
Chapter 15

Extended Applications

15.1. Introduction

In this chapter we will illustrate how the techniques developed in Parts
II and III can be used to model systems and subsystems whose charac-
teristics are significantly different from those of the centralized systems
previously used as examples. Our objective is twofold: to convey the
range of applicability of these techniques, and to indicate the sorts of
“creative approaches” that have proven successful.

Our presentation will consist of five example application areas: com-
puter communication networks (IBM’S SNA), local area networks (Ether-
net>, software resources, database concurrency control, and operating sys-
tem algorithms (the SRM in IBM’s MVS system). Each application is
discussed in a separate section. The sections are brief; further details can
be obtained from the papers cited in Section 15.8.

15.2. Computer Communication Networks

Computer communication networks use a variety of flow control policies
to achieve high throughput, low delay, and stability. Here, we model the
flow control policy of IBM’s System Network Architecture (SNA).

SNA routes messages from sources to destinations by way of intermedi-
ate nodes which temporarily buffer the messages. Message buffers are a
scarce resource. The flow control policy regulates the flow of messages
between source/destination pairs in an effort to avoid problems such as
deadlock and starvation, which could result from poor buffer management.

SNA has a window flow control policy. The key control parameter is
the window size, W. When a source starts sending messages to a particu-
lar destination, a pacing count at the source is initialized to the value of
W. This pacing count is decremented every time a message is sent. If
the pacing count reaches zero, the transmission of messages is halted.
When the first message of a window reaches the destination, a pacing

336

15.2. Computer Communication Networks 331

response is returned to the source. Upon receipt, the source increments
the current value of the pacing count by W. Another pacing response is
sent to the source by the destination each time an additional W messages
have been received. Thus, the maximum number of messages that can
be en route from source to destination at any time is 2 W- 1.

Our objective is to model the “response time” of messages between a
single source/destination pair - the average time required for messages
to flow from source to destination. The most convenient model, in terms
of simplicity and ease of evaluation, is an open queueing network. There
are M centers, representing the source node, the destination node, and
M-2 intermediate nodes. (Obviously, M is determined by adding two
to the number of intermediate nodes.) Customers, which represent mes-
sages, arrive at the source node at rate X. They flow from node to node,
requiring D units of service at each node. This model is shown in Figure
15.1.

Arrival

L%c+qJ-D-..*-D-
Source Source (Service demand D at each center) (Service demand D at each center) Destination Destination

Figure 15.1 - Open Model of SNA Flow Control (@ 1982 IEEE)

Response times can be calculated easily for this model. Unfortunately,
the model makes a significant simplifying assumption which impacts the
applicability of the results: there is no representation of the flow control
policy! The source continues to transmit, regardless of the number of
outstanding messages.

A more realistic approach, therefore, is to use a closed model, in
which it will be possible to represent the limit on the number of out-
standing messages, Figure 15.2 shows this model. There are 2 W- 1 cus-
tomers, representing the possible outstanding messages. As in the open
model, there are M centers corresponding to the source node, the desti-
nation node, and M-2 intermediate nodes. Customers have service
demand D at each of these centers. In addition, there is a “message gen-
eration” center and a “pacing box”. Together, the message generation
center and the pacing box mimic the flow control policy, in the following
way.

The pacing box “stores” up to W-l messages. When the W-th
message arrives, it triggers the discharge of all W messages into the
queue of the message generation center. The message generation center

338 Perspective: Extended Applications

has service rate X; as long as its queue is non-empty, it will generate mes-
sage traffic at this rate. A bit of thought will reveal that the arrival of the
W-th message to the pacing box corresponds to the source’s receipt of a
pacing response from the destination; such receipt carries with it the right
to initiate W additional messages.

Source (Service demand D at each center) Destination

Message
generation
center

I I
Pacing box

Figure 15.2 - Closed Model of SNA Flow Control (@ 1982 IEEE)

The model of Figure 15.2, while realistic, is not separable, because of
the unusual characteristics of the pacing box. The model could be
evaluated directly using the global balance approach, described in Chapter
8. However, the potentially large size of the model makes this approach
infeasible in general. A viable alternative, also described in Chapter 8, is
to replace the A4 centers representing the source, destination, and inter-
mediate nodes with an FESC. The resulting three node model of Figure
15.3 still is not separable, but it is small enough for global balance to be
practical.

The load dependent service rates of the FESC are estimated in the
usual way. A closed, separable model consisting of the M centers
representing the nodes, each with service demand D, is evaluated for
each feasible message population, from 1 to 2 W- 1. Throughputs are
determined, and used to define the FESC. Once this has been accom-
plished, writing the global balance equations and numerically evaluating
them to obtain the equilibrium state probabilities is tedious but straight-
forward. These probabilities yield system throughput and average queue
length at the FESC. Little’s law then can be applied to determine average
response time.

15.3. Local Area Networks 339

FESC

~~.-ij--q+

Message
generation Pacing box
center

Figure 15.3 - FESC Representing the Message Path (@ 1982 IEEE)

One assumption made by this modelling approach is that the only
traffic passing through a node is due to the source/destination pair of
interest. This unrealistic assumption can be eliminated by modifying the
separable model used to estimate the load dependent service rates of the
FESC. As one approach, if the traffic at each node due to other
source/destination pairs is known, it can be represented as an open class
whose presence will impede the progress of messages associated with the
source/destination pair of interest, with a resulting decrease in FESC
rates.

Comparisons with detailed simulations indicate that this simple model-
ling approach yields good accuracy.

15.3. Local Area Networks

Computer communication networks such as SNA are designed to per-
form well over long distances at moderate bandwidths. Local area net-
works, on the other hand, are optimized for use over moderate distances
(say, 1 km.) at high bandwidths (10 MHz. or greater). Ethernet is
perhaps the most widely known and used local area network. In this sec-
tion we will describe how to incorporate a representation of Ethernet into
a queueing network model of a locally distributed system.

Ethernet uses a single coaxial cable to interconnect stations (comput-
ers>. A station wishing to communicate with another station broadcasts a

340 Perspective: Extended Applications

packet on this channel. (Long messages are decomposed into multiple
packets prior to transmission.) The packet contains the address of the
destination station, plus the desired data. All stations will “see” the
packet, but only the station to which the packet is addressed will copy the
packet into its local memory.

Since the channel is shared by all stations, the key to Ethernet is the
way in which access to the channel is controlled. Ethernet uses carrier
sense multiple access with collision detection (CSMA-CD) . Multiple access
means that all stations share the same channel. Carrier sense means that
no station will begin to transmit a packet if it hears data from another sta-
tion on the channel. Of course, a collision still can occur, because two sta-
tions can begin transmitting simultaneously (or, in fact, at times that
differ by as much as the propagation delay of the channel). Collision
detection means that stations “listen” while they are transmitting, stop if
they detect such a collision, and retly at some point in the future. In Eth-
ernet, the average amount of time that a station delays before such a
retry increases with the load on the channel, with the result that stability
is achieved.

The implementation of Ethernet is complex, and an attempt to incor-
porate a detailed representation in a queueing network model would be
ill-advised. However, Ethernet is based on a simple underlying policy. It
is possible to represent the behavior of this policy in a queueing network
model. Further, simulation results and measurements indicate that such
a model yields accurate results. The approach that we will use is a two-
level hierarchical model. At the low level we will determine the eficiency
of Ethernet (the proportion of its bandwidth devoted to useful work) as a
function of the instantaneous load (the number of stations simultaneously
desiring to transmit packets). The results of this analysis will be used to
define an FESC, which will be used to represent the channel in a system-
level model.

Imagine time to be divided into slots whose duration, S, is equal to
the round-trip propagation time of the channel. (This is the time
required for a collision to be detected by all stations.) Consider a slot
during which some number of stations n > 0 desire to transmit packets.
If no station transmits, the slot is wasted. If exactly one station
transmits, that station acquires the channel and continues transmitting
until it has finished sending its packet. If more than one station
transmits, a collision occurs and the slot is wasted. The Ethernet control
policy attempts to maximize the probability that exactly one station
transmits during a slot by allowing each station to transmit with probabil-
ity l/n when n stations desire to use the channel. (The actual imple-
mentation differs from this policy because the value of n is not known,
and must be estimated by each station.)

15.3. Local Area Networks 341

If n stations desire to use the channel and each transmits indepen-
dently with probability l/n, then the probability that any of the stations
successfully acquires the channel during a particular slot is equal to the
probability that exactly one station transmits, or:

i I

n-1
A = 1-L

n

The average number of slots devoted to contention (collisions) before a
successful acquisition by some station is:

c = z i A (1-A)’ = y

i=l

For n > 0 the channel has, by definition, no idle periods; time consists
of contention intervals interleaved with transmission intervals. The
efficiency of the channel at instantaneous load n can be expressed as:

E(n) = length of a transmission interval
length of a transmission interval
-I- length of a contention interval

The length of a transmission interval equals the average packet length in
bits, P, divided by the network bandwidth in bits per second, B. The
length of a contention interval equals the expected number of slots
devoted to contention, C, multiplied by the slot duration, S (a parameter
of the configuration, related to the length of the network). In other
words:

E(n) = PIB
P/B + CxS

Given P, B, and S, efficiencies are calculated algebraically for each feasi-
ble value of n. An FESC then is defined as follows:

p(n) = B/P x E(n)

In other words, the rate at which the Ethernet delivers packets is equal to
its maximum theoretical capacity in packets per second (B/P) multiplied
by the proportion of that capacity that is devoted to useful work when
there are n stations desiring to transmit packets (E(n)). This FESC is
used to represent the Ethernet in a system-level model.

As noted earlier, comparisons with simulation results and with meas-
urements indicate that this simple modelling approach yields good accu-
racy. The analysis can be extended to represent the (non-negligible)
effect of packet size variability on performance. The same two-level
hierarchical approach can be used to represent other local area networks.
For example, a corresponding analysis has been done for the Cambridge
ring.

342 Perspective: Extended Applications

15.4. Software Resources

The usual viewpoint in constructing queueing network models is that
service centers correspond to hardware resources. It also is the case,
though, that queueing delays in computer systems can arise from conten-
tion for software resources: operating system critical sections, non-
reentrant software modules, etc. In this section we consider the use of
queueing network models to evaluate software system structures.

Our approach will be to define a software-level queueing network
model in which customers, as usual, correspond to users, but in which
service centers correspond to software modules. The service demand at
each center will be equal to the time the customer spends executing the
corresponding software module. The queueing delay at each center, cal-
culated when the model is evaluated, will be an estimate of the time the
customer is blocked awaiting access to the corresponding software
module. A reentrant software module will be represented as a delay
center, since a customer is never blocked awaiting access. A non-
reentrant module will be represented as a queueing center, since only one
customer can be executing it at a time.

Obviously, the service demand at each center in the software-level
model includes various service requirements and queueing delays
incurred in executing the corresponding software module on the underly-
ing computer system. This service demand can be thought of as the
“response time” of the user once access to the software module has been
granted. This service demand will be estimated using a more conven-
tional hardware-level queueing network model, in which customers
correspond to users executing software modules, and centers correspond
to hardware resources. The service demands are easily obtained for this
hardware-level model, but the customer population is not known, because
the degree of concurrency at the hardware level depends upon the extent
to which users are blocked awaiting access to modules at the software
level. Thus, an iterative solution is required, in which the hardware-level
model provides service demand estimates for the software-level model,
which in turn provides customer population estimates for the hardware-
level model.

A simple example of a software-level model is shown in Figure 15.4.
There are centers corresponding to various software activities: editing,
compilation, linking, loading, and execution. There are various possible
“execution sequences”: edit and compile; compile, link, and execute;
load and execute; etc. Each execution sequence is represented as a
separate customer class. The number of customers in each class is the
number of users performing the corresponding execution sequence.

15.5. Database Concurrency Control 343

Figure 15.4 - A Software-Level Queueing Network Model

Once the service demands for the centers in the software-level model
are known, the model can be evaluated. From the results, the average
number of users concurrently executing each software module can be
estimated. If a module is reentrant it will be represented as a delay
center, and the average population at that delay center will be the average
number of users concurrently executing the module. If a module is non-

-reentrant it will be represented as a queueing center, and the utilization
of that center will be the proportion of time that a user is executing the
module.

To estimate the service demands for the centers in the software-level
model, we use the hardware-level model. As noted earlier, customers in
this model correspond to users executing software modules. One class
represents each module. The service demands of the various classes at
the various centers are determined by the resource requirements of the
corresponding software modules. The response time of a class in this
hardware-level model determines the service demand at the center
corresponding to the same software module in the software-level model.
The iteration proceeds in the obvious manner. (The think time of a ter-
minal workload can be represented at either level in this approach,
although the software level is a more natural place.)

This approach, and several related ones, have proven quite successful
in practice.

15.5. Database Concurrency Control

In any database system, many users will wish to access and update the
database concurrently. Problems may arise if this concurrency is undis-
ciplined:

344 Perspective: Extended Applications

0 The database may become inconsistent because of an unfortunate inter-
leaving of reads and writes by various users.

0 Even if the database remains consistent, individual users may “see”
inconsistent views, again because of an unfortunate interleaving of
activity.

As an example, Table 15.1 illustrates an inconsistency that might arise if
two users concurrently attempted to transfer $50 from their individual
bank accounts (ul and u2, respectively), each initially containing $75, to
a shared bank account (sh), initially containing $50: their original total
assets of $200 are decreased to $150!

user 1 database user 2
time

action local ul sh u2 local action
COPY COPY

0 $75 $50 $75
1 read ul $75
2 $75 read u2
3 - $50 $25
4 $25 - $50
5 write ul $25
6 $25 write u2
7 read sh $50
8 $50 read sh
9 + $50 $100
10 $100 + $50
11 write sh $100
12 $100 write sh

Table 15.1 - Effect of Undisciplined Concurrency

To free the user from concern for problems such as these, the concept
of a transaction has been devised. The key property of a transaction is
atomicity :

l The user executing a transaction is guaranteed a single, consistent
view of the database, regardless of the activities of other users.

* Orher users perceive a transaction as a single action, rather than as a
series of separate reads and writes of data items.

The job of a concurrency control mechanism is to allow transactions to be
executed concurrently while guaranteeing that the consistency of the data-
base is preserved. A crude concurrency control mechanism would grant
exclusive access to the entire database to one transaction for its duration.
(Concurrency is restricted unnecessarily by this simple solution: two
transactions that reference entirely different sets of data items would be

15.5. Database Concurrency Control 345

unable to proceed concurrently.) A more reasonable mechanism would
grant exclusive access to various data items to one transaction for its
duration. Other possibilities exist. Clearly, the presence of a concurrency
control mechanism can have a significant effect on system performance -
an effect somewhat analogous to that of a memory constraint. Equally
clearly, a queueing network model that represents the concurrency con-
trol mechanism directly will be non-separable: customers may be blocked
when data items they require are held by other customers. Techniques
comparable to those developed in Part III and in the other sections of this
chapter are required.

In this section we consider the evaluation of a database system
employing a particular, simple concurrency control mechanism. The pro-
cessing of a transaction under this concurrency control mechanism is
described in Table 15.2. Consider the banking example in Table 15.1.
Under the concurrency control mechanism, the activities of user 1 and
user 2 would constitute separate transactions. User 1 would obtain locks
on data items ul and sh, and would proceed without concern for interfer-
ence from others. User 2 would be granted a lock on u2 but denied a
lock on sh, and would abort, releasing the lock on u2. Subsequently,
user 2’s transaction would be re-submitted. (We assume that aborted
transactions are re-submitted after some delay.) User 1 would be
finished, so the lock on sh would be granted to user 2, who would find
the value of sh equal to $100.

The effect of the concurrency control mechanism on performance is
evident from this example and from Table 15.2. Some transactions abort
because they are unable to obtain a lock on a required data item. From
the point of view of the system, a transaction that aborts consumes
resources (although not to the extent of a successful transaction). From
the point of view of a user, several attempts may be required to complete
a transaction successfully.

Estimating the proportion of transactions that abort and the service
demands of these transactions are the keys to modelling the system. Ini-
tially, though, let us assume that conflicts never occur, so all transactions
complete successfully. In this case, a traditional separable queueing net-
work model is suitable. Users at terminals submit transactions. The ser-
vice demands of transactions can be calculated by considering their com-
plexity: number of items read, number of items written, processing
requirements, overhead of lock manipulation required for concurrency
control, etc. Evaluating this model yields the average transaction
response time and other performance measures of interest.

How can this model be extended to represent the effect of conflicts
between transactions? As noted, we must estimate the proportion of
transactions that abort, PLabortl, and the service demands of these

346 Perspective: Extended Applications

locking phase

- Request a read lock on each data item whose value is required.
A read lock will be granted if no other transaction currently
holds a write lock on the item.

- Request a write lock on each data item that is to be written. A
write lock will be granted if no other transaction currently
holds either a read lock or a write lock on the item.

- If any lock is refused, abort, releasing all locks previously
granted to the transaction.

processing phase

- Read the values of the required data items.
- Based on these values, compute the values of the data items

to be written.
- Update the values of the data items to be written.
termination phase

- Release all read and write locks held by the transaction.

Table 15.2 - Steps in Processing a Transaction

transactions. Given this information, we could adjust the service
demands of transactions in the model to be:

(1 - PLabortl) X (service demands of a successful transaction) +

PIabort X (service demands of an aborted transaction)

The model could be evaluated using this parameterization to yield
response times for each submission of a transaction. To compute the
effective response time to successfully complete a transaction we would
multiply the response time of each submission by the average number of
submissions required. (Obviously, a homogeneity assumption is
employed here.) The average number of submissions required is:

1 X (1 - PIabort]) -I-

2 X (1 - Piabort]) X P[abort] -I-

3 X (1 - Plabortl) X P[abort]’ +

1
= 1 - P[abort]

15.6. Operating System Algorithms 341

The proportion of transactions that abort depends on many factors,
including the average number of active transactions (if few transactions
are active simultaneously, then the probability of conflict is low) and the
average number of data items read and written by each transaction, rela-
tive to the total number of items in the database (if each transaction locks
a very small proportion of the items in the database, then the probability
of conflict is low). As an example, one particularly simple approach is to
assume that each transaction requires read locks on r of the I items in
the database, chosen at random, and write locks on w of these I items,
also chosen independently and at random. A probabilistic analysis then
yields PIabort]. This analysis is based on reasoning such as the follow-
ing: If N transactions are active, they hold N X PV write locks. An
arriving transaction will be able to acquire all of its r required read locks
with probability:

(More accurate estimates of P[abortl can be obtained from more detailed
submodels, evaluated either probabilistically or using simulation.)

The service demands of an aborted transaction can be estimated
roughly as one half of the lock manipulation overhead of a successful
transaction. (We expect half the required locks to be obtained before one
is denied; these must be released when the transaction aborts.) In addi-
tion, by assumption aborted transactions are re-submitted after some
delay. This can be represented by adding a delay center to the model, or
by adjusting the “think time” downwards in a manner analogous to that
used for service demands.

The average number of active transactions, which is a key parameter
required to estimate P[abortl, is an output of the model. This suggests
the iterative evaluation scheme outlined in Algorithm 15.1. We have left
many details unspecified, and have made a number of simplifying
assumptions concerning the nature of the system and of the concurrency
control mechanism. The basic iterative approach of Algorithm 15.1 is
relatively general, however.

15.6. Operating System Algorithms

During the design of an operating system, extremely subtle perfor-
mance questions may arise that require certain subsystems to be modelled
at a level of detail greater than we have considered thus far. Examples of
such questions include the design of complex resource allocation

348 Perspective: Extended Applications

1. Construct a traditional separable queueing network model
with basic transaction service demands calculated as suggest-
ed in the text. Initially, assume that the average number of
active transactions is zero. (This will cause PLabortl to be
estimated as zero in the first iteration, so the model will be
evaluated without adjustment.)

2. Iterate as follows:
2.1, Based on various input parameters plus the average

number of active transactions, use a submodel to deter-
mine the proportion of transactions that abort. This
submodel may involve probabilistic or simulation ana-
lyses, as described in the text.

2.2. Calculate revised transaction service demands, as
described in the text.

2.3. Evaluate the queueing network model. Obtain the aver-
age number of active transactions.

Repeat Step 2 until successive estimates of the average
number of active transactions are sufficiently close.

3. Obtain performance measures from the final iteration, as
described in the text.

Algorithm 15.1 - Concurrency Control in the Rough

algorithms that coordinate the control of paging, swapping, and processor
scheduling.

On the one hand, queueing network models are not ideally suited to
answering these extremely detailed questions. (Fortunately, such ques-
tions arise very infrequently!) On the other hand, queueing network
models offer such tremendous advantages over alternative techniques
(such as simulation or experimentation) that there is a strong motivation
to use them to the greatest possible extent. Often, the solution is to
employ hybrid modeling, as described in Chapter 8.

In this section we describe a hybrid model of IBM’s MVS operating
system. This model was designed to study the internal details of the
MVS System Resources Manager (SRM). Under MVS, each installation
classifies its workload components into performance groups. Within each
performance group, customers pass through a sequence of performance
periods as service is acquired. For each performance period, service objec-
tives are established. Customers are served at various resources at a rate
that depends on the service objectives specified for their current

15.7. Summary 349

performance period. (For example, a customer’s susceptibility to swap-
ping will depend on that customer’s current performance period.) In
addition, goals are established for the utilizations of various resources.
These goals impose additional constraints on scheduling decisions. It is
the job of the SRM to reconcile these many objectives by making
appropriate long-term and short-term resource allocation decisions.

Figure 15.5 illustrates the structure of the two-level hierarchical hybrid
model that allowed the internal algorithms of the SRM to be represented.
There are two workload components: TSO (timesharing) and batch. In
the high-level model, customer arrivals and the operation of the SRM are
represented. Two principal SRM modules are represented explicitly.
Swap Analysis keeps track of the attained service of each customer and
determines if a swap is to be performed. Resource Monitor calculates tar-
get multiprogramming levels, invokes Swap Analysis if necessary, and
collects various statistics. These statistics are used in an overhead sub-
model to determine the overhead service demands of the operating sys-
tem. The high-level model is evaluated using simulation.

In the low-level model, the central subsystem is represented. Paging
activity is determined by a submodel that has knowledge of the particular
paging policy of interest. The low-level model is evaluated using tech-
niques from Parts II and III.

The hybrid solution of this model proceeds iteratively. The high-level
model determines the multiprogramming mix and the overhead service
demands, and supplies these to the low-level model. The low-level
model determines throughputs and utilizations, which allow the high-
level model to calculate the time of the next completion and to make
resource allocation decisions.

Of course, representing the internal algorithms of the SRM is a level
of detail far beyond that which is appropriate for capacity planning and
performance projection applications. Still, this hybrid model was success-
ful at answering detailed questions concerning SRM behavior. Evaluation
of the model was estimated to be 30 to 100 times faster than would have
been possible using a pure simulation approach. The modelling approach
led to greater flexibility than would have been possible in direct experi-
mentation on an MVS system.

15.7. Summary

This chapter has used five examples to illustrate that the applicability
of queueing network models extends well beyond the confines of central-
ized systems with simple characteristics. We have studied models of
computer communication networks, local area networks, software

Perspective: Extended Applications

SIMULATION

BATCH
WORKLOAD

Arrival
- JOB

Departure ENTRY
SUBSYSTEM

A

T

SYSTEhl RESOURCES MANAGER

TSO
WORKLOAD

t
RESOURCE SWAP
MONITOR ANALYSIS

r

r

STATISTICAL
MODEL FOR
OVERHEAD

I

Y

ANALYSIS

L

Figure 15.5 - A Detailed Hybrid Model of the MVS SRM

15.8. References 351

resources, database concurrency control, and operating system.algorithms.
These models have employed techniques such as FESCs with global bal-
ance, FESCs whose service rates are determined through probabilistic
analysis, two-level hierarchical iteration, and hybrid modelling. These
techniques, combined with good knowledge of the system being modelled
and a modicum of inventiveness, can solve a wide variety of computer
system analysis problems.

15.8. References

Queueing theory has been used widely in the detailed analysis of com-
puter communication network protocols. The use of queueing network
models to evaluate networks and to represent them in system-level
models is more recent. A useful genera1 discussion of this area is the
book by Schwartz 119771. The SNA flow control model in Section 15.2
was constructed by Schwartz 119821; this paper is the source of Figures
15.1, 15.2, and 15.3.

Local area networks have received widespread attention recently. Eth-
ernet was described originally by Metcalfe and Boggs [19761. The Ether-
net mode1 in Section 15.3 was developed by Almes and Lazowska [19791.
King and Mitrani [19821 discuss a similar model of the Cambridge ring.

The technique for modelling software resources described in Section
15.4 is similar to one described by Agre and Tripathi [19821. Other
approaches are described by Smith and Browne [19801, Agrawal and
Buzen [19831, and Jacobson and Lazowska [19831.

The modelling of database concurrency control mechanisms is the sub-
ject of much recent research activity. Sevcik [19831 provides a survey of
various approaches. An excellent discussion of the issues involved,
including a framework for classifying mechanisms, is provided by Bern-
stein and Goodman [19811.

An overview of an early version of the MVS SRM is given by Lynch
and Page [19741. The hybrid hierarchical mode1 in Section 15.6 was
developed by Chiu and Chow 119781; their paper is the source of Figure
15.5. Buzen [1978] describes a queueing network model of MVS that is
better suited to capacity planning applications.

[Agrawal & Buzen 19831
Subhash C. Agrawal and Jeffrey P. Buzen. The Aggregate Server
Method for Analyzing Serialization Delays in Computer Systems.
Transactions on Computer Systems 1,2 (March 19831, 116-143.

352 Perspective: Extended Applications

[Agre & Tripathi 19821
Jon R. Agre and Satish K. Tripathi. Modelling Reentrant and Non-
Reentrant Software. Proc. ACM SIGMETRICS Conference on Meas-
urement and Modeling of Computer Systems (19821, 163-178.

[Almes & Lazowska 19791
Guy T. Almes and Edward D. Lazowska. The Behavior of Ethernet-
Like Computer Communication Networks. Proc. 7th Symposium on
Operating Systems Principles (19791, 66-81. Copyright @ 1979 by the
Association for Computing Machinery.

[Bernstein & Goodman 19811
Philip A. Bernstein and N. Goodman. Concurrency Control in Distri-
buted Database Systems. Computing Surveys 13,2 (June 19811, 185-
221.

[Buzen 19781
Jeffrey P. Buzen. A Queueing Network Model of MVS. Computing
Surveys 10,3 (September 19781, 319-331.

[Chiu and Chow 19781
Willy W. Chiu and We-Min Chow. A Performance Model of MVS.
IBMSystems Journal 17,4 (19781, 444-462.

[Jacobson & Lazowska 19831
Patricia A. Jacobson and Edward D. Lazowska. A Reduction Tech-
nique for Evaluating Queueing Networks with Serialization Delays.
Proc. IFIP W.G. 7.3 International Symposium on Computer Performance
Modeling, Measurement, and Evaluation (1983), 45-59.

[King & Mitrani 19821
Peter J.B. King and Israel Mitrani. Modelling the Cambridge Ring.
Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (19821, 250-258.

[Lynch & Page 19741
H.W. Lynch and J.B. Page. The OS/V’S2 Release 2 System Resources
Manager. IBM Systems Journal 13,4 (19741, 274-291.

[Metcalfe & Boggs 19761
Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed
Packet Switching for Local Computer Networks. CACM 19,7 (July
1976), 395-404.

[Schwartz 19771
Mischa Schwartz. Computer Communication Network Design and
Analysis. Prentice-Hall, 1977.

15.8. References 353

[Schwartz 19821
Mischa Schwartz. Performance Analysis of the SNA Virtual Route
Pacing Control. IEEE Transactions on Communications COM-30,l
(January 19821, 172-184. Copyright @ 1982 IEEE.

[Sevcik 19831
Kenneth C. Sevcik. Comparison of Concurrency Control Algorithms
Using Analytic Models. Proc. IFIP Congress ‘83 (1983).

[Smith and Browne 19801
Connie Smith and J.C. Browne. Aspects of Software Design Analysis:
Concurrency and Blocking. Proc. IFIP W. G. 7.3 International Sympo-
sium on Computer Performance Modeling, Measurement, and Evaluation
(19801, 245-253.

