
Chapter 12 

Existing Systems 

12.1. Introduction 

In this chapter we discuss the construction of baseline models of exist- 
ing systems. This activity relies on knowledge of the hardware, software, 
workload, and monitoring tools associated with the system under study. 
It also requires access to information recorded by accounting and software 
monitors during system operation. Here, we describe general approaches 
applicable to a variety of systems. In Chapter 17, we illustrate these 
approaches with an example based on a specific system (IBM’s MVS) and 
a specific monitoring tool (RMF). 

In Chapter 4 we divided the inputs of queueing network models into 
three groups: the customer description, the center description, and the ser- 
vice demands. The structure of the present chapter reflects this division. 

Section 12.3 is devoted to the customer description: the correspon- 
dence of the workload components of the system to the customer classes 
of the model. In specifying the values of the customer description param- 
eters, we are answering questions such as: 

- How many customer classes are required? 
- Of what type (transaction, batch, or terminal) should each class be? 
- What should be the workload intensity value (A, N, or N and Z) 

for each class? 
Section 12.4 is devoted to the center description: the correspondence 

of the resources of the system to the service centers of the model. In 
specifying the values of the center description parameters, we are answer- 
ing questions such as: 

- What devices and subsystems should be included in the model? 
- How should each of these entities be represented (e.g., as a queue- 

ing center, a delay center, or an FESC)? 
Section 12.5 is devoted to the service demands: the description of the 

interactions between customers and centers. In specifying the values of 
the service demand parameters, we are answering the question: 

274 



12.2. Types and Sources of Information 275 

- What proportion of the measured usage of each device should be 
attributed to the customers of each class? 

We precede these three sections, in Section 12.2, with a survey of the 
information used to parameterize queueing network models: its types, its 
sources, and how it can be managed. We follow these sections, in Sec- 
tion 12.6, with a discussion of the validation of baseline models, indicat- 
ing reasonable tolerances for various performance measures. 

There is little reason to construct a model of an existing system unless 
this model is to be used for performance projection. Consequently, we 
cannot completely separate the task of constructing a baseline model of 
an existing system (the subject of this chapter) from the task of using the 
model to project performance for an evolving system (the subject of 
Chapter 13). Our (somewhat artificial) separation between the two tasks 
will be the following: problems that arise from limitations or shortcom- 
ings of current monitoring tools and techniques will be treated in this 
chapter, while problems that would persist even with ideal monitoring 
capabilities will be deferred to the next chapter. 

12.2. Types and Sources of Information 

The information required to specify parameter values for a queueing 
network model of an existing system includes static information about the 
system configuration and dynamic information extracted from records pro- 
duced during system operation by various monitoring packages. Some 
information is recorded for purposes of accounting, while other informa- 
tion is recorded explicitly for performance evaluation purposes. Software 
packages of varying degrees of sophistication are available for storing, 
analyzing, and reporting the information recorded during system opera- 
tion. In this section, we discuss briefly the information needed, how it 
can be obtained, and how it can be managed. Our intention is not to be 
comprehensive, but rather to highlight points of particular relevance to 
the construction and use of queueing network models. 

One type of information required is a description of the hardware and 
software of the system. With respect to hardware, this information 
includes an enumeration of the components of the system (processors, 
channels, storage devices, communication devices, etc.) and an indication 
their interconnections (e.g., the paths over which data can be moved 
from a particular storage device to memory). With respect to software, 
this information includes the operating system in use, and the values of 
parameters that influence resource allocation. Examples of such parame- 
ters include CPU scheduling priorities for various workload components, 
placement of files on storage devices, etc. 



276 Parameterization: Existing Systems 

This system description is relatively static, in that it changes only week 
to week or month to month. The information it provides about the 
hardware suggests what resources should be represented as centers in the 
model. The information it provides about the software and operating pol- 
icies suggests appropriate modelling assumptions and helps in the 
interpretation of measurement data. 

Another type of information that is required is recorded dynamically 
during system operation by various monitors. Accounting monitors write 
records at the termination of batch jobs or interactive sessions, indicating 
the system resources consumed by the job or session (CPU seconds, I/O 
operations, memory residence time, connect time, etc.). Software perfor- 
mance monitors write records describing resource usage and performance 
status from another point of view. At specified intervals, queue lengths 
or device status indicators may be sampled and the results written in a 
record. Also, certain events that are considered significant (such as swap- 
ping a customer out of main memory) may be documented in a record. 

Because of their volume and their encoding, the records produced by 
accounting and software monitors are not usable directly. Rather, they 
must be processed by reporting routines that produce summary informa- 
tion for a specific purpose (e.g., accounting, workload forecasting, perfor- 
mance modelling). Most accounting and software monitors are packages 
that include both a recording component and a reporting component. For 
example, accounting records are written for each unit of work processed, 
and an accounting program periodically passes over the recent accounting 
records to determine charges for each account. Similarly, software moni- 
tors write records at certain events or sampling intervals, and a post- 
processor later examines the records and produces reports organized to 
aid system tuning and performance evaluation. 

The reports produced by accounting and software monitors usually are 
organized in one of two ways. Some reports are class based: they organ- 
ize information by user or by workload component. Other reports are 
resource based: they organize information by system resource. Monitors 
that reliably break down resource usage by both workload component and 
resource are not used commonly in most systems. (Those that exist 
cause prohibitively high monitoring overhead.) Much of the effort in 
parameterization, as described in Sections 12.3 to 12.5, arises from the 
need to surmount the inadequacies of commonly available measurement 
information. As software monitors are improved, the parameterization 
task will become less burdensome, and some of the techniques described 
in this chapter will become unnecessary. 

When using a reporting routine to obtain information, it is necessary 
to specify the interval of time over which information is to be gathered. 
Generally, it is appropriate to run the monitor during peak loads, as these 



12.2. Types and Sources of Information 277 

present the most significant performance problems. The duration of the 
observation interval should be long enough that end effects do not 
significantly affect the accuracy of the measurements. End effects are 
measurement errors caused by the fact that some customers are processed 
partly within and partly outside of the observation interval. In particular, 
it is typical to assume that the system operates in flow balance over the 
measurement interval, so that the job arrival and completion rates are 
equal. However, because some jobs arrive but do not complete during the 
interval, and other jobs arrive before but complete during the interval, 
flow balance may not hold. Clearly, measurements obtained from longer 
observation intervals are affected less by these end’effects than are 
shorter intervals. Typically, observation intervals of thirty to ninety 
minutes are appropriate for obtaining software monitor data. If monitor- 
ing overhead is a concern, shorter intervals can be used, but the danger 
of anomalies is increased. 

Other sources of useful information include hardware monitors and 
monitors specialized for particular application subsystems (such as data- 
base or telecommunications subsystems). Hardware monitors, because 
they are “external observers” of the system, obtain accurate measure- 
ments and do not perturb system operation. They are incapable, how- 
ever, of associating resource usage with workload components. The spe- 
cialized application subsystem monitors are helpful in assessing the per- 
formance of subsystems whose autonomy from the host operating system 
prevents standard monitors from being able to record their activity. (For 
example, special monitors are needed for IBM’s IMS database system 
because RMF does not record information about individual IMS transac- 
tions.) While any information that is available from hardware and spe- 
cialized application subsystem monitors should be exploited, our discus- 
sion in this chapter will be restricted to the kinds of information that are 
commonly reported in most medium or large computer installations. 

Table 12.1 summarizes the information typically available from various 
sources. Information from different sources (accounting and software 
monitors, or even two different software monitors) may be based on 
different underlying assumptions. For this reason, and also because of 
end effect anomalies, information from different sources may appear to be 
contradictory. For example, consider a small interactive system in which 
monitors report that in a thirty minute observation interval: 

- 7200 transactions were processed 
- average response time was three seconds 
- the sum of the queue lengths at the CPU and all disks was 18 

We would conclude that throughput during the observation interval was: 
7200 transactions 

1800 seconds 
= 4 transactions/second 



278 Parameterization: Existing Systems 

information provided 

system 
description 

accounting 
monitor 

hardware configuration 
operating system (and version) 
resource allocation and scheduling strategies 
tuning parameter values 
CPU usage, by workload component 
logical I/O operation count, by workload component 
customer completions. by workload component 
measured busy time, by device 

software 
monitor 

physical I/O operation count, by device 
average queue length, by device 
throughput, by workload component 
average response time, by workload component 

monitor observed busy time, by device 

Table 12.1 - Sources of Information 

Because the observation interval is long relative to the average response 
time, we could be confident that end-effects would not lead to significant 
errors in the estimates of throughput or response time. Considering 
Little’s law, however, we would find the sum of the queue lengths (18) 
to be much higher than expected from the product of throughput (4 
transactions/second) and response time (3 seconds). One possible expla- 
nation for such a situation is that the queue lengths include system tasks 
that are not counted in either the throughput or response time calcula- 
tions. On the other hand, if the sum of the queue lengths had been 
reported as 8 (and other values remained the same>, then Little’s law 
would reveal a discrepancy in the other direction. A possible explanation 
for the second case would be that requests were queueing for admission 
to memory, thus spending a significant part of their response time where 
they were not included in the queue length of any device. The funda- 
mental laws presented in Chapter 3 can be used to detect such apparent 
contradictions. System intuition and careful thought is required to 
resolve them. 

Enhanced awareness of the problems of configuration management 
and capacity planning has led recently to some encouraging progress in 
the use and management of system measurement data. First, special 
reporting routines tailored to the requirements of queueing network 
modelling have been developed for some systems. These routines 
analyze records produced by existing accounting and software monitors. 
Some are capable of defining a queueing network in a format directly 
acceptable by particular queueing network modelling software packages. 



12.3. Customer Description 279 

While these routines are a great aid, intervention by an analyst still is 
necessary in most cases to obtain a validated model. This is true because 
of inadequacies in the measurement data, and the fact that the analyst’s 
knowledge of the system is not available to the automated routine. 
(Further discussion of such routines appears in Chapter 16.1 

Second, some of the newer reporting routines have been generalized 
to be capable of using and contributing to a performance database. The 
records written by various monitors constitute a rudimentary performance 
database. Merely organizing the records according to their types and 
source makes them easier to use. The utility of the database is further 
enhanced, however, if it is extended to include aggregated information 
produced by reporting routines. There are several advantages to main- 
taining such a performance database. For one, long-term trends can be 
examined if information aggregated on a month by month basis is 
included in the database. Also, information intended for management 
planning can be isolated from the more technically oriented information 
intended for system tuning. Finally, by having various aggregations of 
monitoring information available in a database, the need for regular 
printed reports is substantially reduced. 

12.3. Customer Description 

Most large computer systems have workloads consisting of several 
identifiable components. Performance studies often are intended to 
assess performance of each workload component, since system-wide aver- 
age values for throughput and response time have little significance in 
systems that include such diverse workload components as background 
batch and foreground transaction processing. There are several goals to 
meet in deciding how to assign the workload components of the system to 
the customer classes of a queueing network model: 
l Classes should consist of customers whose service demands are of 

comparable magnitude and similar balance across service centers, since 
input parameters to the model for all customers in the same class are 
identical. (For example, I/O bound customers should not ordinarily 
be in the same class as CPU bound customers.) 

l Classes must distinguish workload components for which independent 
performance projections are desired as outputs of the model. (For 
example, if response time to database queries is of concern, then data- 
base queries should not be grouped in a single class with other work- 
load components.) 



280 Parameterization: Existing Systems 

l Classes may be made to correspond to accounting and performance 
groups. This facilitates the calculation of various parameter values, 
since accounting data is organized by accounting group. 

0 Classes may be used to distinguish work generated by various organi- 
zational units (e.g., divisions of a company). This permits unit- 
specific performance projections, and facilitates later modification 
analysis (since workload forecasts frequently are made on an organiza- 
tional unit basis). 
A first step in identifying customer classes is to group portions of the 

workload according to whether they are best represented as batch, termi- 
nal, or transaction types. Often, the nature of a workload component 
suggests an appropriate type: if requests arrive at a constant rate, then 
transaction; if requests are generated by a set of users that await the com- 
pletion of service to one request before generating another, then termi- 
nal; if the number of active requests is constant, then batch. Variations 
are possible, though, especially in conducting a modification analysis. As 
one example, a workload component might in fact consist of users at ter- 
minals, but for planning purposes its intensity might be described in 
terms of a request arrival rate. In this case, the use of a transaction type 
might be appropriate. As another example, a system might have many 
workload components, only a few of which are of interest. The presence 
of the other components might be reflected in the model by a single 
“aggregate” class of transaction type (so that its throughput is guaranteed 
to equal the measured value). 

Within each type of customer class, further separation of workload 
components may be desirable. Batch work of different priorities may be 
represented as distinct classes. Different interactive systems (e.g., APL 
and TSO in an IBM environment) may be treated as separate terminal 
classes. If trivial transactions (such as simple editing commands) can be 
distinguished from substantive transactions (such as complex database 
queries), then different classes can be used to distinguish the two groups. 

The queueing network model input parameter C is simply the number 
of customer classes, determined according to the guidelines suggested 
above. Models of simple systems typically have just one or two classes, 
while models of complex multi-purpose systems may have eight or more. 
In some special situations it is useful to have a very large number of 
classes~- say, twenty to forty. 

One example of a situation in which a large number of classes was 
used is a model developed for projecting the performance of a hospital 
information system used in many hospitals. There were roughly thirty 
major transaction types (admit-patient, order-blood-test, set-dietary- 
restriction, etc.) each one of which was represented as a separate custo- 
mer class. In this way, the arrival rate of each transaction type and the 



12.3. Customer Description 281 

priority assigned to the transaction type (reflecting its urgency in a partic- 
ular hospital) could be represented directly in the model. The hospitals 
using the system differed substantially in size and in the hardware on 
which they ran the system. Also, they differed significantly in the partic- 
ular mix of transactions that were processed. The model proved useful in 
configuration design. The response times for various transaction classes 
could be related to the arrival rates and priorities of the classes for vari- 
ous contemplated hardware configurations. 

Having identified each workload component to be represented as a dis- 
tinct customer class and determined the type of that class, the next step is 
to establish the workload intensity of each class. For a transaction class, 
the workload intensity is the transaction arrival rate. Over a reasonably 
long observation interval in a system that is not saturated, the arrival rate 
is essentially the same as the completion rate. Consequently, an estimate 
for the arrival rate of class c is: 

A, = 
measured completions of class c 
length of measurement interval 

For a batch class, the workload intensity is given by the average 
number of batch customers active. An estimate for N,, the number of 
class c customers, can be obtained in several ways: 
l If jobs are processed in a fixed number of regions and memory queue- 

ing times are high (so that it is known that each region is busy 
throughout most of the observation interval), then N, is the number 
of processing regions. 

l If the software monitor provides an estimate of the average multipro- 
gramming level of the class over the observation interval by sampling, 
then N, can be taken to be that estimate. 

l If accounting data provides the residence time of each job in the cen- 
tral subsystem, then N, can be estimated by: 

2 measured job residence time 
c/ass c 

NC = jobs 
length of measurement interval 

(This alternative is impractical without the use of a reduction package 
capable of automatically extracting this information from accounting 
records.) 
For a terminal class, workload intensity is specified by the number of 

active terminals, N,, along with the average think time, 2,. Three possi- 
bilities for estimating N, for terminal classes correspond directly to the 
three methods used for batch classes: 



282 Parameterization: Existing Systems 

l If terminals connect to the system through a limited number of ports, 
and if all ports are busy throughout most of the observation interval, 
then N, is the number of ports. 

l If the software monitor provides the average number of active termi- 
nals over the observation interval, then N, can be taken to be that 
number. 

l If accounting data includes session lengths, then N, can be estimated 
(over an observation interval that is long relative to average session 
length in order to restrict end effects) by: 

2 measured session length 
class c 

NC = SFSSIOtlS 

length of measurement interval 

The average think time of a terminal class often is one of the most 
difficult input parameters to estimate. There are ~several reasons. First, 
there are differing views of when think time starts and ends. We will 
adopt the one in which it starts with the arrival of the first character of a 
response from the system, and ends when the last character of the next 
request to the system is entered. Second, some systems allow a stream of 
commands to be entered without awaiting responses. Such systems can 
cause think times (as defined above) to be negative! Third, some think 
times become so long that they actually represent a loss of an active ter- 
minal. (This occurs when terminal users interrupt their work without 
logging off.) Fourth, average think time seldom is measured directly by 
performance monitors. Consequently, the best estimate of think time 
often is obtained by estimating 2, from the response time law: 

Z, = +- - R, 
c 

where N, is estimated as described above, and J& and R, are measured 
values. Because there often is less confidence in the estimate of think 
time than in the estimates of other parameters, it may be desirable to test 
the sensitivity of the model to this value. 

When memory constraints are imposed on transaction or terminal 
classes, it is necessary to specify the capacity associated with each domain 
so that the modelling approach of Section 9.3 can be used. The capacity 
of each domain typically is known from the system description. Whether 
or not the domain was filled to capacity in a particular measurement inter- 
val is revealed by comparing the average number active among classes 
assigned to the domain (as reported by a monitor) to the domain capa- 
city. 



12.5. Service Demands 283 

12.4. Center Description 

The service centers of a queueing network model correspond to 
significant points of congestion or delay in the system. There are many 
ways of representing system resources by a set of service centers. Here 
we suggest only the most widely accepted methods, which have proven 
successful in a large number of modelling studies. 

For systems with single CPUs and for tightly-coupled multiprocessors, 
a single service center is used to represent the CPU(s) in the queueing 
network model. Loosely-coupled multiprocessors are modelled by includ- 
ing one service center per processor. Front end communications proces- 
sors and back end database machines also may be represented as separate 
service centers. 

The representation of disk subsystems can be done in a variety of 
ways. (See the discussion in Chapter 10.1 A number of components are 
involved in each disk I/O operation. The modelling approach that has 
proven most successful, however, is to use a single service center to 
represent each disk. Congestion due to other I/O subsystem components 
is represented by calculating an appropriate effective service demand for 
each center. 

Other peripheral devices can be represented more simply than disks. 
Because tape drives are not capable of operation independent of the chan- 
nel, a group of tape drives on a channel can be represented by a single 
service center. The service demands at the center can be established 
using channel utilization only, and ignoring the individual tape drives. 

Unit record equipment typically is ignored in constructing queueing 
network models. This is justified in many systems because spooling makes 
the use of unit record devices asynchronous. Similarly, terminal controll- 
ers typically are not represented. If delays in the communications front 
end are thought to be important in a particular study, then a special 
approach must be used. This might involve a hierarchical model in which 
a conventional central subsystem model is evaluated, and then the delays 
due to communication are represented in a high-level model that includes 
an FESC representing the central subsystem. 

12.5. Service Demands 

The final set of values needed to parameterize a queueing network 
model are the service demands at each center of the customers belonging 
to each class. Obtaining these values can be a difficult and time consum- 
ing process. As a practical consideration, it is important to concentrate 
on obtaining accurate estimates for the most heavily utilized centers, 



284 Parameterization: Existing Systems 

because a small error in estimating the service demands at the bottleneck 
center will affect performance projections more than a much larger error 
at a lightly utilized center. 

In estimating service demands, the three center types (delay, FESC, 
and queueing) are treated differently. 

Delay centers have service demands that represent a delay that is not 
caused by congestion (e.g., a propagation delay in a communication net- 
work). It usually is not difficult to determine appropriate values for delay 
centers. In addition, errors in the service demands at delay centers are 
not “magnified” by queueing delay calculations when the model is 
evaluated. 

For FESCs, the load dependent service rates can be determined in 
many ways, as described in Chapter 8. Two major approaches are 
evaluating low-level queueing network models (as illustrated in Chapter 9 
for the case of memory constraints) and considering hardware characteris- 
tics (as illustrated in Chapter 11 for the case of tightly-coupled multipro- 
cessors). 

The remainder of this section is devoted to the case of queueing 
centers, by far the most common center type in queueing network 
models. Conceptually, estimating service demands for queueing centers 
is straightforward: at the conclusion of the measurement interval, the 
measured busy time for each class at each device is divided by the 
number of system completions for the class. In practice, however, two 
difficulties arise: 
l In the multiple class case, the available data frequently is insufficient 

to apportion the measured busy time among the classes with certainty. 
The reasons and the remedies differ for various devices and various 
systems. 

l A portion of the busy time attributed to each class is intrinsic to that 
class: its basic processing and I/O requirements. The remainder con- 
sists partly of service demand inflation and partly of overhead. Service 
demand inflation, introduced in Chapter 10, is the component of 
measured disk busy times due to contention in the I/O subsystem. 
(There is no service demand inaation for processors.) Overhead is 
work done by the operating system “on behalf of’ the customers of 
the class. Part of the overhead component is jked, in that it does not 
depend on system congestion (e.g., the CPU service required to ini- 
tiate user I/O operations), and part of it is variable and typically 
increases with system load (e.g., paging I/O). In a baseline model 
these distinctions do not matter, but in conducting a modification 
analysis they can be crucial, for the service demand inflation and vari- 
able overhead components of the model usually change in a new 
environment. 



12.5. Service Demands 285 

This section is devoted to the first of these two difficulties: apportion- 
ing measured busy time among the various classes. We defer our discus- 
sion of the second difficulty to Chapter 13. The reader should under- 
stand, however, that while the techniques used to adjust the service 
demand inflation and variable overhead components of service demands 
are not required until projecting performance for an evolving system, they 
should be validated by examining several measurement intervals using 
the baseline model of the existing system. 

Our discussion is organized into two subsections, the first devoted to 
processors and the second to I/O. 

12.5.1. Estimating Processor Service Demands 

Since the CPU typically is a heavily utilized resource, it is important to 
determine accurately the service demands of the various classes there. 
As noted in Table 12.1, monitor data often includes the CPU usage and 
the number of customer completions for each workload component. 
Unfortunately, the quotient of these quantities turns out in practice to 
yield a poor estimate of CPU service demand. The reason is that the CPU 
usage reported on a per class basis often fails to capture significant 
amounts of CPU activity. More specifically, the sum of the CPU busy 
times reported on a per class basis is likely to be considerably less than 
the total CPU busy time reported by a monitor that does not attempt to 
distinguish among classes. The ratio of attributed CPU usage for a class 
to the total CPU busy time due to activities initiated by that class is 
known as the capture ratio. Capture ratios typically range from .85 down 
to .40 for various systems and various workload components. For a par- 
ticular system, the overall capture ratio can be estimated as suggested 
above: by dividing the sum of the CPU busy times reported on a per 
class basis (often by an accounting monitor) by the total CPU busy time 
reported by a monitor that does not attempt to distinguish among classes 
(often by a software monitor). 

In the case of single class models, dividing the estimate of total CPU 
busy time from software monitor data by the estimate of total customer 
completions from either accounting or software monitor data will yield a 
good estimate for CPU service demand. In the case of multiple class 
models, though, techniques must be devised to apportion the unattri- 
buted CPU busy time among classes. This process has three steps: 

- calculate the unattributed busy time during the interval 
- decide how much to attribute to each class 
- compute how much to attribute to each customer of each class 

The second of these steps is the interesting one, and will be addressed in 
the paragraphs that follow. 



286 Parameterization: Existing Systems 

Consider a system with a workload consisting of two components: 
batch jobs and interactive users. Assume that information comparable to 
that listed in Table 12.1 has been obtained. Let fBATcH and fINrER be 
(unknown) factors by which the attributed CPU busy time for each class 
must be multiplied so that all measured CPU busy time is attributed to 
some class. (Observe that f, is the inverse of the capture ratio for class 
c.> This leads to the equation: 

&PU = ~BATCH x ABATCH,CPU + TINTER x AINTER.CPU 

where A,., Cpu is the CPU usage attributed to class c, and BCp” is the total 
measured CPU busy time. 

To determine unique values for f BATCH and fl,vr,=~ we must establish 
a relationship between them in addition to this equation. Several possi- 
bilities exist: 
l Assume that the ratio of total CPU time to attributed CPU time is the 

same for each class, yielding: 

.fBATCH = flhll-ER = 
BCPU 

[ 
AINTER,CPU + AB~TC~.C~U 1 

l Since the unattributed CPU busy time is likely to be overhead, use 
class based information on activities likely to cause CPU overhead 
(such as paging rate, swapping rate, spooling, user I/O, and job initia- 
tions) to determine a relative measure of total overhead for each class. 
For instance, assuming that overhead is due almost entirely to page 
fault handling, and letting OK, (the relative overhead of class c> be 
the measured number of pages transferred because of class c faults, 
we have: 

f INTER = 

0 vfNTER 

1 + OvINi-ERfOVBATCH 
x [BCPG - [A,NTER.cPu + ABATCH.CPU] ] 

AlvTER cpL/ 

1 I 

The second approach is the more reasonable. Unfortunately, more than 
one factor inevitably contributes to overhead. Thus, OV, is better 
defined as the weighted sum of several factors: 

ov,.= 2 weight i x factor i T 
ail ,faciors i 

When one attempts to apply this approach in practice, two common prob- 
lems are apt to be encountered: 



12.5. Service Demands 281 

l Even for a single measurement interval, it may be difficult to deter- 
mine which factors to consider, and what weights to assign to these 
factors. Iteration inevitably is required: estimate weights, calculate 
service demands, evaluate model, re-estimate weights, etc. 

l If one truly is to have confidence in the weights selected, then data 
from a number of measurement intervals must be considered, and 
weights must be found that yield good model results when applied to 
each set of data. An ad hoc approach can be adopted, or linear regres- 
sion techniques can be used. 
Once fBATCH and f [,vTER have been determined, the service demands 

of the two classes can be estimated by the equation: 

D c,CPU = 
fc x &,CPU 

measured class c completions 

Note that the service demands determined in this way include intrinsic 
service, fixed overhead, and an amount of variable overhead that reflects 
the degree of system congestion in the interval covered by the measure- 
ment data. 

12.5.2. Estimating I/O Service Demands 

I/O activity in most current computer systems is dominated by opera- 
tions on direct access storage devices (fixed head, movable head, and 
electronic disks). Tape I/O and I/O for staging data to and from mass 
storage devices plays a secondary role. Other types of peripheral devices 
typically are inconsequential with respect to performance. Our discussion 
in this section focuses on disk I/O, reflecting its importance. 

In Section 10.7 we described how the lengths of certain portions of 
disk service requirements (seek, latency, rotation, and transfer) could be 
established from system knowledge (e.g., device characteristics) and 
measurement data. We assumed that both the visit counts and the ser- 
vice times per visit for each class at each disk were known. In this sec- 
tion, we suggest a method for determining these quantities. First we con- 
sider the visit counts, then the service times. 

We distinguish two ways of viewing I/O operations. Physical I/O 
operations correspond to activations of I/O subsystem components to 
transfer data to or from peripherals. Logical I/O operations correspond to 
operating system calls by customers requesting access to blocks of infor- 
mation. For a number of reasons physical and logical I/O operations do 
not correspond directly to one another. Sometimes, a logical I/O opera- 
tion may not result in a physical I/O operation; for example, a logical I/O 
operation may request access to a block of information that already is in 
memory. Sometimes, a logical I/O operation may result in several 



288 Parameterization: Existing Systems 

physical I/O operations; for example, errors detected in reading or writing 
a block may cause operations to be retried. 

It is the physical I/O operations that correspond to the visit counts, 
but physical operations seldom are reported on a per class basis. Typi- 
cally, logical I/O operations are broken down by class but not by device 
(often by an accounting monitor), while physical I/O operations are bro- 
ken down by device but not by class (often by a software monitor). 

The first step in confronting this situation is to estimate the ratio of 
physical to logical I/OS for each class. We now restrict consideration to a 
set of disk drives. Let Pk denote the physical I/OS at disk k, and let L, 
denote the logical I/OS of class c over the set of disks. (Some monitors 
fail to distinguish logical disk I/OS from other logical I/OS. In such cases, 
we are forced to make some assumption such as that the fraction of all 
logical I/OS that are directed to the disks is the same as the fraction of all 
physical I/OS that are directed toward the disks, which is presumed to be 
available from measurements.) We define g, to be the ratio of physical 
to logical I/OS for class c. (The assumption that the ratio depends on 
class but not device is realistic in most systems.) Estimating the g, is a 
problem analogous to estimating the f, in the case of the CPU. Possible 
approaches include: 
l Assume that g, is the same for each class, so that: 

2 Pk 
ail dtsks k 

gc = y 
C Lj 

a/i classes ., 

l Use generally accepted ratios for standard types of workloads for the 
architectural family of the system. 

l For a number of observation intervals, determine the values for the gc 
that best satisfy the set of equations: 

c Pk (i> = 2 & ’ LC(i) 
a// disks k a/i ch7sses c 

where (i) denotes values obtained during the i-th observation inter- 
val. 
Once these g, have been estimated, we proceed to determine the visit 

counts. In essence, we must satisfy the equations: 

Pk = 2 (measured ClaSS c completions) X vC3, 
a/i c/asses c 

L,. = (measured class c completions) X 
v, k 

2 A 
n/i disks k gc 



12.5. Service Demands 289 

physical I/OS 1 P, 1 p2 p3 

Table 12.2 - Physical Disk I/OS by Class and Device 

Table 12.2 suggests a way of thinking about the problem of determin- 
ing the number of physical I/OS by each class at each device, again for 
the case of two classes, batch (BATCH) and interactive (INTER). The 
central rows correspond to classes, while the central columns correspond 
to disks. The entry to be filled in at column k of row c is the number of 
physical I/OS by class C at device k 
( V,>k X measured class c completions). The information available, how- 
ever, is only that the columns must add to Pk while the rows must add to 
L, X g,. This provides a number of equations equal to the sum of the 
number of classes and the number of disks, whereas the number of v,,k 
values that we must estimate is equal to the product of these quantities. 
(For instance, in Table 12.2 there are five constraints corresponding to 
the two row sums and three column sums, but there are six V,,, values 
to be determined.) Consequently, we must use additional information to 
specify the v,,k values uniquely. Alternatives include: 
l The simplest assumption, which can be used in the absence of any 

other information, is that all classes use the various disks in the same 
proportions: 

v, k I$ k 
---L.-=--L-- 
V c,k’ v,‘,k’ 

for classes c and c’, and disks k and k’ 

l The software configuration portion of the system description fre- 
quently indicates the location of various key data sets: paging files, 
swapping files, catalogs, files devoted to various applications, etc. If a 
particular class is known not to use a device, then its visit count there 
can be set to zero. If a particular class is known to be the exclusive 
user of a device, then its visit count there can be set to the measured 
physical I/O count of the device divided by the measured number of 
completions of the class. The remaining visit counts can be resolved 
in a series of stages. At each stage, the distribution of I/OS for the 
class for which the least flexibility remains is determined. 



290 Parameterization: Existing Systems 

l In some systems there are software monitors capable of observing 
directly the number of physical I/OS broken down by both class and 
device. Although such monitors cause too much overhead to be used 
continuously, they can be used over short intervals (e.g., 10 minutes) 
to obtain an indication of the distribution of physical I/OS by class and 
device. 

l Occasionally, the breakdown of logical I/OS by device as well as by 
class is known. This additional information makes it possible to 
proceed with greater confidence. In particular, if we can assume that 
the ratio of physical I/OS to logical I/OS is the same for each class, 
then the physical I/OS at a particular device can be attributed to classes 
in the same proportions as are the logical I/OS. 
We turn now to the problem of determining the SC,,. It is customary 

to assume that, at any particular disk, all classes have the same service 
time per visit. With this simplification, the service times are given by: 

Situations in which one class has a substantially larger service time at a 
disk than another class typically arise when the former class uses a much 
larger block size. In such cases, disk characteristics (transfer rates, rota- 
tion times, and seek time functions) can be used to estimate the ratios 
&.k&',k> for each pair of classes c and c’ that use the disk. Those 
ratios, together with the equation: 

Bk = c VCic,k X sCSk X (measured class c completions) 
UN classes c 

allow unique determination of the SC,,. In both the cases of equal and 
unequal service times across classes, the service demands are given by: 

D c,k = v,,k &,k 

We now consider briefly the estimation of service demands for tape 
devices. As noted in an earlier section, it generally is appropriate to 
represent the tape channels rather than the individual drives. Further, it 
generally is appropriate to model all classes as using the various tape 
channels in the same proportions (although different classes will have 
different total amounts of tape I/O activity). Thus, the visit counts are 
given by: 

V 1 
c,k = z"' Lj x pk x measured class c completions 

al/ c/asses j 

where the Pk and L, now are measured physical tape I/OS at center k and 
logical tape I/OS of class c, respectively. Assuming that all classes use 



12.6. Validating the Model 291 

essentially the same block size (so that they have the same service 
times), the service demands are given by: 

Dc,k = v, k 3 
h 

If block sizes differ significantly among classes, then service demands can 
be determined in a manner analogous to that suggested above for disks 
with class-dependent service times. 

12.6. Validating the Model 

Once values are established for all inputs, the model can be evaluated 
using the algorithms described in Part II, extended as described in Part 
III. This evaluation yields, for each class, estimates of system throughput 
and response time, and of device residence time, utilization, and queue 
length. 

Model validation involves comparing these estimates with the meas- 
ured values of the corresponding quantities. A model can be considered 
“validated” when it has been demonstrated that, in several (or many) 
measurement intervals, the differences between the estimates produced 
by the model and the measured quantities are sufficiently small. 

In choosing observation intervals for use in validating the model, it is 
desirable to look ahead to the types of system changes to be investigated 
with the model. If the model is to be used to investigate the effect of an 
increased workload intensity, then the model should be validated on 
observation intervals representing a range of workload intensities. Simi- 
larly, if an increase in the size of main memory is to be considered, it is 
beneficial to validate the model on several different memory sizes. This 
could be done in a number of ways. Scheduling parameters could be 
adjusted to keep the number of active customers artificially low (thus 
underutilizing the memory). Alternatively, a portion of the memory 
could be disabled during an observation interval. 

The correspondence between model estimates and measured quantities 
depends on several factors. Single class models can be validated wirth 
higher precision than multiple class models because their input parameter 
values can be determined from measurement data with greater accuracy. 
Some performance measures can be matched more easily than others. In 
validating multiple class models, it seldom is possible to reflect the 
behavior of every class at every device accurately. Clearly, it is desirable 
to have the model represent most accurately the behavior of the critical 
(mostly heavily used) resources. Similarly, if one class of customers is of 
particular interest in a modelling study, then validation of the model 



292 Parameterization: Existing Systems 

should place special emphasis on the performance measures of that class. 
Table 12.3 suggests rough guidelines for reasonable expectations of model 
accuracy during validation. 

An important point to note is that queueing network models typically 
project percentage changes in performance with more accuracy than abso- 
lute levels of performance. For example, consider the projection of the 
effect on interactive response time of adding a batch workload to a sys- 
tem. Assume that the measured response time in the original system was 
six seconds, and the baseline model validated within 20%, giving a 
response time of five seconds. If the modified model then projected a ten 
second response time after the batch workload was added, we should anti- 
cipate a response time in the modified system of twelve seconds (rather 
than ten) since the model projected a doubling of the response time. 

model 
type 

single class 
multiple class 

(per class) 

system system device device 

throughput response utilizations queue 
time lengths 

0 to 5% 5 to 20% 0 to 5% 5 to 20% 

5 to 10% 10 to 30% 5 to 10% 10 to 30% 

Table 12.3 - Reasonable Tolerances in Validation 

Often, even in well conceived and well executed modelling studies, an 
initial model will not satisfy the validation criterion. In such cases, rea- 
sonable modifications of the assumptions used in estimating input param- 
eters (especially service demands) should be attempted. For example, by 
noting which classes have throughputs underestimated, the analyst may 
be guided in a reassessment of how overhead should be attributed to the 
various classes. This review is repeated until the model can be validated. 
It is not unusual for several iterations to be required at this stage. In 
some cases, however, no reasonable technique for estimating inputs 
yields acceptable results. This is a sign that some important aspect of the 
system’s behavior has not been captured in the model. In many such 
cases, accuracy can be improved by adding more detail to the model. 

It is important to realize the significance of validating a model success- 
fully. If information from measurement data is used to establish values 
of model inputs, then the fact that the model outputs match the measure- 
ment data is, at first glance, not surprising. After a little thought, how- 
ever, one realizes that success in validation carries the significant implica- 
tion that the numerous assumptions made in establishing the model are 
acceptable in the context of the particular system under study. With a 
validated model, we are prepared to proceed to the modification analysis 
and performance projection, the subjects of the next chapter. 



12.8. References 293 

12.7. Summary 

The inputs required by queueing network models can be divided into 
three groups: the customer description, the center description, and the 
service demands. The information required to determine the values of 
these inputs is obtained from a system description and data recorded and 
reported by various monitors. Many of the input values can be deter- 
mined in a straightforward manner from this information. Other values, 
however, must be inferred. The bulk of this chapter has been devoted to 
techniques for doing so, for various inputs. 

An appropriate modelling strategy is to start with the simplest model 
that might suffice, adding detail as necessary. The process of model vali- 
dation may involve several iterations in which input values are revised 
and detail is added. 

Thorough validation must be based on several measurement intervals. 
It also must be based on knowledge of the kinds of performance projec- 
tion questions for which the model is to be used. 

12.8. References 

Several good books on computer system performance measurement 
techniques are available, such as [Ferrari 19781, [Ferrari et al. 19831, and 
[Svobodova 19761. These, however, do not deal specifically with the 
needs of queueing network modelling. 

Rose 119781 treats the queueing network parameterization problem in 
general, and also relates the techniques to various specific systems. Kien- 
zle and Sevcik [1979] review the approaches to parameterization taken by 
a number of early queueing network modelling case studies. 

Curtin [19791 describes a performance database which serves as a 
repository for measurement data, and which can be accessed by the SAS 
statistical analysis package to produce reports suitable for both managers 
and analysts. Lindsay [19801 reports on the accuracy of a software petfor- 
mance monitor by comparing its results to those of a hardware monitor. 

Artis [19791 suggests a technique for identifying customer classes 
based on the similarity of their resource demand patterns. Cooper [19801 
describes both the identification of customer classes and the use of cap- 
ture ratios as part of his presentation of an overall capacity planning 
methodology. Anderson [1979l proposes a sophisticated method for 
apportioning unattributed device activity to classes using multiple linear 
regression. 



294 Parameterization: Existing Systems 

The details of the parameterization process depend heavily on the sys- 
tem under consideration. Both the quantity and the quality of data varies 
widely among systems. Consequently, proceedings of “user group” 
conferences are good sources of papers describing techniques of relevance 
to a particular type of system. 

[Anderson 19791 
Edwin Anderson. A Method for the Estimation of Resource Use for 
Queueing Models. Proc. CMG X International Conference (1979), 
157-164. 

[Artis 19791 
H. Pat Artis. A Technique for Establishing Resource Limited Job 
Class Structures. Proc. CMG X International Conference (1979), 249- 
253. 

[Cooper 19801 
J.C. Cooper. A Capacity Planning Methodology. IBM Systems Journal 
19,l (1980), 28-35. 

[Curtin 19791 
James P. Curtin. An MVS Performance Data Base and Reporting Sys- 
tem Using SAS. Proc. CMG X International Conference (19791, 35-39. 

[Ferrari 19781 
Domenico Ferrari. Computer Systems Performance Evaluation. 
Prentice-Hall, 1978. 

[Ferrari et al. 19831 
Domenico Ferrari, Giuseppe Serrazi, and Alessandro Zeigner. Meas- 
urement and Tuning of Computer Systems. Prentice-Hall, 1983. 

[Kienzle & Sevcik 19791 
Martin G. Kienzle and Kenneth C. Sevcik. Survey of Analytic Queue- 
ing Network Models of Computer Systems. Proc. ACM SIGMETRICS 
Conference on Simulation, Measurement and Modeling of Computer Sys- 
tems (19791, 113-129. 

[Lindsay 19801 
David S. Lindsay. RMF I/O Time Validation. Proc. CMG XI Znterna- 
tional Conference (19801, 112-119. 

[Rose 19781 
Clifford A. Rose. A Measurement Procedure for Queueing Network 
Models of Computer Systems. Computing Surveys 10,3 (September 
1978)) 263-280. 

[Svobodova 19761 
Liba Svobodova. Computer Performance Measurement and Evaluation 
Methods: Analysis and Applications. North-Holland, 1976. 



12.9. Exercises 295 

12.9. Exercises 

1. Section 2.2 describes two case studies in which queueing network 
models were used for performance projection in an IBM processing 
complex. In each case, the objectives and the results of the study 
were presented, but the details of the model were not. For each of 
these studies, use the available information to specify an appropriate 
structure for a model. Indicate the significant parameters of the model 
and suggest how their values might be established. 

2. In a system with two workload components, batch and interactive, the 
following measurements were obtained in a 60 minute observation 
interval: 

observed CPU busy time: 50 minutes 
accounted batch CPU time: 20 minutes 
accounted interactive CPU time: 10 minutes 

a. Assuming that the “capture ratio” is the same for each workload 
component, what proportion of the observed CPU busy time 
should be attributed to each component? 

b. Assuming that the primary source of CPU overhead is page 
transfers and that 75% of all page transfers are for interactive custo- 
mers, what proportion of the observed CPU busy time should be 
attributed to each workload component? 

c. In a second 60 minute observation interval, the observed CPU 
busy time was 45 minutes, while the accounted CPU times for 
batch and interactive were 15 and 10 minutes, respectively. Using 
the measurement data from both observation intervals simultane- 
ously, what proportion of the observed CPU busy time should be 
attributed to each workload component? 

3. In an observation interval, the number of logical I/OS (in thousands) 
for classes A, B, and C were 60, 50, and 30, respectively. In the same 
interval the number of physical I/OS (in thousands) at the two disk 
drives were 100 and 60, respectively. Determine an appropriate allo- 
cation to each class of the physical I/OS at each disk drive under each 
of the following assumptions: 
a. No further information is available. 
b. The ratios of physical to logical I/OS for classes A, B, and C are 

known to be approximately 13/12, ll/lO, and 4/3, respectively. 


