
Chapter 15 

Extended Applications 

15.1. Introduction 

In this chapter we will illustrate how the techniques developed in Parts 
II and III can be used to model systems and subsystems whose charac- 
teristics are significantly different from those of the centralized systems 
previously used as examples. Our objective is twofold: to convey the 
range of applicability of these techniques, and to indicate the sorts of 
“creative approaches” that have proven successful. 

Our presentation will consist of five example application areas: com- 
puter communication networks (IBM’S SNA), local area networks (Ether- 
net>, software resources, database concurrency control, and operating sys- 
tem algorithms (the SRM in IBM’s MVS system). Each application is 
discussed in a separate section. The sections are brief; further details can 
be obtained from the papers cited in Section 15.8. 

15.2. Computer Communication Networks 

Computer communication networks use a variety of flow control policies 
to achieve high throughput, low delay, and stability. Here, we model the 
flow control policy of IBM’s System Network Architecture (SNA). 

SNA routes messages from sources to destinations by way of intermedi- 
ate nodes which temporarily buffer the messages. Message buffers are a 
scarce resource. The flow control policy regulates the flow of messages 
between source/destination pairs in an effort to avoid problems such as 
deadlock and starvation, which could result from poor buffer management. 

SNA has a window flow control policy. The key control parameter is 
the window size, W. When a source starts sending messages to a particu- 
lar destination, a pacing count at the source is initialized to the value of 
W. This pacing count is decremented every time a message is sent. If 
the pacing count reaches zero, the transmission of messages is halted. 
When the first message of a window reaches the destination, a pacing 
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response is returned to the source. Upon receipt, the source increments 
the current value of the pacing count by W. Another pacing response is 
sent to the source by the destination each time an additional W messages 
have been received. Thus, the maximum number of messages that can 
be en route from source to destination at any time is 2 W- 1. 

Our objective is to model the “response time” of messages between a 
single source/destination pair - the average time required for messages 
to flow from source to destination. The most convenient model, in terms 
of simplicity and ease of evaluation, is an open queueing network. There 
are M centers, representing the source node, the destination node, and 
M-2 intermediate nodes. (Obviously, M is determined by adding two 
to the number of intermediate nodes.) Customers, which represent mes- 
sages, arrive at the source node at rate X. They flow from node to node, 
requiring D units of service at each node. This model is shown in Figure 
15.1. 

Arrival 

L%c+qJ-D-..*-D- 
Source Source (Service demand D at each center) (Service demand D at each center) Destination Destination 

Figure 15.1 - Open Model of SNA Flow Control ( @ 1982 IEEE) 

Response times can be calculated easily for this model. Unfortunately, 
the model makes a significant simplifying assumption which impacts the 
applicability of the results: there is no representation of the flow control 
policy! The source continues to transmit, regardless of the number of 
outstanding messages. 

A more realistic approach, therefore, is to use a closed model, in 
which it will be possible to represent the limit on the number of out- 
standing messages, Figure 15.2 shows this model. There are 2 W- 1 cus- 
tomers, representing the possible outstanding messages. As in the open 
model, there are M centers corresponding to the source node, the desti- 
nation node, and M-2 intermediate nodes. Customers have service 
demand D at each of these centers. In addition, there is a “message gen- 
eration” center and a “pacing box”. Together, the message generation 
center and the pacing box mimic the flow control policy, in the following 
way. 

The pacing box “stores” up to W-l messages. When the W-th 
message arrives, it triggers the discharge of all W messages into the 
queue of the message generation center. The message generation center 
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has service rate X; as long as its queue is non-empty, it will generate mes- 
sage traffic at this rate. A bit of thought will reveal that the arrival of the 
W-th message to the pacing box corresponds to the source’s receipt of a 
pacing response from the destination; such receipt carries with it the right 
to initiate W additional messages. 

Source (Service demand D at each center) Destination 

Message 
generation 
center 

I I 
Pacing box 

Figure 15.2 - Closed Model of SNA Flow Control (@ 1982 IEEE) 

The model of Figure 15.2, while realistic, is not separable, because of 
the unusual characteristics of the pacing box. The model could be 
evaluated directly using the global balance approach, described in Chapter 
8. However, the potentially large size of the model makes this approach 
infeasible in general. A viable alternative, also described in Chapter 8, is 
to replace the A4 centers representing the source, destination, and inter- 
mediate nodes with an FESC. The resulting three node model of Figure 
15.3 still is not separable, but it is small enough for global balance to be 
practical. 

The load dependent service rates of the FESC are estimated in the 
usual way. A closed, separable model consisting of the M centers 
representing the nodes, each with service demand D, is evaluated for 
each feasible message population, from 1 to 2 W- 1. Throughputs are 
determined, and used to define the FESC. Once this has been accom- 
plished, writing the global balance equations and numerically evaluating 
them to obtain the equilibrium state probabilities is tedious but straight- 
forward. These probabilities yield system throughput and average queue 
length at the FESC. Little’s law then can be applied to determine average 
response time. 
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FESC 

~~.-ij--q+ 

Message 
generation Pacing box 
center 

Figure 15.3 - FESC Representing the Message Path (@ 1982 IEEE) 

One assumption made by this modelling approach is that the only 
traffic passing through a node is due to the source/destination pair of 
interest. This unrealistic assumption can be eliminated by modifying the 
separable model used to estimate the load dependent service rates of the 
FESC. As one approach, if the traffic at each node due to other 
source/destination pairs is known, it can be represented as an open class 
whose presence will impede the progress of messages associated with the 
source/destination pair of interest, with a resulting decrease in FESC 
rates. 

Comparisons with detailed simulations indicate that this simple model- 
ling approach yields good accuracy. 

15.3. Local Area Networks 

Computer communication networks such as SNA are designed to per- 
form well over long distances at moderate bandwidths. Local area net- 
works, on the other hand, are optimized for use over moderate distances 
(say, 1 km.) at high bandwidths (10 MHz. or greater). Ethernet is 
perhaps the most widely known and used local area network. In this sec- 
tion we will describe how to incorporate a representation of Ethernet into 
a queueing network model of a locally distributed system. 

Ethernet uses a single coaxial cable to interconnect stations (comput- 
ers>. A station wishing to communicate with another station broadcasts a 
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packet on this channel. (Long messages are decomposed into multiple 
packets prior to transmission.) The packet contains the address of the 
destination station, plus the desired data. All stations will “see” the 
packet, but only the station to which the packet is addressed will copy the 
packet into its local memory. 

Since the channel is shared by all stations, the key to Ethernet is the 
way in which access to the channel is controlled. Ethernet uses carrier 
sense multiple access with collision detection (CSMA-CD) . Multiple access 
means that all stations share the same channel. Carrier sense means that 
no station will begin to transmit a packet if it hears data from another sta- 
tion on the channel. Of course, a collision still can occur, because two sta- 
tions can begin transmitting simultaneously (or, in fact, at times that 
differ by as much as the propagation delay of the channel). Collision 
detection means that stations “listen” while they are transmitting, stop if 
they detect such a collision, and retly at some point in the future. In Eth- 
ernet, the average amount of time that a station delays before such a 
retry increases with the load on the channel, with the result that stability 
is achieved. 

The implementation of Ethernet is complex, and an attempt to incor- 
porate a detailed representation in a queueing network model would be 
ill-advised. However, Ethernet is based on a simple underlying policy. It 
is possible to represent the behavior of this policy in a queueing network 
model. Further, simulation results and measurements indicate that such 
a model yields accurate results. The approach that we will use is a two- 
level hierarchical model. At the low level we will determine the eficiency 
of Ethernet (the proportion of its bandwidth devoted to useful work) as a 
function of the instantaneous load (the number of stations simultaneously 
desiring to transmit packets). The results of this analysis will be used to 
define an FESC, which will be used to represent the channel in a system- 
level model. 

Imagine time to be divided into slots whose duration, S, is equal to 
the round-trip propagation time of the channel. (This is the time 
required for a collision to be detected by all stations.) Consider a slot 
during which some number of stations n > 0 desire to transmit packets. 
If no station transmits, the slot is wasted. If exactly one station 
transmits, that station acquires the channel and continues transmitting 
until it has finished sending its packet. If more than one station 
transmits, a collision occurs and the slot is wasted. The Ethernet control 
policy attempts to maximize the probability that exactly one station 
transmits during a slot by allowing each station to transmit with probabil- 
ity l/n when n stations desire to use the channel. (The actual imple- 
mentation differs from this policy because the value of n is not known, 
and must be estimated by each station.) 
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If n stations desire to use the channel and each transmits indepen- 
dently with probability l/n, then the probability that any of the stations 
successfully acquires the channel during a particular slot is equal to the 
probability that exactly one station transmits, or: 

i I 

n-1 
A = 1-L 

n 

The average number of slots devoted to contention (collisions) before a 
successful acquisition by some station is: 

c = z i A (1-A)’ = y 

i=l 

For n > 0 the channel has, by definition, no idle periods; time consists 
of contention intervals interleaved with transmission intervals. The 
efficiency of the channel at instantaneous load n can be expressed as: 

E(n) = length of a transmission interval 
length of a transmission interval 
-I- length of a contention interval 

The length of a transmission interval equals the average packet length in 
bits, P, divided by the network bandwidth in bits per second, B. The 
length of a contention interval equals the expected number of slots 
devoted to contention, C, multiplied by the slot duration, S (a parameter 
of the configuration, related to the length of the network). In other 
words: 

E(n) = PIB 
P/B + CxS 

Given P, B, and S, efficiencies are calculated algebraically for each feasi- 
ble value of n. An FESC then is defined as follows: 

p(n) = B/P x E(n) 

In other words, the rate at which the Ethernet delivers packets is equal to 
its maximum theoretical capacity in packets per second (B/P) multiplied 
by the proportion of that capacity that is devoted to useful work when 
there are n stations desiring to transmit packets (E(n)). This FESC is 
used to represent the Ethernet in a system-level model. 

As noted earlier, comparisons with simulation results and with meas- 
urements indicate that this simple modelling approach yields good accu- 
racy. The analysis can be extended to represent the (non-negligible) 
effect of packet size variability on performance. The same two-level 
hierarchical approach can be used to represent other local area networks. 
For example, a corresponding analysis has been done for the Cambridge 
ring. 
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15.4. Software Resources 

The usual viewpoint in constructing queueing network models is that 
service centers correspond to hardware resources. It also is the case, 
though, that queueing delays in computer systems can arise from conten- 
tion for software resources: operating system critical sections, non- 
reentrant software modules, etc. In this section we consider the use of 
queueing network models to evaluate software system structures. 

Our approach will be to define a software-level queueing network 
model in which customers, as usual, correspond to users, but in which 
service centers correspond to software modules. The service demand at 
each center will be equal to the time the customer spends executing the 
corresponding software module. The queueing delay at each center, cal- 
culated when the model is evaluated, will be an estimate of the time the 
customer is blocked awaiting access to the corresponding software 
module. A reentrant software module will be represented as a delay 
center, since a customer is never blocked awaiting access. A non- 
reentrant module will be represented as a queueing center, since only one 
customer can be executing it at a time. 

Obviously, the service demand at each center in the software-level 
model includes various service requirements and queueing delays 
incurred in executing the corresponding software module on the underly- 
ing computer system. This service demand can be thought of as the 
“response time” of the user once access to the software module has been 
granted. This service demand will be estimated using a more conven- 
tional hardware-level queueing network model, in which customers 
correspond to users executing software modules, and centers correspond 
to hardware resources. The service demands are easily obtained for this 
hardware-level model, but the customer population is not known, because 
the degree of concurrency at the hardware level depends upon the extent 
to which users are blocked awaiting access to modules at the software 
level. Thus, an iterative solution is required, in which the hardware-level 
model provides service demand estimates for the software-level model, 
which in turn provides customer population estimates for the hardware- 
level model. 

A simple example of a software-level model is shown in Figure 15.4. 
There are centers corresponding to various software activities: editing, 
compilation, linking, loading, and execution. There are various possible 
“execution sequences”: edit and compile; compile, link, and execute; 
load and execute; etc. Each execution sequence is represented as a 
separate customer class. The number of customers in each class is the 
number of users performing the corresponding execution sequence. 
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Figure 15.4 - A Software-Level Queueing Network Model 

Once the service demands for the centers in the software-level model 
are known, the model can be evaluated. From the results, the average 
number of users concurrently executing each software module can be 
estimated. If a module is reentrant it will be represented as a delay 
center, and the average population at that delay center will be the average 
number of users concurrently executing the module. If a module is non- 

-reentrant it will be represented as a queueing center, and the utilization 
of that center will be the proportion of time that a user is executing the 
module. 

To estimate the service demands for the centers in the software-level 
model, we use the hardware-level model. As noted earlier, customers in 
this model correspond to users executing software modules. One class 
represents each module. The service demands of the various classes at 
the various centers are determined by the resource requirements of the 
corresponding software modules. The response time of a class in this 
hardware-level model determines the service demand at the center 
corresponding to the same software module in the software-level model. 
The iteration proceeds in the obvious manner. (The think time of a ter- 
minal workload can be represented at either level in this approach, 
although the software level is a more natural place.) 

This approach, and several related ones, have proven quite successful 
in practice. 

15.5. Database Concurrency Control 

In any database system, many users will wish to access and update the 
database concurrently. Problems may arise if this concurrency is undis- 
ciplined: 
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0 The database may become inconsistent because of an unfortunate inter- 
leaving of reads and writes by various users. 

0 Even if the database remains consistent, individual users may “see” 
inconsistent views, again because of an unfortunate interleaving of 
activity. 

As an example, Table 15.1 illustrates an inconsistency that might arise if 
two users concurrently attempted to transfer $50 from their individual 
bank accounts (ul and u2, respectively), each initially containing $75, to 
a shared bank account (sh), initially containing $50: their original total 
assets of $200 are decreased to $150! 

user 1 database user 2 
time 

action local ul sh u2 local action 
COPY COPY 

0 $75 $50 $75 
1 read ul $75 
2 $75 read u2 
3 - $50 $25 
4 $25 - $50 
5 write ul $25 
6 $25 write u2 
7 read sh $50 
8 $50 read sh 
9 + $50 $100 
10 $100 + $50 
11 write sh $100 
12 $100 write sh 

Table 15.1 - Effect of Undisciplined Concurrency 

To free the user from concern for problems such as these, the concept 
of a transaction has been devised. The key property of a transaction is 
atomicity : 

l The user executing a transaction is guaranteed a single, consistent 
view of the database, regardless of the activities of other users. 

* Orher users perceive a transaction as a single action, rather than as a 
series of separate reads and writes of data items. 

The job of a concurrency control mechanism is to allow transactions to be 
executed concurrently while guaranteeing that the consistency of the data- 
base is preserved. A crude concurrency control mechanism would grant 
exclusive access to the entire database to one transaction for its duration. 
(Concurrency is restricted unnecessarily by this simple solution: two 
transactions that reference entirely different sets of data items would be 
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unable to proceed concurrently.) A more reasonable mechanism would 
grant exclusive access to various data items to one transaction for its 
duration. Other possibilities exist. Clearly, the presence of a concurrency 
control mechanism can have a significant effect on system performance - 
an effect somewhat analogous to that of a memory constraint. Equally 
clearly, a queueing network model that represents the concurrency con- 
trol mechanism directly will be non-separable: customers may be blocked 
when data items they require are held by other customers. Techniques 
comparable to those developed in Part III and in the other sections of this 
chapter are required. 

In this section we consider the evaluation of a database system 
employing a particular, simple concurrency control mechanism. The pro- 
cessing of a transaction under this concurrency control mechanism is 
described in Table 15.2. Consider the banking example in Table 15.1. 
Under the concurrency control mechanism, the activities of user 1 and 
user 2 would constitute separate transactions. User 1 would obtain locks 
on data items ul and sh, and would proceed without concern for interfer- 
ence from others. User 2 would be granted a lock on u2 but denied a 
lock on sh, and would abort, releasing the lock on u2. Subsequently, 
user 2’s transaction would be re-submitted. (We assume that aborted 
transactions are re-submitted after some delay.) User 1 would be 
finished, so the lock on sh would be granted to user 2, who would find 
the value of sh equal to $100. 

The effect of the concurrency control mechanism on performance is 
evident from this example and from Table 15.2. Some transactions abort 
because they are unable to obtain a lock on a required data item. From 
the point of view of the system, a transaction that aborts consumes 
resources (although not to the extent of a successful transaction). From 
the point of view of a user, several attempts may be required to complete 
a transaction successfully. 

Estimating the proportion of transactions that abort and the service 
demands of these transactions are the keys to modelling the system. Ini- 
tially, though, let us assume that conflicts never occur, so all transactions 
complete successfully. In this case, a traditional separable queueing net- 
work model is suitable. Users at terminals submit transactions. The ser- 
vice demands of transactions can be calculated by considering their com- 
plexity: number of items read, number of items written, processing 
requirements, overhead of lock manipulation required for concurrency 
control, etc. Evaluating this model yields the average transaction 
response time and other performance measures of interest. 

How can this model be extended to represent the effect of conflicts 
between transactions? As noted, we must estimate the proportion of 
transactions that abort, PLabortl, and the service demands of these 
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locking phase 

- Request a read lock on each data item whose value is required. 
A read lock will be granted if no other transaction currently 
holds a write lock on the item. 

- Request a write lock on each data item that is to be written. A 
write lock will be granted if no other transaction currently 
holds either a read lock or a write lock on the item. 

- If any lock is refused, abort, releasing all locks previously 
granted to the transaction. 

processing phase 

- Read the values of the required data items. 
- Based on these values, compute the values of the data items 

to be written. 
- Update the values of the data items to be written. 
termination phase 

- Release all read and write locks held by the transaction. 

Table 15.2 - Steps in Processing a Transaction 

transactions. Given this information, we could adjust the service 
demands of transactions in the model to be: 

(1 - PLabortl) X (service demands of a successful transaction) + 

PIabort X (service demands of an aborted transaction) 

The model could be evaluated using this parameterization to yield 
response times for each submission of a transaction. To compute the 
effective response time to successfully complete a transaction we would 
multiply the response time of each submission by the average number of 
submissions required. (Obviously, a homogeneity assumption is 
employed here.) The average number of submissions required is: 

1 X (1 - PIabort]) -I- 

2 X (1 - Piabort]) X P[abort] -I- 

3 X (1 - Plabortl) X P[abort]’ + 

1 
= 1 - P[abort] 
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The proportion of transactions that abort depends on many factors, 
including the average number of active transactions (if few transactions 
are active simultaneously, then the probability of conflict is low) and the 
average number of data items read and written by each transaction, rela- 
tive to the total number of items in the database (if each transaction locks 
a very small proportion of the items in the database, then the probability 
of conflict is low). As an example, one particularly simple approach is to 
assume that each transaction requires read locks on r of the I items in 
the database, chosen at random, and write locks on w of these I items, 
also chosen independently and at random. A probabilistic analysis then 
yields PIabort]. This analysis is based on reasoning such as the follow- 
ing: If N transactions are active, they hold N X PV write locks. An 
arriving transaction will be able to acquire all of its r required read locks 
with probability: 

(More accurate estimates of P[abortl can be obtained from more detailed 
submodels, evaluated either probabilistically or using simulation.) 

The service demands of an aborted transaction can be estimated 
roughly as one half of the lock manipulation overhead of a successful 
transaction. (We expect half the required locks to be obtained before one 
is denied; these must be released when the transaction aborts.) In addi- 
tion, by assumption aborted transactions are re-submitted after some 
delay. This can be represented by adding a delay center to the model, or 
by adjusting the “think time” downwards in a manner analogous to that 
used for service demands. 

The average number of active transactions, which is a key parameter 
required to estimate P[abortl, is an output of the model. This suggests 
the iterative evaluation scheme outlined in Algorithm 15.1. We have left 
many details unspecified, and have made a number of simplifying 
assumptions concerning the nature of the system and of the concurrency 
control mechanism. The basic iterative approach of Algorithm 15.1 is 
relatively general, however. 

15.6. Operating System Algorithms 

During the design of an operating system, extremely subtle perfor- 
mance questions may arise that require certain subsystems to be modelled 
at a level of detail greater than we have considered thus far. Examples of 
such questions include the design of complex resource allocation 
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1. Construct a traditional separable queueing network model 
with basic transaction service demands calculated as suggest- 
ed in the text. Initially, assume that the average number of 
active transactions is zero. (This will cause PLabortl to be 
estimated as zero in the first iteration, so the model will be 
evaluated without adjustment.) 

2. Iterate as follows: 
2.1, Based on various input parameters plus the average 

number of active transactions, use a submodel to deter- 
mine the proportion of transactions that abort. This 
submodel may involve probabilistic or simulation ana- 
lyses, as described in the text. 

2.2. Calculate revised transaction service demands, as 
described in the text. 

2.3. Evaluate the queueing network model. Obtain the aver- 
age number of active transactions. 

Repeat Step 2 until successive estimates of the average 
number of active transactions are sufficiently close. 

3. Obtain performance measures from the final iteration, as 
described in the text. 

Algorithm 15.1 - Concurrency Control in the Rough 

algorithms that coordinate the control of paging, swapping, and processor 
scheduling. 

On the one hand, queueing network models are not ideally suited to 
answering these extremely detailed questions. (Fortunately, such ques- 
tions arise very infrequently!) On the other hand, queueing network 
models offer such tremendous advantages over alternative techniques 
(such as simulation or experimentation) that there is a strong motivation 
to use them to the greatest possible extent. Often, the solution is to 
employ hybrid modeling, as described in Chapter 8. 

In this section we describe a hybrid model of IBM’s MVS operating 
system. This model was designed to study the internal details of the 
MVS System Resources Manager (SRM). Under MVS, each installation 
classifies its workload components into performance groups. Within each 
performance group, customers pass through a sequence of performance 
periods as service is acquired. For each performance period, service objec- 
tives are established. Customers are served at various resources at a rate 
that depends on the service objectives specified for their current 
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performance period. (For example, a customer’s susceptibility to swap- 
ping will depend on that customer’s current performance period.) In 
addition, goals are established for the utilizations of various resources. 
These goals impose additional constraints on scheduling decisions. It is 
the job of the SRM to reconcile these many objectives by making 
appropriate long-term and short-term resource allocation decisions. 

Figure 15.5 illustrates the structure of the two-level hierarchical hybrid 
model that allowed the internal algorithms of the SRM to be represented. 
There are two workload components: TSO (timesharing) and batch. In 
the high-level model, customer arrivals and the operation of the SRM are 
represented. Two principal SRM modules are represented explicitly. 
Swap Analysis keeps track of the attained service of each customer and 
determines if a swap is to be performed. Resource Monitor calculates tar- 
get multiprogramming levels, invokes Swap Analysis if necessary, and 
collects various statistics. These statistics are used in an overhead sub- 
model to determine the overhead service demands of the operating sys- 
tem. The high-level model is evaluated using simulation. 

In the low-level model, the central subsystem is represented. Paging 
activity is determined by a submodel that has knowledge of the particular 
paging policy of interest. The low-level model is evaluated using tech- 
niques from Parts II and III. 

The hybrid solution of this model proceeds iteratively. The high-level 
model determines the multiprogramming mix and the overhead service 
demands, and supplies these to the low-level model. The low-level 
model determines throughputs and utilizations, which allow the high- 
level model to calculate the time of the next completion and to make 
resource allocation decisions. 

Of course, representing the internal algorithms of the SRM is a level 
of detail far beyond that which is appropriate for capacity planning and 
performance projection applications. Still, this hybrid model was success- 
ful at answering detailed questions concerning SRM behavior. Evaluation 
of the model was estimated to be 30 to 100 times faster than would have 
been possible using a pure simulation approach. The modelling approach 
led to greater flexibility than would have been possible in direct experi- 
mentation on an MVS system. 

15.7. Summary 

This chapter has used five examples to illustrate that the applicability 
of queueing network models extends well beyond the confines of central- 
ized systems with simple characteristics. We have studied models of 
computer communication networks, local area networks, software 
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Figure 15.5 - A Detailed Hybrid Model of the MVS SRM 
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resources, database concurrency control, and operating system.algorithms. 
These models have employed techniques such as FESCs with global bal- 
ance, FESCs whose service rates are determined through probabilistic 
analysis, two-level hierarchical iteration, and hybrid modelling. These 
techniques, combined with good knowledge of the system being modelled 
and a modicum of inventiveness, can solve a wide variety of computer 
system analysis problems. 
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