model Inputs: 

V cp(I = 121 vD,k 1 = 70 vDisk2 = 50 

S (-pu = .005 SD,,, = .030 SD,,, = .027 

D cp” = 0.605 i&k1 = 2.1 .&.kZ = 1.35 

A = 0.3 jobslsec. 

Model Structure: 

Departures 

113 

Arrivals 

1 
73 

CPU 

: 

A-J - 
Disk 1 

ID- 
Disk2 

Selected Model Outputs: 

A 
1 1 

sai - = - = .476 jobslsec. 
= D,,, 2.1 

X&.3) = XV,,, = (.3)(121) = 36.3 visitdsec. 

&p&3) = ADcpu = (.3)(.605) = .182 

DCPU 
&PC/(J) = 1- ucp, (.3) = 

.605 
= 

.818 
.740 sets. 

U,,,(.3) 
Qcpd.3) = 1- uCp(i ca3) = 

.182= .818 .222 jobs 

R C.3) = RCp,(.3) + RDjskl c.3) + RDisk2(.3) 

= .740 + 5.676 + 2.269 = 8.685 sets. 

QC.3) = AR (A) = (.3) (8.685) = 2.606 jobs 

Figure 6.6 - Open Model Example 
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demand of 1 second at each center. Since there is only one customer, the 
time averaged queue lengths at the service centers are simply their utili- 
zations, so Qi(l) = Q,(l) = l/2. However, the arrival instant queue 
lengths Al(l) and A,(l) both are zero, because with a single customer in 
the network no customers could possibly be in queue ahead of an arriving 
customer. In general, the key distinction is that the arrival instant queue 
lengths are computed conditioned on the fact that some customer is arriv- 
ing to the center (and so cannot itself be in the queue there), while the 
time averaged queue lengths are computed over randomly selected 
moments (so all customers potentially could be in the queue). 

As mentioned above, evaluating a model requires that we first com- 
pute the Ak (N). There are two basic techniques, exact and approximate. 
We emphasize that this distinction refers to how the solution relates to 
the model, rather than to the computer system itself. The accuracy of the 
solution relative to the performance of the computer system depends pri- 
marily on the accuracy of the parameterization of the model, and not on 
which of the two solution techniques is chosen. 

We next examine each of the two solution methods, beginning with 
the exact technique. 

6.4.2.1. Exact Solution Technique 

The exact MVA solution technique is important for two reasons: 
l It is the basis from which the approximate technique is derived. 
l There are no known bounds on the inaccuracy of the approximate 

technique. While typically it is accurate to within a few percent rela- 
tive to the true solution, it cannot be guaranteed that in any particular 
situation the results will not be worse. 
The exact solution technique involves computing the arrival instant 

queue lengths Ak (N) exactly, then applying equations (6.1)-(6.3). The 
characteristic of closed, separable networks that makes them amenable to 
this approach is that the Ak (N) have a particularly simple form: 

A,(N) = Qk(N--1) (6.4) 

In other words, the queue length seen at arrival to a queue when there 
are N customers in the network is equal to the time averaged queue 
length there with one less customer in the network. This equation has an 
intuitive justification. At the moment a customer arrives at a center, it is 
certain that this customer itself is not already in queue there. Thus, there 
are only N- 1 other customers that could possibly interfere with the new 
arrival. The number of these that actually are in queue, on average, is 
simply the average number there when only those N- 1 customers are in 
the network. 
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The exact MVA solution technique, shown as Algorithm 6.2, involves 
the iterative application of equations (6.1)-(6.4). These equations allow 
us to calculate the system throughput, device residence times, and time 
averaged device queue lengths when there are n customers in the net- 
work, given the time averaged device queue lengths with n - 1 customers. 
The iteration begins with the observation that all queue lengths are zero 
with zero customers in the network. From that trivial solution, equations 
(6.1)-(6.4) can be used to compute the solution for one customer in the 
network. Since the time averaged queue lengths with one customer in 
the network are equal to the arrival instant queue lengths with two custo- 
mers in the network, the solution obtained for a population of one can be 
used to compute the solution with a population of two. Successive appli- 
cations of the equations compute solutions for populations 3 , 4 , . . . , N. 

for k-l to K do Qk - 0 
for n+l to N do 
begin 

Dk 
for k-l t0 K do Rk - 

(delay centers) 
D,(l + Qk) (queueing centers) 

X- n 

zf f&k 
k=l 

for k-l to K do Qk - xRk 
end 

Algorithm 6.2 - Exact MVA Solution Technique 

Figure 6.7 - Single Class Solution Population Precedence 

Figure 6.7 illustrates the precedence relations of the solutions required 
to apply the exact MVA solution technique. As just described, the solu- 
tion of a closed model with N customers requires the solution with N- 1 
customers, which requires the solution with N-2 customers, etc. Thus, 
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the full solution requires N applications of equations (6.1)-(6.4). Since 
each of the N applications of the equations requires looping (several 
times) over the K service centers, the computational expense of the solu- 
tion grows as the product of N with K. The space requirement, in con- 
trast, is about K locations, since the performance measures for the net- 
work with n customers can be discarded once they have been used to cal- 
culate the performance measures for n + 1 customers. Note that all solu- 
tions between 1 customer and N customers are computed as by-products 
of the N customer solution. Thus, there is no additional expense 
involved in obtaining these intermediate solutions (although of course 
some additional space is required if all of them are to be retained). This 
is an important characteristic of the solution technique that will be 
exploited in Chapter 8 when we discuss flow equivalent service centers. 

When Algorithm 6.2 terminates, the values of Rk, X, and Qk (all for 
population N) are available immediately. Other model outputs are ob- 
tained by using Little’s law. Here is a summary: 

system throughput: X 
system response time: NIX-Z 
average number in system: N - XZ 
device k throughput: xv, 
device k utilization: x0, 
device k queue length: Q/c 
device k residence time: Rk 

Closed Model Example (Exact Solution) 

Table 6.2 shows the computation of the solution of the network of 
Figure 6.6 with the transaction class replaced by a terminal class. There 
are three centers, with service demands Dcpu = .605 seconds, 
DDiskl = 2.1 seconds, and &j&2 = I.35 seconds. The terminal Class has 
three customers (N=3) and average think time of 15 seconds (Z=15). 
The algorithm begins with the known solution for the network with zero 
customers, and calculates the Rk(n>, X(n), and Qkk(n) for each succes- 
sively larger population n, up to three. 

In studying Table 6.2, note that the sum of the queue lengths at the 
three centers does not equal the customer population. This is the case 
because we are dealing with a class of terminal type, and some of the cus- 
tomers are “thinking”. (Algorithm 6.2 accounts for this by the inclusion 
of the think time, Z, in one of its equations.) We can calculate the aver- 
age number of “thinking” customers by subtracting the average number 
in system, Q = N - XZ, from the total customer population, N, yield- 
ing XZ (which equals zero for a batch class). 
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Table 6.2 - Exact MVA Computation 

Model outputs can be computed from the results for N=3: 

X(3) = .152 
R (3) = 3/.152 - 15.0 = 4.74 
Q(3) = N - X(3)Z = 3 - (.152)(15) = .72 
X,,,(3) = X(3) v,,, = (.152)(121) = 18.39 
U,,,(3) = X(3)DCp, = C.152) C.605) = .092 
Qcpui3> = .098 
RCpU(3) = .64 

6.4.2.2. Approximate Solution Technique 

The key to the exact MVA solution technique is equation (6.41, which 
computes the arrival instant queue length for population n based on the 
time averaged queue length with population n- 1. The nature of the 
algorithm is a direct consequence of this relationship. 

By replacing equation (6.4) with an approximation: 

Ak(N> = h[ Qk (N)] 

for some suitable function h, a more efficient, iterative algorithm can be 
obtained. (The function h actually might depend on values other than 
Qk (N). For instance, the approximation we will propose shortly also 
depends on N. However, we use this notation for simplicity, and to sug- 
gest that the key requirement is the value of Qk (N).) The accuracy of 
the algorithm depends, of course, on the accuracy of the function h that 
is used. (A particular choice for h will be presented shortly.) 

This general approach is outlined in Algorithm 6.3. It is seen easily 
that the time and space requirements of this algorithm depend on the 
number of centers but are independent of the customer population of the 
network being evaluated (except indirectly; the number of iterations 
required for convergence may be affected by the population). This can be 
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a substantial improvement over the exact MVA technique, which requires 
time proportional to the product of the number of centers and the 
number of customers. 

1. Initialize: Qk (N) - $ for all centers k. 

2. Approximate: A, (N) - h Qk (N) for all centers k. [ 1 
(The choice of an appropriate function h is discussed in the 
text.) 

3. Use equations (6.31, (6.11, and (6.2) in succession to com- 
pUte a new Set of Qk (N) . 

4. If the Qk (N) resulting from Step 3 do not agree to within 
some tolerance (e.g., 0.1%) with those used as inputs in Step 
2, return to Step 2 using the new Qk (N). 

Algorithm 6.3 - Approximate MVA Solution Technique 

Crucial to this faster solution technique is the function h. Unfor- 
tunately, no function h is known that is exact for all separable networks. 
Instead, an approximation must be used. A particularly simple and rea- 
sonably accurate approximation is: 

A,(N) = &(N--1) 

= h[Qk (A’)] 

_ N-l = N Q&d (6.5) 

Equation (6.5) estimates the arrival instant queue length by approximat- 
ing its exact value, the queue length with one fewer customer. This 

Qk (NJ and approximation is based on the assumption that the ratios ~ 
Qk(N--l) 

N 

N-l 
are equal for all k, i.e., that the amount that each queue 

length is diminished by the removal of a single customer is equal to the 
amount that customer contributes to the queue length. In general, this 
assumption is quite accurate. In particular, it is asymptotically correct for 
very large N, and trivially correct for models with only a single customer 
(since it predicts that arrival instant queue lengths are zero>. Thus, the 
approximation is guaranteed to be good at the two extremes. Experience 
with the technique has demonstrated that it also gives remarkably good 
results for intermediate populations, Since this error is well within the 
bounds of other discrepancies inherent in the computer system analysis 
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process (e.g., the accuracy of parameter values), the approximate MVA 
technique is satisfactory as a general solution technique. 

Closed Model Example (Approximate Solution) 

Table 6.3 lists the successive approximations for the device queue 
lengths obtained by applying this approximate solution technique to the 
same example used previously with the exact solution technique. The 
stopping criterion used was agreement in successive queue lengths within 
.OOl. The exact solution of the model is listed in the table for com- 
parison. (Note once again- the apparent anomaly caused by the fact that 
the class in this model is of type terminal. We initialize by distributing 
the customers equally among the three centers. As the iteration 
progresses, customers “disappear” from the table. At the conclusion of 
the iteration, the difference between the full customer population and the 
sum of the queue lengths at the centers represents the average number of 
users “thinking”.) 

exact 
solution .0976 

QDisk 1 Q~isa 

1 .oo 1.00 
.4826 .3102 
.4150 .2436 
.4043 .2366 
.4024 .2359 
.4021 .2359 

.2350 

Table 6.3 - Approximate MVA Computation 

6.5. Theoretical Foundations 

Separable queueing network models are a subset of the general class of 
queueing network models obtained by imposing restrictions on the 
behavior of the service centers and customers. The name “separable” 
comes from the fact that each service center can be separated from the 
rest of the network, and its solution evaluated in isolation. The solution 
of the entire network then can be formed by combining these separate 
solutions. In an intuitive sense, a separable network has the property that 
each service center acts (largely) independently of the others. 

There are five assumptions about the behavior of a model that, if 
satisfied, guarantee that the model is separable. These are: 
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l service center flow balance - Service center flow balance is the exten- 
sion of the flow balance assumption (see Chapter 3) to each individual 
service center: the number of arrivals at each center is equal to the 
number of completions there. 

l one step behavior - One step behavior asserts that no two jobs in the 
system “change state” (i.e., finish processing at some device or arrive 
to the system) at exactly the same time. Real systems almost certainly 
display one step behavior. 

The remaining three assumptions are called homogeneity assumptions. 
This name is derived from the fact that in each case the assumption is 
that some quantity is the same (i.e., homogeneous) regardless of the 
current locations of some or all of the customers in the network. 
l routing homogeneity - To this point we have characterized the 

behavior of customers in the model simply by their service demands. 
A more detailed characterization would include the routing patterns of 
the jobs, that is, the patterns of centers visited. Given this more 
detailed view, routing homogeneity is satisfied when the proportion of 
time that a job just completing service at center j proceeds directly to 
center k is independent of the current queue lengths at any of the 
centers, for all j and k. (A surprising aspect of separable models is 
that the routing patterns of jobs are irrelevant to the performance 
measures of the model. Thus, we will continue to ignore them.) 

l device homogeneity - The rate of completions of jobs from a service 
center may vary with the number of jobs at that center, but otherwise 
may not depend on the number or placement of customers within the 
network. 

0 homogeneous external arrivals - The times at which arrivals from out- 
side the network occur may not depend on the number or placement 
of customers within the network. 
These assumptions are sufficient for the network to be separable, and 

thus to be evaluated efficiently. However, the specific solution algorithms 
we have presented thus far require one additional assumption, which is a 
stronger form of the device homogeneity assumption: 
0 service time homogeneity - The rate of completions of jobs from a ser- 

vice center, while it is busy, must be independent of the number of 
customers at that center, in addition to being independent of the 
number or placement of customers within the network. 

The weaker of the two assumptions, device homogeneity, permits the rate 
of completions of jobs from a center to vary with the queue length there. 
Centers with this characteristic are called load dependent centers. A delay 
center is a simple example of a load dependent center, since the rate of 
completions increases in proportion to the number of customers at the 
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center. Service time homogeneity asserts that the rate of completions is 
independent of the queue length. Centers with this characteristic are 
called load independent. The queueing centers we have described so far 
are examples of load independent centers. The particular versions of the 
MVA algorithms presented in this chapter are applicable only to networks 
consisting entirely of load independent and delay centers. In Chapters 8 
and 20 we discuss the modifications necessary to accommodate general 
load dependent centers. 

Although the assumptions above are necessary to prove mathemati- 
cally that the solution obtained using Algorithm 6.2 is the exact solution 
of the model, they need not be satisfied exactly in practice for separable 
models to provide good results, Experience has shown that the accuracy 
of queueing network models is extremely robust with respect to violations 
of these assumptions. Thus, while no real computer system actually 
satisfies the homogeneity assumptions, it is rare that violations of these 
assumptions are a major source of inaccuracy in a modelling study. More 
typically, the problems encountered in validating a model result from an 
insufficiently accurate characterization by the model at the system level, 
usually because of inaccurate parameter values for service demands or 
workload intensities. The only important exceptions to this are cases in 
which the limitations on the structure of the model imposed by the 
assumptions required for separability prohibit representation of aspects of 
the computer system important to performance (for example, the model- 
ling of memory constraints or priority scheduling). In these cases, we 
would like models that are as easy to construct and to evaluate as separ- 
able networks, but that also represent the “non-separable” aspects of the 
computer system. In Part III of this book we show that collections of 
separable models evaluated together (typically iteratively) provide just 
such tools. Thus, separable models not only are adequate simple models 
of computer systems, but also are the basic building blocks out of which 
more detailed models can be constructed. 

6.6. Summary 

In this chapter we have examined the construction and evaluation of 
single class, separable queueing network models. Separable models have 
the following desirable characteristics: 
l e$iciency of evaluation - Performance projections can be obtained 

from separable models with very little computation. General networks 
of queues require so much computation to evaluate that they are not 
practical tools. 
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l accuracy of results - Separable models provide sufficiently accurate 
performance projections for the majority of modelling studies. We 
have described a number of case studies to illustrate this point. For 
the most part, the inaccuracy inherent in establishing parameter values 
and in projecting workload growth dominates the inaccuracy inherent 
in separable models. Thus, there is little motivation to look for more 
accurate models. 

l direct correspondence with computer systems - The parameters of separ- 
able models (service centers, workload types, workload intensities, and 
service demands) correspond directly to a high level characterization 
of a computer system. Thus, it is easy to parameterize these models 
from measurement data in constructing a baseline model, and it is 
relatively simple to alter the parameters in an intuitive way to reflect 
projected changes to the computer system in the model. 

l generality - In cases where the restrictions required in the construc- 
tion of separable models exclude an important aspect of a computer 
system from being represented in an individual separable model, col- 
lections of separable models can be used. Thus, separable models are 
the basic tool that we will use throughout the book as we extend our 
models to include increasingly detailed aspects of computer systems. 
We have studied single class separable models in this chapter because 

they form a natural bridge between the bounding models of Chapter 5 
and the more detailed multiple class models of Chapter 7. Important 
characteristics of single class models in this regard are: 
l ability to project performance - Single class models contain sufficient 

detail that performance estimates, rather than performance bounds, 
can be projected. 

l simplicity - Single class models are the simplest models for which this 
is true: the simplest to define, parameterize, evaluate, and manipu- 
late. In light of this, they are the models of choice in situations where 
they are sufficiently detailed to answer the performance questions of 
interest. 

l pedagogic value - The more detailed multiple class models presented 
in Chapter 7 are considerably more cumbersome notationally than sin- 
gle class models, but actually are very simple extensions of these 
models. Thus, an understanding of single class models aids in under- 
standing the definition, parameterization, and use of multiple class 
models. 
In the next chapter we extend our modelling capabilities to accommo- 

date systems containing several distinct workload components, which we 
represent using multiple class, separable queueing network models. 
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6.8. Exercises 

1. Suppose we wish to plot response time estimates obtained from a 
separable single class queueing network model for all populations from 
50 to 75 online users: 
a. If the exact solution technique were used, how many applications 

of the algorithm would be required to compute performance meas- 
ures for all 26 populations? 
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b. Using the approximate solution technique, how many applications 
of the algorithm would be required? 

Suppose that users of this system overlapped the preparation of each 
request with the processing of the previous request, so that effective 
think time varied with system response time, and thus with the user 
population. (F or instance, average think time might be 10 seconds 
with 50 active users, and 8 seconds with 65 active users.> 
c. Under this assumption how many applications of each algorithm 

would be required? 
d. Why would it be incorrect simply to modify Algorithm 6.2 (the 

exact solution technique) so that the think time, 2, was a function 
of the user population? 

2. Exercise 4 in Chapter 5 asked you to graph asymptotic and balanced 
system bounds for a simple model in two cases: batch and terminal 
workloads. Use Algorithm 6.2 to compute throughput and response 
time for these cases for values of N from 1 to 5. Use Algorithm 6.3 
for N=5 and N=lO. Compare these results with the bounds 
obtained previously. 
a. How much additional effort was required to parameterize the single 

class model in comparison with the bounding models? 
b. How do the techniques compare in terms of computational effort? 
c. How do the results of the techniques differ in terms of their useful- 

ness for projecting performance ? In terms of your confidence in 
the information that they provide? 

3. Implement Algorithm 6.3, the approximate mean value analysis solu- 
tion technique. Repeat Exercise 2 twice: once using this implementa- 
tion, and once using the Fortran implementation of Algorithm 6.2 
(exact mean value analysis) contained in Chapter 18. Compare the 
results. 

4. Modify the program given in Chapter 18 to allow delay centers, and to 
allow classes of transaction type. 

5. Use the modified program, as follows: 
a. Evaluate a model with three centers with service demands of 8, 5, 

and 4 seconds, and a transaction class with arrival rate .l 
requests/second. 

b. Using the response time obtained in (a>, calculate an appropriate 
think time for use in an equivalent model with the transaction class 
replaced by a terminal class with 10 users. 
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c. Evaluate the model constructed in (b). 
d. Explain the differences between the performance measures obtained 

in (a) and (cl. 
6. Use the arrival instant theorem to show that in a balanced model (one 

in which the service demands at all centers are equal to Dk = D/K), 
system throughput is given by: 

x= lv 1 
N+K-1 -’ F 

(This result is the basis of balanced system bounds, as presented in 
Chapter 5.) 

7. Both the exact and the approximate MVA algorithms involve four key 
equations (6.1 through 6.4). 
a. For each of these four equations, provideSan intuitive justification 

in a few words, 
b. In a few sentences, describe how the exact MVA algorithm is con- 

structed from these four components. 
c. In a few sentences describe how the approximate MVA algorithm 

is obtained from the exact algorithm. 


