
Chapter 13

Evolving Systems

13.1. Introduction

We create and validate queueing network models of baseline systems,
as described in Chapter 12, so that these models can be used to project
the effects on performance of contemplated modifications to the work-
load, to the hardware, and to the operating policies and system software.
In this chapter we will see how to represent such modifications by altera-
tions to the inputs of the validated model. The accuracy and utility of the
resulting performance projections depend on three factors:
l how well the baseline model validates - The construction and validation

of baseline models was discussed in Chapter 12.
l how accurately the mod$cations are forecast - Anticipating the evolu-

tion of a system and its workload is a difficult task that is faced by
organizational management. It lies beyond the scope of this book.

l how well the anticipated modl@ations are represented as changes to the
model inputs - This is the subject of the present chapter.
In general, system modifications have both primary and secondary

effects. For example, a CPU upgrade has the primary effect of reducing
the CPU service requirement of each user (in seconds, rather than
instructions), and may have one or more seco-ndary effects, such as
changing the number of times that each user is swapped, on the average.
We will see that for many modifications it is relatively easy to anticipate
and represent the primary effects, but harder to anticipate, and thus to
quantify and represent, the secondary effects. For this reason, successful
performance projection studies in which several alternatives are being
considered often take the following form:

- Initially, each alternative is investigated by representing only its
primary effects. This can be done quickly.

- The results may reveal that some of the alternatives are not worthy
of further consideration. These alternatives are discarded.

296

13.2. Changes to the Workload 297

- The remaining alternatives are investigated in more detail, with
attention paid to secondary as well as primary effects.

The organization of this chapter reflects this scenario. In Sections
13.2, 13.3, and 13.4, we discuss modelling the effects of modifications to
the workload, to the hardware, and to the operating policies and system
software, respectively. We concentrate in these sections on representing
the primary effects of modifications, but also discuss certain secondary
effects that are peculiar to a particular type of modification.

In practice, two or more modifications often will occur together. For
example, if an increase in transaction processing volume is anticipated (a
modification to the workload), one may wish to project performance
under the assumption that the CPU is upgraded (a modification to the
hardware). For clarity of presentation we will discuss such changes
separately. To represent the effect of multiple modifications, the
corresponding model input alterations can be applied serially.

In Section 13.5 we discuss some secondary effects that are common to
most types of modifications. An example is the change in the level of
variable overhead (CPU and I/O overhead due to swapping, for instance)
that may accompany various modifications.

Finally, in Section 13.6, we describe three related case studies in
which queueing network models were used to project the effects on per-
formance of various modifications. In each case, the accuracy of the pro-
jection was assessed after actually implementing the modification. These
three case studies are similar in spirit to the two studies of an IBM com-
puting complex that we discussed in Section 2.2, where the modelling
cycle was presented. A review of Section 2.2 would be worthwhile at this
point.

13.2. Changes to the Workload

The workload presented to a computer system can change in several
ways. First, the intensities of workload components can change. Second,
the character of workload components (e.g., the service demands) can
change. Third, the number of workload components can change. The
following three subsections describe how the effects of each of these
changes can be represented by adjustments to the inputs of a validated
model. Both in this section and in the ones to follow, we will indicate
modified input parameter values as primed quantities. For example, Di,k
will denote the modified service demand of class c at center k.

Parameterization: Evolving Systems

13.2.1. Changes in Workload Intensities

The most frequently studied workload changes are changes in inten-
sity. Naturally, the primary effect of such a change is reflected by modi-
fying the appropriate workload intensity input parameters.

For a transaction class, a typical workload forecast would be “a 30%
increase in transaction volume”. This can be represented in the model
by X’, - 1.3 X,.

For a terminal class, a typical workload forecast would be “a 50%
increase in the number of active users”. This can be represented in the
model by N:. - 1.5 NC. (In the absence of evidence to the contrary, it is
reasonable to assume that average think time does not change.)

In the case of both transaction and terminal classes, increased com-
petition for main memory will result from an increase in workload inten-
sity. If the baseline model included a memory constraint (“at most
twenty requests simultaneously active”), then we may assume that the
same constraint still applies. If no such constraint were present in the
baseline model, then the analyst must decide whether or not the
increased central subsystem population that results from the parameter
modification is realistic in light of the amount of memory available. If
not, an appropriate memory constraint should be imposed. In either case,
the variable component of overhead (e.g., paging and swapping service
demands) may increase. This is discussed in Section 13.5.

For a batch class, it is unusual for a workload forecast to be phrased in
terms of the multiprogramming level, NC. (More likely, such phrasing
would be used to describe the addition or re-allocation of memory.)
Additional complexity arises from the fact that the value of this parameter
in the baseline model can be due to several factors. At one extreme,
there may be a persistent backlog of batch jobs, so that N, reflects a
memory constraint. In this case, an increase in the availability of batch
jobs would only result in a larger backlog. At the other extreme, if
sufficient memory is available to activate most batch jobs immediately
when they arrive, the value of NC is not related to a memory constraint.
In this case, an increase in the availability of batch jobs would allow N, to
increase. Typically, a workload forecast for a batch class will be phrased
in terms of throughput. The analyst must adjust NC to achieve the fore-
cast throughput, and then consider whether or not the increased central
subsystem population is realistic with respect to the available memory.

13.2. Changes to the Workload 299

13.2.2. Changes in the Character of Workload Components

Changes to application programs may lead to changes in the resource
requirements of customers. Such changes would be represented in a
model by adjusting service demands. Three examples are given in the
following paragraphs.

It is proposed to modify an application program to do more checking
of the validity and consistency of the input data it receives. The change
is projected to increase the CPU path length of a transaction by 20%. The
primary effect of this modification can be represented in the model by
increasing the CPU service demand of transactions by 20%.

It is proposed to introduce data compression techniques to reduce the
space occupied by a file that is processed sequentially by an application.
The data transferred by the application will decrease, while its CPU
requirements will increase (to translate data from compressed to
uncompressed format and back again). To represent this modification in
the model, the data transfer component of the service demand at the
appropriate disk should be decreased, while the service demand at the
CPU should be increased.

It is proposed to change the structure of a file used by an application.
Initially, the file had three levels of indexing with the highest level kept
in memory. The number of I/OS required to access any record was three:
two index blocks plus the record itself. The new organization will be
based on hashing, which is expected to decrease the average number of
I/OS per record access to roughly 1.5. The primary effect of this
modification can be represented in the model by halving the visit count at
the appropriate disk (assuming that this is the only use of the disk by the
class). A secondary effect of this modification might be an increase in the
seek component of the service requirement at the disk, because the hash-
ing technique would eliminate any locality of reference that might have
existed under the indexed organization.

13.2.3. Changes in the Number of Workload Components

The primary effect of removing a workload component from a system
is represented easily in the model by eliminating the corresponding custo-
mer class. The result will be a decrease in the activity at various devices,
and a corresponding improvement in the performance of the remaining
workload components.

300 Parameterization: Evolving Systems

Similarly, the primary effect of adding a workload component is
represented by adding a new class. The result will be an increase in the
activity at various devices, and a potential degradation in the performance
of the original workload components. Of course, the workload intensity
and service demands of the new class must be determined and specified.
If a similar application runs at some installation with a similar hardware
and software configuration, then measured service demands can be used.
For a new application that cannot be measured, estimating service
demands is much harder. This problem will be treated in Chapter 14.

Both the removal and the addition of workload components have a
number of effects which, although of lesser importance than changes in
device congestion, still can have considerable impact on performance.
When a workload component is removed, memory becomes available for
allocation to the remaining components. Knowledge of the operating pol-
icies of the system is required to determine how to represent this. When
a component is added, it may be necessary to obtain memory at the
expense of other components. Again, system knowledge is required.

As always, secondary effects arise in the realm of variable overhead.
These will be considered in Section 13.5.

Modelling changes in the number of workload components is of partic-
ular benefit in multiple mainframe installations composed of several
machines of the same architecture using the same operating system. In
such environments, a large part of capacity planning involves projecting
the performance resulting from various ways of assigning workload com-
ponents to machines. The service demands measured for a class on one
system can be translated for other systems, using known speed ratios. An
example of capacity planning in a multiple mainframe environment was
considered in Section 2.2.

13.3. Changes to the Hardware

New hardware products based on recent technological developments
are announced with great frequency. This makes capacity planning and
configuration management a continuing challenge. Fortunately, queueing
network models are well suited to quickly evaluating configuration
modifications.

In the subsections to follow we describe how CPU upgrades, memory
expansions, and I/O subsystem modifications can be represented as
modifications to model input parameter values.

13.3. Changes to the Hardware 301

13.3.1. CPU Upgrades

Perhaps the most common configuration change is the upgrade of a
CPU within a family of processors of the same architecture. Fortunately,
this also is one of the easiest changes to evaluate using queueing network
models. The relative instruction execution rates among processors within
a family generally are known and publicized by vendors and user groups.
Consequently, the primary parameter change is to multiply the CPU ser-
vice demand by the ratio of old CPU’s processing rate (yoLD) to that of
the new (rNEW):

D:,CPU
I’OLD

- - x QCPU for each class c
lNEW

A common secondary effect of a CPU upgrade is a change in variable
overhead (considered in Section 13.5). Additional memory or I/O equip-
ment often accompanies such an upgrade (later subsections suggest ways
to reflect these changes).

Rather than acquiring a faster CPU, it sometimes is possible to acquire
a second processor to form a tightly coupled multiprocessor system. As
we discussed in Chapter 11, the primary corresponding change to model
parameters would be to represent the processor complex as an FESC with
service rate approximately twice as great with two or more customers
present as with only one customer present. An important secondary
effect is the interference between the processors in accessing memory or
shared data structures. This interference causes the capacity of a dual
processor to be considerably less than twice the capacity of a single pro-
cessor. If appropriate measurement data is available, the service rates of
the FESC can be set to reflect the degree of interference. An example in
Section 13.6 treats the change from a uniprocessor to a dual processor.

13.3.2. Memory Expansions

Since additional memory can be allocated in a number of ways,
representing the effect of a memory expansion requires knowledge of the
operating policies of the system.

The most common way to employ additional memory is to permit an
increase in the central subsystem population of various classes. For batch
classes, the parameter N, would be changed. For transaction or terminal
classes, the memory constraint would be adjusted upwards. The key, of
course, is to estimate the extent to which each class will be affected. To
some extent, this is under the control of installation-dependent tuning

302 Parameterization: Evolving Systems

parameters. A few, well chosen experiments with smaller memory sizes
can help to determine the effect of operating policies. Changes in swap-
ping and paging activities can result; these secondary effects are discussed
in Section 13.5.

Additional memory also can be used to permit workload components
to run more efficiently at existing central subsystem populations. In this
case, the entire effect of the memory upgrade would be felt as a decrease
in variable overhead (see Section 13.5).

A third use of additional memory is to make frequently accessed files
permanently resident in memory. Examples include system routines or
indices. If measurement data indicates frequency of use for these files,
then disk service demands can be decreased by an appropriate amount to
represent fixing them in memory.

As a final example, additional memory can be used to increase the size
of the disk cache employed by many operating systems. Experimentation
with a few different cache sizes would indicate the relationship between
disk cache size and disk cache hits (and thus I/O activity).

13.3.3. I/O Subsystem Modifications

Each generation of disks can be characterized by basic quantities such
as capacity, seek time, latency time, and transfer rate. From these
characteristics it is possible to estimate the changes in disk service
demands that will result from replacing one type of disk with another.
For example, due to faster seeks and higher transfer rates, service
demands are reduced by 25% to 30% when converting from IBM 3350 to
IBM 3380 disks. The exact speed ratio depends on block size, seek pat-
tern, and I/O subsystem contention.

A secondary effect to consider in this case is the fact that, because the
capacity of a 3380 is nearly double that of a 3350, there is a temptation to
reduce the number of drives as part of a conversion effort. The resulting
change in seek patterns may cause the average seek distance to increase,
making it more difficult to forecast service demands.

Recently, solid state drums have provided a new alternative in I/O
subsystems. These devices have limited capacity, but provide much faster
access times than conventional disks or drums (factors of 4:l currently).
In modelling the addition of a solid state drum to a system, several steps
are required:

- Identify the files to be placed on the drum. (Typically, these will
be small, highly active files.)

13.4. Changes to the Operating Policies and System Software 303

- Reduce the service demands on the disks from which these flies
will be removed.

- Add a new center to the model and set the service demand there to
be a fraction of the service demands removed from the disks,
determined by the relative speeds of the devices.

An I/O subsystem can be upgraded by increasing the numbers of
channels and controllers or by changing the interconnections among
existing components, as well as by adding storage devices. Changes of
this sort would be expected to reduce contention in the I/O subsystem by
creating alternate paths between the CPU and the disks. Consequently,
the contention component of effective disk service demands would be
reduced. The techniques suggested in Chapter 10 are oriented towards
assessing the effect of this sort of modification.

13.4. Changes to the Operating Policies and System
Software

Operating systems typically leave a great deal of flexibility to installa-
tions with respect to certain operating policies that can have a significant
influence on performance: placement of files on devices, assignment of
workload components to memory domains, setting of scheduling priori-
ties, etc. The first three subsections that follow discuss the representation
of modifications to such operating policies in queueing network models.
The fourth subsection discusses the representation of the effect of operat-
ing system upgrades.

13.4.1. File Placement

Performance often can be improved by altering the assignment of flies
to devices, with the objective of balancing the load across disks and other
I/O subsystem components. The parameter changes to represent such
modifications in the model are straightforward. If the disks involved are
identical, then the primary effect can be represented (in the case of three
disks) by:

D L/T disk +

DDsk I + DDisk 2 + DDisk 3
3

If a decrease in the contention component of the effective disk service
demands is expected, then the techniques of Chapter 10 should be used,
with the analyst balancing the seek, latency, and transfer components as
above.

304 Parameterization: Evolving Systems

If the devices involved differ in speed, more effort is required. The
service demands in the baseline model must be viewed as the product of
visit counts and service times per visit. The service demand at each of k
disks after balancing is given by the equations:

and:

-j vl,,, j = 3 v&k j
j=l .i = I

Thus, we assume that balancing the load does not change the service
times at the devices substantially (e.g., by changing seek patterns), and
that the total number of physical I/O operations does not change. The
service demand for each disk will be:

$ vLXsk j

DLwcii disk =
j=l

3U/S,,j)

j=l

Thus, we would seek an assignment of files to disks such that capacity
constraints are not exceeded and the visit count-to files assigned to each
disk approximately satisfy: f

Vbs,,, i = D iwci, disk

%sk i

The approach described above generally will succeed only in approxi-
mately balancing the I/O load. The service times at the various disks in
fact will change due to altered seek patterns and other secondary effects.
Also, carefully balancing the I/O load according to access patterns
observed during one period of the day will not lead to a balanced load
throughout the day. Consequently, in doing I/O balancing, peak load
periods should be given most consideration, but implications for other
periods should be considered.

When representing the addition of disks to a configuration, it is
appropriate to attempt I/O load balancing at the same time. An example
in Section 13.6 illustrates the evaluation of the effect of I/O load balanc-
ing through altering the placement of user files.

13.4.2. Memory Allocation

The allocation of memory is critical to performance. An operating sys-
tem typically requires substantial memory for its own use, devoted to
resident code and data structures, transient routines, and I/O buffers.

13.4. Changes to the Operating Policies and System Software 305

The remaining memory is allocated to user programs. As noted in
Chapter 9, it is typical to define domains with limited capacities and to
assign workload components to these domains. This approach regulates
competition for memory so that thrashing does not occur.

The primary effect of altering the allocation of memory can be
represented by changing the domain capacities in the model (the mul-
tiprogramming level, in the case of batch classes). The problems that
arise are similar to those that arise in modelling the addition of memory,
which were discussed in an earlier section. Especially in a virtual memory
system, it can be difficult to determine the number of jobs that can be
accommodated in a specific amount of memory. Limited benchmarking
can be of assistance in determining how the rate of paging depends on the
amount of main memory available for each active customer.

13.4.3. Tuning Parameters

In most operating systems, many of the scheduling and resource allo-
cation activities are controlled by tuning parameters. Among other
things, such parameters control the dispatching and initiation priorities of
various workload components, and the amount of service guaranteed to
customers before they are eligible to be swapped out. Queueing network
models can be used to gain an understanding of the effects of changing
certain tuning parameters. The major benefit of such studies is to esti-
mate the extent to which performance might be affected by a particular
parameter.

Representing the effect of changes in the relative priorities of work-
load components is straightforward, using the techniques described in
Chapter 11. Chapter 16 includes an example of such a study.

The swapping quantum (the amount of service guaranteed a customer
before becoming eligible for swapping) is another example of an impor-
tant tuning parameter. The case study of Section 9.6.2 illustrates the
incorporation of this parameter in a queueing network model.

13.4.4. Operating System Upgrades

Operating systems provide certain services to the programs that exe-
cute under them. The variety of services available and the efficiency with
which they are delivered differs from one system to another. The operat-
ing systems for most major computer systems evolve continually. Each
version (or “release”) typically provides some new functions, and possi-
bly improves the efficiency with which earlier functions are delivered.

To model the effect of an operating system upgrade, the analyst must
determine the relative efficiency of various functions by relying either on

306 Parameterization: Evolving Systems

statements by the vendor or on experience of early users (“beta test”
sites). Given this information, modification of the model is straightfor-
ward. For example, if it is claimed that CPU path lengths for user I/O
processing will be decreased by a factor of two, the analyst first must
determine this overhead component of CPU service demand for the
workload on the existing system, then divide it by two to represent the
effect of the new release.

Operating system efficiency also is of importance when comparing vari-
ous systems under consideration for the support of a new workload. In
this case, it is necessary to translate a workload description in system-
independent terms into service demands for each candidate system. In
the case of CPU service demands, for example, the relative CPU execu-
tion rates of the various systems tell only part of the story: the efficiency
of operating software can have a dramatic effect on performance. As we
showed in an example in Section 2.4, simple, single-thread benchmarking
experiments are appropriate and useful in quantifying software efficiencies
for incorporation in queueing network models.

13.5. Secondary Effects of Changes

Previous sections have concentrated on the representation of the pri-
mary effects of system changes. In the present section we consider the
representation of certain secondary effects that are common to a number
of the modifications we have discussed.

To a certain extent, these issues already have been addressed in Part
III of the book. In Chapter 9, we showed one approach to estimating the
change in swapping activity that would accompany various system
modifications. We also showed how variability in paging activity could be
incorporated in a model. In Chapter 10, we deveioped algorithms to esti-
mate path contention in complex I/O subsystems as a function of other
system characteristics. In Chapter 11, we mentioned the representation
of the CPU overhead that accompanies all other activities.

In this section, we will talk in more general terms about techniques to
forecast the level of CPU and I/O overhead present in a system, Our
approach will be one that was suggested in earlier chapters: to extrapolate
from the results of a few measurement intervals.

13.5.1. Changes in Variable Overhead

Almost every contemplated change to a system will, as a secondary
effect, change the variable overhead incurred in system operation. The
most significant examples of this in many systems are changes in paging

13.5. S.condary Ejtjrects of Changes 307

and swapping rates, which involve both CPU and I/O activity. CPU
upgrades, memory expansions, increases in workload intensities, even
changes in the priority structure among classes, all have the secondary
effect, of changing paging and swapping rates.

As we have noted in earlier chapters, when a model is used to project
performance for relatively minor modifications (a 10% increase in work-
load intensity, a 25% increase in CPU capacity), changes in variable over-
head need not be considered. The more significant the modification
under consideration, the more important it is to attempt to quantify these
changes. This is a difficult task; in some cases it will be necessary to
employ a sensitivity analysis to indicate the range of anticipated perfor-
mance.

1. Obtain measurements from several observation intervals,
preferably including a range of degrees of system congestion.

2. For each interval, determine the service demand at each
center.

3. For the measure of system congestion of greatest concern
(e.g., workload intensity), for each center, fit a simple curve
to the observed service demands as a function of the meas-
ure of concern.

4. Use the simple curve for each center to extrapolate service
demand for unobserved situations.

Algorithm 13.1 - Variable Overhead in Single Class Models

An approach to characterizing variable overhead for single class
models based on measurements from several observation intervals is
given as Algorithm 13.1. The simplest curve to use in Algorithm 13.1 is
a straight line. This suffices for representing variable overhead as long as
the range of congestion being investigated is not extreme. Assume that
measurements are available for two observation intervals in which the
workload intensities are I(‘) and I(*), respectively, and in which the
observed service demands at device k are Dk(l) and D$*‘, respectively.
Assuming that variable overhead increases linearly with workload inten-
sity, an appropriate estimate for the service demand at device k for a new
workload intensity I’ is given by:

Dk = Dk(‘) + (I’ - I”‘) x [$_3”]

Approximating the dependence of variable overhead on workload inten-
sity by more complex curves typically yields slightly greater accuracy,

308 Parameterization: Evolving Systems

particularly if workload intensity changes are large, but this gain may not
justify the added complexity.

Careful treatment of variable overhead is more difficult in multiple
class models. There are several issues involved:
l In the multiple class case, more observation intervals are necessary,

because the workload intensity now is. a vector. For example, if the
workload consists of two major components, interactive and batch, we
might consider four observation intervals: heavy batch and heavy
interactive, heavy batch and light interactive, light batch and heavy
interactive, and light batch and light interactive.

l Within each observation interval, it is difficult to attribute variable
overhead to the classes accurately, because of the inadequacy of meas-
urement tools. Techniques such as those described in Section 12.5
can be used.

l Where the single class case involved fitting a curve through some
points, the analogous procedure for the multiple class case with C
classes involves fitting a C-dimensional surface. Such multi-
dimensional surface fitting, however, is too complex to be justified
considering other limitations on the accuracy of this technique. In
almost all cases, a sequence of one-dimensional extrapolations based
on changes to one workload component at a time will suffice.
From the preceding discussion, it should be apparent that estimating

changes in variable overhead is difficult, and cannot be done with high
confidence. Consequently, it often is appropriate to evaluate the model
under both optimistic and pessimistic assumptions in order to assess the
importance of accurately estimating overhead in projecting performance.
For example, when memory size is increased, paging and swapping
activity typically are reduced. Because it is difficult to determine the
extent of this reduction, we might evaluate the model once assuming no
change in paging and swapping activity, and again assuming that all paging
and swapping activity is eliminated.

13.5.2. Changes in I/O Service Times

Many modifications have the secondary effect of changing the seek,
transfer, and contention components of effective disk service time. The
contention component was considered in Chapter 10. Here we discuss
the others.

Relocating files from one disk to another can cause the seek patterns
to change on each disk. Typically, the average seek time will increase on
the disk to which the file is moved and will decrease on the other. If all
files do not have the same block size, then the average transfer times at
both disks also will be altered.

13.6. Case Studies 309

Similar considerations arise in such system modifications as increasing
the block size of a file or increasing the workload intensity of a class
(which can alter the seek pattern and change the average transfer time if
the class accesses some files particularly heavily).

13.6. Case Studies

In this section we describe three case studies conducted over a period
of several years on an evolving UNIVAC 1100 system running the Exec 8
operating system. Initially the system was configured as an 1100/41 (a
uniprocessor) with the following I/O subsystem structure:

channel 0 1 FH-1782 drum
channel 1 1 FH-1782 drum
channel 2 4 tape drives
channel 3 8 8424 disk drives
channel 4 4 8433 disk drives

In each of the three case studies, synthetic benchmarks designed to
reflect actual workloads were used, and the same experimental procedure
was followed:

- The benchmark was run on the existing configuration and measure-
ments were taken with UNIVAC’s SIP (the Software Instrumenta-
tion Package).

- A baseline queueing network model was developed and validated.
- The model was modified to project the effect on performance of a

specific proposed change to the system.
- This change was implemented, and the benchmark was run again.
- The performance projected by the model was compared to the per-

formance measured on the modified system.
Note that this experimental procedure follows closely the modelling cycle
described in Section 2.2. It is this aspect that makes these three case stu-
dies particularly interesting in the context of the present chapter. On the
one hand, the parameter adjustments used to project performance occa-
sionally were somewhat simplistic, in that obvious secondary effects were
ignored. On the other hand, retrospective attempts were made to attri-
bute discrepancies between projections and measurements to specific
secondary effects. The sequence of case studies thus is a good example of
how lessons learned in one study can be used to improve the accuracy of
subsequent studies. In a production environment where decisions are
made after the performance projection step, there is a tendency to omit
the final two steps of the procedure outlined above. These steps are
important, however.

310 Parameterization: Evolving Systems

13.6.1. Moving to a Dual Processor

In the first study, a baseline model of a uniprocessor system (an
1100/41) was modified to project the performance of a dual processor sys-
tem (an 1100/42). The model contained a single class of batch type and
six service centers: one representing the CPU (or pair of CPUs) and five
representing the five I/O channels of the system. The use of centers to
represent channels rather than disks differs from the approach suggested
in Chapter 10. This case study pre-dates that approach. Further, the
channels had considerably higher utilizations than the disks in this sys-
tem, and thus were thought to be the principal constraints on perfor-
mance. Also, reliable measurements of busy times were available for the
channels but not for the disks.

In this study six different benchmarks were used. After each bench-
mark was run on the uniprocessor system, measurement data was used to
parameterize the baseline model, as follows:

- The service demand at the CPU center was set to the CPU busy
time divided by the number of job completions.

- At the five centers representing the channels, the service demands
were set to the corresponding channel busy times divided by the
number of job completions. (Note that the seek component of disk
service times was not represented in this model.)

- SIP provided an estimate of multiprogramming level that was
known to be unreliable. Consequently, the value of N was adjusted
until the throughput of the model exactly matched that of the sys-
tem.

The technique of establishing the value of some parameter according to
what yields the best results is called calibration. It should be avoided
unless legitimate uncertainty exists concerning the value of a single
parameter.

This baseline model then was modified to reflect the addition of the
second CPU. This was done by replacing the CPU center with an FESC.
With one customer present, the FESC service rate was the same as that
of the uniprocessor. With two or more customers present, it was double
this value. That is:

1
DCPU

2

DCPU

n=l

n>l

where D CPJJ was the processor service demand in the baseline model.

13.6. Case Studies

benchmark
throughput

original projected actual error
1 48.2 53.8 48.0 + 12%
2 47.8 67.3 48.9 + 38%
3 48.9 55.0 50.9 + 8%
4 39.9 56.8 50.1 + 14%
5 33.7 47.0 45.9 + 2%
6 40.4 57.1 59.9 - 5%

Table 13.1 - Moving to a Dual Processor

311

Table 13.1 compares the projections of the model to the measured
performance after the second processor was added for each of the six
benchmarks. The error in projected throughput was 15% or less in five of
the six cases, but 5% or less in only two. This cannot be viewed as suc-
cessful, especially in light of the 38% discrepancy in the sixth case.

A retrospective analysis revealed that the CPU upgrade caused the
average multiprogramming level to drop substantially - to one half its
former value for four of the six benchmarks. This likely was the reason
for the counter-intuitive fact that the addition of the second processor
made essentially no difference in measured performance for the first three
benchmarks. Even with the benefit of hindsight, it was difficult to under-
stand why this drop in multiprogramming level occurred. (Conceivably it
was indicative of a shortcoming in the system’s job scheduler.) The
assumption that the multiprogramming level would not change with the
addition of the second processor played a substantial role in the optimistic
throughputs projected for five of the six benchmarks.

A second factor that contributed somewhat to the optimistic projec-
tions was that interference between the two processors was not taken into
account in determining the rates of the FESC. As was noted in Chapter
11, the full power of the second CPU is not realized in dual processor
systems; p.(n) for n greater than one should have been set to a value less
than 21 Dcpu.

Finally, no change in the number of swaps per job was anticipated or
represented in modifying the model parameter values. In fact, the
number of swaps per job decreased, possibly due to the reduced multipro-
gramming level. This meant that the average number of visits made by a
job to channel 1 (the location of the swapping drum) decreased, and also
that the average service time per visit was reduced (because swapping
operations had much higher average service times than did user I/O
operations at this device). This effect was not large, and was more than
offset by the other, optimistic discrepancies.

312 Parameterization: Evolving Systems

13.6.2. Altering File Placement

The second case study was an investigation of the effect of balancing
the load across channels by altering the placement of user files. By the
time of this study, the configuration had evolved somewhat. Specifically,
the disk channels had been converted to “dual channels”: two disks on
the same dual channel could be active (in any phase, even data transfer)
simultaneously. Thus, performance measures of the two studies are not
directly comparable.

The model employed was similar to that used in the first study. Once
again, there was a single class of batch type. Again, an FESC was used to
model the dual processor of the UNIVAC 1100/42 configuration. The
other centers in the model corresponded to channels. Each of the dual
channels was modelled as an FESC that behaved similarly to the FESC
used to represent the dual processor CPU.

A single benchmark was run on the system with the original assign-
ment of user files to devices. Data from both SIP and UNIVAC
IOTRACE was used to parameterize the baseline model. (IOTRACE
reported the channel busy time due to accesses of each individual file.)
Most of the model parameters were established in conventional ways.
The centers representing the dual channels required special attention,
however. One channel in each pair was the primary and was used when-
ever available. The other was the secondary and was used only when
necessary. The service rates of each FESC were calculated as:

+

n=l

n>l

where prim and set denote the primary and secondary channels of the
pair, C, is the measured number of operations on channel k, and L$ is
the measured busy time of channel k. (Note that this calculation ignores
the fact that the secondary channel is blocked if the request it is serving
happens to access the same disk as the request being served by the pri-
mary channel.) Once again it was necessary to determine the multipro-
gramming level N by calibrating on throughput.

User files accounted for only 30% of the measured I/O accesses. The
other 70% of the accesses were to system files whose placement was con-
sidered fixed in this experiment. Two alterations in the existing place-
ment of user files were considered:

13.6. Case Studies 313

l Place all user files on the 8433 disks associated with channel 4. A
careful analysis indicated that this would result in the greatest perfor-
mance improvement - a “best case” scenario.

l Place all user files on devices attached to the most heavily utilized
channel. It was believed that this would result in the greatest perfor-
mance degradation - a “worst case” included for comparison.

The parameters of the baseline model were adjusted to represent each of
these file placements, using techniques similar to those suggested earlier
in this chapter. After model projections were obtained for each case, the
files actually were moved, and the benchmark was run again for each
case.

case quantity original projected actual error in
projection

best UCPU .843 .888 .881 +0.8%
X 79.5 86.7 84.5 +2.6%

worst UCPU .843 .762 ,640 + 19.1%
X 79.5 68.0 59.6 +14.10/a

Table 13.2 - Altering File Placement

The results for both cases are shown in Table 13.2. The last column
indicates the error in the projection relative to the observed value. The
results show that throughput for the best placement of user files, which
account for only 30% of I/O accesses, is roughly 5% greater than for the
existing placement, and roughly 35% greater than for the worst place-
ment. The accuracy of the model for the best placement is quite good,
while for the worst placement it is acceptable but not good.

Retrospectively, it was observed that the major source of error was the
fact that the model ignored changes in swapping behavior that accom-
panied the alterations in file placement. The worst case scenario caused
many user files to be located on the drum containing the swap data set.
Swap operations took longer, the CPU was left idle more often (because
jobs were not available for service while being swapped), the scheduler
activated more jobs to try to keep the CPU busy, and swapping (and the
associated channel congestion) increased. The model, which assumed
that swapping would be unaffected, underestimated the deterioration in
performance. (The best placement caused some files to be removed from
the swapping drum, leading to some reduction in swapping, but the effect
was not significant.)

314 Parameterization: Evolving Systems

13.6.3. Moving Swapping Activity from Drum to Disk

A third study of the same system considered the effect of moving
swapping activity from drum to disk. The disks were under-utilized rela-
tive to the drums, and their newer technology and dual channel capability
made them competitive in terms of performance. By moving swapping
activity to disk, the drums could be used for temporary data sets,
accessed frequently during their short lifetimes.

In constructing the baseline model, additional detail in the representa-
tion of the I/O subsystem was incorporated. Centers were included to
represent each disk, in addition to the FESCs representing the two dual
channels. So that no component of I/O service demand would be dupli-
cated at the disk and channel centers, the disk centers represented only
seek times, while the channel centers represented latency and transfer
times. Because this approach tends to yield optimistic results (in the
model, one customer’s seek activity at a disk can be overlapped with
another customer’s latency and transfer activity at the same disk), the
disk centers were represented as FESCs whose service rates decreased
when more than one customer was present.

Remembering the lessons from the first two studies, thought was
given to examining both primary and secondary effects of the proposed
modification. The procedure used to adjust the parameters of the base-
line model to reflect the movement of swapping from drum to disk was
iterative in nature:

- Assume initially that the level of swapping activity will remain
unchanged after the modification.

- Knowing that the operating system tends to place temporary files
on faster devices, estimate the visit counts at drums and disks that
would result from moving all swapping activity to disk.

- Knowing the files placed on each device, the relative access fre-
quencies to files, and the average transfer size for each file, adjust
the service demands at the centers representing the drums, and the
service rates at the FESCs representing the disks and dual chan-
nels.

- Evaluate the model.
- Use an empirically derived relationship between throughput, mul-

tiprogramming level, and swapping activity to estimate the change
in the level of swapping activity resulting from the modification.

- Return to the second step, iterating until convergence is achieved.
As in the two earlier case studies, the change to the system was imple-

mented and the benchmark was run once again. Table 13.3 displays the
results. This experiment was successful in producing usefully accurate
performance projections.

13.7. Summary 315

~~

Table 13.3 - Moving Swapping Activity from Drum to Disk

13.7. Summary

The principal value of a validated queueing network model of a base-
line system is its utility as a basis for performance projection. In this
chapter we have indicated, through discussion and example, how to
modify the parameters of a baseline model to represent various common
changes to the workload, to the hardware, and to the system software and
operating policies.

A key point to keep in mind in conducting a modification analysis,
especially as part of a study in which a large number of alternatives must
be considered, is the need to identify those effects of the modification
that are primary, and those that are secondary.

Primary effects typically are easy to anticipate and to represent. In the
early stages of a study, alternatives can be compared on the basis of their
primary effects alone.

Secondary effects typically are less easy to anticipate, and even once
anticipated, less easy to quantify and represent. Several approaches can
be adopted:
l Extreme assumptions can be evaluated; for example, the addition of

memory at worst leaves swapping unaffected, and at best eliminates it.
l A more careful estimate of secondary effects can be made, based on

measurements from several observation intervals.
l A sensitivity analysis can be used to assess the extent to which the

projections of a model depend upon the assumptions that have been
made.
We have tried to indicate the importance of the “verification phase”

of the modelling cycle, described in Chapter 2. Expertise and confidence
in conducting modification analyses is best acquired by learning from
prior modelling experiences.

316 Parameterization: Evolving Systems

13.8. References

There have been a number of case studies in which a baseline model
was constructed, performance projections were obtained, and the accuracy
of these projections was checked after the system had been modified.
The three studies described in Section 13.6 all were carried out at the
University of Maryland, using facilities available at the computer center
there. The study of moving to a dual processor was conducted by
Dowdy, Agrawala, Gordon, and Tripathi 119791. The study of altering
file placement was conducted by Dowdy and Budd 119821. The study of
moving swapping activity from drum to disk was conducted by Dowdy
and Breitenlohner [19811.

Several similar studies from production environments were reviewed
in Chapter 2: by Lo [19801 on the effect of reallocating workloads among
systems in a multiple mainframe environment, and by Lazowska 119801
and Sevcik, Graham, and Zahorjan El9801 on evaluating various candidate
systems for specified applications.

There are several related papers that we have not discussed
specifically. Tibbs and Kelly use quadratic fits obtained by non-linear
regression to forecast the change in overhead in doing performance pro-
jections for a UNIVAC 1100 [Tibbs & Kelly 19821. Bard [I9781 describes
a performance projection tool for systems running IBM’s VM/370 operat-
ing system. Buzen presents a queueing network model of systems run-
ning IBM’s MVS operating system, which includes the effects of shared
memory domains and performance periods [Buzen 19781. Models of
DECsystem-10 systems running TOPS-10 have been described by Saxton
and Lamont [19781 and by Sanguinetti and Billington [19801. Dowdy,
Stephens, and Perez-Davila [Dowdy et al. 19821 have done a study of
performance projection in a UNIX environment, in which the treatment
of memory management was the principal issue.

In the realm of workload forecasting, Artis proposes a way of estimat-
ing what the workload of a system would be if sufficient capacity were
provided to handle it [Artis 19811. Cooper [19801 describes an approach
to capacity planning in an organization, which integrates business plan-
ning forecasts with the use of models of computer system performance.

[Artis 19811
H. Pat Artis. Estimating Latent Demand for Random Arrival Batch
Workloads. Computer Performance 2,l (March 19811, 26-29.

13.8. References 317

[Bard 19781
Y. Bard. The VMl370 Performance Predictor. Computing Surveys IO,3
(September 19781, 333-342.

[Buzen 19781
Jeffrey P. Buzen. A Queueing Network Model of MVS. Computing
Surveys 10,3 (September 19781, 3 19-33 1.

[Cooper 19801
J.C. Cooper. A Capacity Planning Methodology. IBM Systems Journal
19,l (1980), 28-45.

[Dowdy & Breitenlohner 19811
Lawrence W. Dowdy and Hans J. Breitenlohner. A Model of Univac
llOOl42 Swapping. Proc. ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (19811, 36-47. Copyright @
1981 by the Association for Computing Machinery.

[Dowdy & Budd 19821
Lawrence W. Dowdy and Rosemary M. Budd. File Placement Using
Predictive Queueing Models. In R.L. Disney and T.J. Ott (eds.),
Applied Probability - Computer Science: The Interface, Vol. II. Bir-
khauser, 1982, 459-476.

[Dowdy et al. 19791
Lawrence W. Dowdy, Ashok K. Agrawala, Karen D. Gordon, and Sat-
ish K. Tripathi. Computer Performance Prediction via Analytical
Modeling - An Experiment. Proc. ACM SIGMETRICS Conference on
Simulation, Measurement and Modeling of Computer Systems (19791,
13-18. Copyright o 1979 by the Association for Computing
Machinery.

[Dowdy et al. 19821
Lawrence W. Dowdy, Lindsey E. Stephens, and Alfred0 Perez-Davila.
Performance Prediction in a UNIX Environment. Proc. 18th CPEUG
Meeting (19821, 205-211.

[Lazowska 19801
Edward D. Lazowska. The Use of Analytic Modelling in System
Selection. Proc. CMG XI International Conference (19801, 63-69.

[Lo 19801
T.L. Lo. Computer Capacity Planning Using Queueing Network
Models. Proc. IFIP W.G. 7.3 International Symposium on Computer Per-
formance Modelling, Measurement, and Evaluation (19801, 145-152.

318 Parameterization: Evolving Systems

[Sanguinetti & Billington 19801
John Sanguinetti and Richard Billington. A Multi-Class Queueing
Network Model Of An Interactive System. Pm. CMG XI Znrernational
Conference (1980), 50-55.

[Saxton & Lamont 19781
Harold E. Saxton and Gary B. Lamont. Validation of a DEC-10
Closed Queueing Network Model. Proc. CMG IX International Confer-
ence (19781, 143-151.

[Sevcik et al. 19801
K.C. Sevcik, G.S. Graham, and J. Zahorjan. Configuration and Capa-
city Planning in a Distributed Processing System. Proc. 16th CPEUG
Meeting (19801, 165-171.

[Tibbs & Kelly 19821
Richard W. Tibbs and John C. Kelly. The Application of Analytic and
Simulation Models to Size a Large Computer System. Proc. l&h
CPEUG Meeting (19821, 231-257.

13.9. Exercises

1. Expand on Exercise 1 of Chapter 12. For each of the case studies,
indicate how the model you proposed could be modified to represent
the primary effects of the system change being investigated. In addi-
tion, consider what secondary effects should be represented.

2. A group of files are stored on a disk and a drum with service times of
30 and 10 milliseconds per access, respectively. Currently, the service
demands at the disk and drum are 6 and 3 seconds, respectively. Con-
sider each of the following scenarios for changing the system:
a. Knowing the relative access counts for the files, indicate how you

would relocate files in order to balance the demand on the two dev-
ices.

b. If the disk were replaced by a second drum, and the demand were
balanced across the two devices, what would the service demand at
each be?

c. If all files on the disk were moved to a solid state drum with a ser-
vice time of 2 milliseconds per access, what would be the resulting
service demand?

3. Consider a system with a single batch class in which each customer
has a CPU service demand of 30 seconds and does 1000 I/O opera-
tions involving a total of four files: 400 accesses to file W, 300 to file
X, 200 to file Y, and 100 to file Z. The files can be placed on three
I/O devices with service times per access of 10 milliseconds at device

13.9. Exercises 319

1, 30 milliseconds at device 2, and 50 milliseconds at device 3. Using
a single class queueing network solution package such as the one pro-
vided in Chapter 18, determine how to assign the files to the storage
devices to maximize throughput, for each of the following situations:
a. Multiprogramming level is 1.
b. Multiprogramming level is 4.
c. Multiprogramming level is 12.
(Assume that each device has sufficient capacity to accommodate
whatever files you choose to assign there.)

4. Three observation intervals yield the following information:

quantity measurement interval
1 2 3

jobs completed 600 800 500
CPU busy time 14400 20800 11500
multiprogramming level 4 6 3

In projecting performance for a multiprogramming level of 10, what
service demand should be used to reflect a simple linear model of
variable overhead?

5. Suppose that you had two single class models, one open and one
closed. Suppose that these models were “equivalent” in the sense
that they had identical service centers, identical service demands, and
identical throughputs and utilizations.
a. Would you expect these models to have identical queue lengths

and residence times? Why or why not?
b. If you were to modify the open model by doubling the arrival rate

and the closed model by doubling the population, how would you
expect the changes in performance measures to differ between the
two models?

c. Doubling the arrival rate of an open model and doubling the popu-
lation of a closed model correspond to two very different
“scenarios” about the future of a system. State the system change
that is addressed by each of these modifications.

