
IO 

Issues in Capability-Based 
Architectures 

IO. 1 Introduction 

Previous chapters have followed the transition from early 
descriptor-based computer architectures to the latest in com- 
mercially available capability systems. The examination began 
with the Burroughs B5000 and the Rice University computer. 
Both of these machines used descriptors, or user-addressable 
base/limit registers, to define a program’s addressing environ- 
ment. Capability systems extended this idea in several signifi- 
cant ways: 

1. Capabilities are protected addresses. They can be freely cop- 
ied, passed as parameters, and transmitted from domain to 
domain, but cannot be forged or modified by users. 

2. Capabilities are context-independent. They address the same 
object independent of the domain or process in which they 
are used. 

3. Capabilities contain access rights as well as addressing infor- 
mation. 

4. The address or identifier in a capability is independent of 
the physical base and limit information used for memory 
mapping. This identifier is used to locate a single physical 
descriptor for the addressed object. 

5. Capabilities and the objects they address can be saved in 
long-term storage. They have a lifetime longer than the ex- 
istence of the process that created them. 

6. Capabilities provide a uniform mechanism for naming all 
types of objects in the environment, both hardware and soft- 
ware supported. This enables users to extend the facilities 
provided by the hardware and vendor-supplied operating 
system software. Moreover, they provide run-time support 
for abstraction and object-based programming. 187 



Issues in Capability- 
Based Architectures Of course, these capability concepts did not appear at once but 

evolved over time. Each new system was able to benefit from 
experience gained in previous systems-even those that were 
short-lived. 

This chapter discusses some of the design issues in capabil- 
ity-based systems. Although each topic could be a chapter in 
itself, the discussions here are relatively brief. Where possible, 
tradeoffs are examined in the light of the various systems de- 
scribed. 

7 0.2 Segmentation 

This book began by examining the objectives of early sys- 
tems in diverging from the conventional linear address space. 
Because each of the systems examined includes a segmented 
memory space, it is fitting to begin the discussion with a review 
of segmentation. Segments are the fundamental objects in ca- 
pability systems; they provide the units of addressing and shar- 
ing. 

The reasons for segmentation are much the same today as 
they were in 1960: 

1. Segments correspond to logical program entities. They can 
be used to decompose programs and data structures into 
units that are meaningful to the programmer. 

2. Segmentation allows the logical entities to grow or shrink. 
3. Segmentation supports memory relocation and virtual 

storage. 
4. Segments provide logical units of separation, protection, 

and sharing, both between programs and processes and 
within a single program or process. Moreover, segments 
allow for a dynamically changing memory environment. 

188 

On early machines, a segment was addressed through a de- 
scriptor-usually contained in a descriptor segment. Iliffe’s 
Basic Language Machine included a type for each segment to 
indicate the kind of information contained there. The type was 
stored in the descriptor for a segment; it allowed automatic 
conversion and tagging when data elements were moved from 
memory into registers. 

On current object-based machines, abstract objects are 
composed of one or more segments. For multisegment objects, 
a capability for a base segment serves to address the object as a 
whole. This base segment contains pointers to the other seg- 
ments forming the object. Segments are thus the basic units 
addressed by capabilities. 



Although segments are the fundamental units of storage al- 
10.3 Storage of 
Capabilities 

location, paging can be provided along with segmentation, as 
in the IBM System38. Each segment is divided into fixed- 
sized pages that can be independently located. Paging adds 
additional storage overhead for the system data structures that 
maintain information about the memory state. However, the 
division of physical and virtual storage into fixed-sized units 
simplifies memory management by removing the memory 
shuffling and compacting problems. 

10.3 Storage of Capabilities 

Capability systems have no privileged mode of operation. 
All privileges, including those permitted to the operating sys- 
tem, are derived from the possession of capabilities. The integ- 
rity of the entire system depends on the fact that users cannot 
forge capabilities or modify them directly. For this reason, the 
hardware must be able to detect and prohibit any attempt to 
modify a capability with data instructions. Two different 
schemes have been used to provide this capability protection: 
C-lists and tagging. 

Most systems have chosen to implement C-lists-often im- 
plemented as capability segments-to protect capabilities. 
Using this protection mechanism, capabilities are stored only 
in capability segments where they are segregated from user- 
modifiable data. Separation of capabilities can complicate the 
construction of record-oriented data structures in which it is 
natural to mix data and pointers (capabilities). However, a 
compiler can mask this problem by implementing the structure 
in two parts or by storing a specifier for the capability, such as 
the C-list index, instead of the capability itself. 

The implementation of C-lists is technologically simpler 
than tagging; it requires no special hardware on a per-informa- 
tion-unit basis. A single bit in the physical mapping informa- 
tion for each segment indicates whether the segment contains 
capabilities or data. Or, as is often the case, the distinction is 
maintained in the access rights of capabilities used to address a 
segment. Each segment capability indicates whether capability 
or data access is allowed to that segment. The operating system 
is privileged because it possesses capabilities that allow data 
access to user’s capability segments. 

In addition to implementation advantages, C-lists can pro- 
vide added efficiency in capability addressing. For example, 
capabilities can be specified by their index in a C-list. If multi- 189 



Issues in Capability- 
Based Architectures ple C-lists are allowed, then multiple indices may be needed. 

Or, if the number of directly addressable capability segments 
can be restricted (e.g., the Intel 432’s 4 environments or CAP’s 
16 capability segments), a small number of bits appended to 
the index can specify which C-list to use. Short forms of ad- 
dressing can be provided for cases where the most frequently 
used capabilities are stored at small displacements from the 
start of the C-list. Thus, C-list schemes often result in a reduc- 
tion of the number of bits needed to refer to a capability, as 
compared to the number of bits needed for a general memory 
address. 

The second method of capability protection requires the use 
of tag bits. Tagging allows capabilities to be stored with user 
data. The ability to combine capabilities and data can simplify 
data structuring for the user. Tagging probably has not been 
used much in the past because of the added memory cost and 
implementation complexity. Still, several early descriptor sys- 
tems used tagging when memory was scarce. Certainly mem- 
ory cost should not be an issue today. 

The storage cost of tagging depends on the size of the tagged 
information units: the smaller the tagged unit the greater the 
overhead. Most modern systems are byte addressable, but tag- 
ging on a byte basis is probably overly expensive. On the Sys- 
tem/38 there is one tag bit for each 32-bit word. In a case where 
tags are not provided on the smallest addressable information 
unit, capabilities must be aligned on the boundary of a tagged 
unit, such as a 32-bit word. If capabilities are larger than the 
tagged unit, as they are with 16-byte System38 capabilities, 
alignment must be on larger units. 

f90 

The System38 requires that capabilities be aligned on 16- 
byte boundaries and that the tag bits associated with the four 
consecutive words be set. The alignment requirement prohib- 
its a user from addressing four consecutive tagged words that 
do not form a valid capability. For example, two consecutively 
stored capabilities will cause eight tag bits to be set. A user 
could address four consecutive words consisting of the last two 
words of the first capability and the first two words of the 
second capability. This four-word item is not a valid capability 
even though the associated tags are set. The alignment require- 
ment could be eliminated at the cost of a second tag bit with 
each 32-bit word. The second tag bit would indicate whether 
or not the associated word is the first word of a multi-word 
capability. 

Tag bits can be either part of a data element, which reduces 



the number of bits in the element, or part of a special storage 
10.4 Capability 
Representation 

area associated with each element. The System/38 chose to 
store the tags outside of the data element in an area accessible 
only to microcode. When a segment is written to disk, the 
hardware extracts the tags and stores them in a compact form 
along with the segment. They are later reinserted when the 
segment is read back into memory. 

STAROS and the Intel 432 have chosen a scheme combining 
advantages of both tagging and C-lists. These systems support 
two-part segments that contain a data portion and a capability 
portion. The descriptor for the segment indicates the size 
of each portion and the position of the dividing line. Address- 
ing occurs as with separate segments; the type of an operand 
determines in which portion it is contained. This design re- 
duces the number of segments and mapping descriptors. Since 
most objects require both a data part and a capability part, the 
two-part segment scheme halves the number of segments 
needed to hold an object’s representation. 

The tagged memory approach is appealing in terms of gen- 
erality; it allows capabilities to be freely mixed with data, just 
as pointers or addresses are freely mixed in virtual memory 
systems. A single stack can serve for local storage of both data 
and capabilities. The actual implementation of a tagging 
scheme has a number of complexities. The C-list approach is 
appealing in its simple implementation and in the addressing 
efficiencies that can be gained. C-lists can reduce the number 
of bits needed to address capabilities. Another advantage of 
C-lists (which will become apparent in later sections) is that 
they reduce the time required to search for capabilities. 

In his comparison of the two techniques, Fabry claims that: 

. . .the advantages of the partition approach are all techno- 
logical, while some of its disadvantages are intrinsic. 
Thus one might expect the tagged approach to dominate 
in the long run [Fabry 741. 

It may be too soon to tell, but so far, the partition (C-list) 
approach has dominated. Credit is probably due to current 
high-level languages, whose use masks the intrinsic disadvan- 
tages of C-lists. 

10.4 Capability Representation 

A fundamental decision in capability system design is the 
physical representation of capabilities. A capability contains 
two parts: f9f 



Issues in Capability- 
Based Architectures 1. an identifier or name for an object, and 

2. some access rights or privileges to that object. 

f92 

The implementation of these fields influences the generality 
with which the capability can be applied, the work required to 
manage capabilities in both hardware and software, and the 
lifetime of objects and capabilities. In evaluating the evolution 
of the DEC PDP-11 minicomputer, Bell and Strecker state 
that: 

There is only one mistake that can be made in a computer 
design that is difficult to recover from-not providing 
enough address bits for memory addressing and memory 
management [Bell 761. 

This applies to capability systems as well as conventional com- 
puters such as the PDP-11. The capability identifier corre- 
sponds directly to the address on conventional machines. 

Early descriptor and codeword machines used single-word 
descriptors to address segments. Each descriptor contained all 
of the mapping information for the segment. Copying of a de- 
scriptor caused duplication of the mapping information. This 
duplication of memory base and limit values for a single seg- 
ment added complexity to the task of relocation, which the 
descriptor was meant to simplify. 

Two characteristics of these machines simplified the imple- 
mentation of descriptors. First, the machines had large words 
and were word addressable. Second, they had relatively small 
memory spaces. Therefore, the base and limit information 
could be easily packed into a single word of the word-address- 
able machine. This removed the need for special alignment of 
descriptors. 

New capability systems must contend with smaller word 
sizes, larger address spaces, byte addressability, and the 
greater volume of information needed to manage the system 
efficiently (e.g., usage and garbage collection bits). An addi- 
tional problem is the long lifetime of objects on capability sys- 
tems, in contrast to conventional machines where an object 
only exists for the lifetime of a program. The longer the object 
lifetime, the more bits needed for an object’s address. These 
issues have forced an important distinction between the capa- 
bility itself and the physical mapping information for the ob- 
ject. Thus, we see a separation between the capability, which 
contains an identifier, and the mapping descriptor, which is 
generally located in a centralized system table. This distinction 



10.4 Capability 
is exemplified in the separation of information between Intel Representation 

432 access descriptors and object descriptors. 
An important component of capability operation is the 

structure of the identifier. Each object or segment is given an 
ID at the time of its creation. This ID is often generated by a 
sequential counter, a clock, a disk address, or the values of 
indices used to locate the object’s descriptor. The number of 
bits in the ID partly determines the number of objects that can 
exist at one time. Depending on the number of bits used, the 
ID can be unique for all time, unique for the life of the object, 
or unique during the object’s residency in primary memory. 
Each of the possibilities has potential problems. 

On most capability systems an object’s ID is a direct index 
into a system mapping table. The mapping table contains de- 
scriptors for the object, giving its physical location, size, and so 
on. For example, capabilities on the Plessey 250 contain a 16- 
bit index into the System Capability Table. The use of this 
index as an object’s ID places two restrictions on the system. 
First, the maximum number of addressable segments (at least 
in primary memory) at any one time is 216 or 64K. Second, the 
System Capability Table must always be resident in physical 
memory. On the Plessey 250, the mapping table for 64K de- 
scriptors occupies about 589K bytes of storage. 

The Intel 432 uses a two-level indexing structure, where the 
ID is 24 bits, allowing for 16 million objects. The 24-bit ID is 
divided into two 12-bit table indices. The first selects a de- 
scriptor in the central Object Table Directory. This descriptor 
addresses an object table in which the second index locates the 
descriptor for the object (this structure was shown in Figure 
9-S). The two-level scheme allows the second-level object ta- 
bles to be swapped out, reducing the amount of required stor- 
age overhead. Only the Object Table Directory, which has a 
maximum size of 64K bytes, need always be memory resident. 

Both the Plessey and Intel mechanisms provide for a limited 
number of objects relative to the lifetime of the system. There- 
fore, object IDS must be reused when objects are destroyed. 
One problem with reuse of IDS is knowing what IDS are availa- 
ble to be reused. Since an object’s ID is an index in the map- 
ping table, a linked list of free table slots can be kept and used 
to assign new IDS and descriptors. When a new object is cre- 
ated, a free descriptor is taken and its index becomes the ob- 
ject’s ID. 

A second problem with reusable IDS is dangling references. 
When an object is deleted, outstanding capabilities for that f93 



Issues in Capability- 
Based Architectures object will still reference the mapping table descriptor slot for 

the object. If a new object is assigned to that descriptor slot, 
the old object’s capability could be used to gain access to the 
new object. This implies that (1) an object cannot be deleted 
(or its descriptor reallocated) while capabilities exist for the 
object, or (2) all capabilities for an object to be deleted must be 
found and disabled. This problem is discussed further in Sec- 
tion 10.7 on object lifetimes and garbage collection. 

Several capability systems have tried to alleviate the prob- 
lems inherent in indexing schemes by implementing a unique- 
for-all-time ID space. On such systems, the ID is sufficiently 
large that the IDS are never used up. For example, object IDS 
on Hydra are 64 bits, allowing for over 10” objects (it is left as 
an exercise for the reader to determine how long this address 
space would last if the system creates, for example, 100 new 
objects every millisecond). The IBM System38 architecture 
also provides a large address space. A 40-bit ID, or segment 
number, provides for over one trillion segments. This number 
of segments is not likely to be consumed in the lifetime of most 
systems. Another unusual feature of the System38 is that ca- 
pabilities contain a virtual address that can reference a specific 
byte. In contrast, on most systems the capability identifies a 
segment, and a separate byte offset must be supplied inde- 
pendently. This feature is reminiscent of the earlier descriptor 
machines. 

Of course, with a large address space, locating an object’s 
descriptor from its unique ID is more complex than with direct 
indexing. The Hydra system hashes the unique ID to select 
one of 128 lists of active object entries in the Active Global 
Symbol Table. If the object is not found, a search of the Pass- 
ive Global Symbol Table is made. Because the IBM System38 
uses paging, mapping information is associated with each page 
of a segment. A Page Directory Table contains the unique vir- 
tual page number of each page of primary memory. A hashed 
lookup is made in the Page Directory Table. If the lookup fails, 
a page fault occurs and the page must be read in from disk. 
System38 capabilities retain the same form whether or not the 
segment is in primary memory. 

f94 

All of these schemes require a one- or two-level table lookup 
to translate a capability identifier into a memory address. This 
overhead is comparable to the overhead involved in any seg- 
mented or virtual memory system. However, access via capa- 
bilities may incur additional overheads in order to validate 
type, access rights, and offset. Also, schemes that allow indi- 



rection in capabilities may require additional lookups. On the 10.5 Objects 

IBM Systemi38, some references require a user profile search 
to validate access rights to the object. References on the Intel 
432 may require access to an object selector in memory that 
specifies the location of a capability operand. Those systems 
that do not have explicit or implicit capability registers always 
require an extra memory reference to fetch the capability from 
memory. 

With the use of caches, translation buffers, and other proc- 
essor-internal registers, there are probably no inherent per- 
formance disadvantages of capability system addressing rela- 
tive to conventional virtual memory systems. All sophisticated 
modern systems require several levels of addressing indirection 
and rely on specialized high-speed memory to reduce the ap- 
parent overhead. 

10.5 Objects 

One of the more interesting developments in computer ar- 
chitecture is the relationship between capability hardware and 
object-based software. Capabilities provide a uniform naming 
mechanism for all types of objects. In addition to simple seg- 
ments, capabilities are used to address abstract objects whose 
representations are stored in segments. This ability to uni- 
formly address complex objects allows the programmer to ex- 
tend the architectural interface in order to support high-level 
operating system or application functions. 

All object-based systems supply a basic set of system ob- 
jects. These objects usually provide for low-level resource 
management and interprocess communication. For example, 
message ports and processes are common system-supported 
objects. The IBM System38 also includes a number of system 
objects that aid in the construction of database systems. Hard- 
ware support of object operations increases performance and 
hides object implementation. 

One possible disadvantage of supporting many objects at 
the hardware level is the added complexity of the machine. 
The Intel 432 and IBM System38 architectures are surely 
among the most complex in existence. The chances for error in 
hardware or microcode design and implementation are great. 
In addition, any high-level mechanism that is moved into hard- 
ware must be carefully considered. Because the mechanism 
and its interface cannot easily be changed, an ill-designed 
mechanism will simply waste valuable resources. The tradeoff f95 



Issues in Capability 
Based Architectures of whether or not to support a particular type in hardware is 

one of performance and integrity versus machine complexity. 

10.6 Protected Procedures and Type Extension 

One of the strengths of capability systems is that they allow 
operating systems and users to extend the hardware interface 
in a uniform way. This facility is available because capabilities 
can address operating system and user-implemented objects, as 
well as hardware supported objects. The only difference is that 
software-implemented operations are obtained through a CALL 
or ENTER instruction, while hardware-implemented operations 
are obtained through hardware instructions. 

There are several requirements for a system that allows 
users to construct their own type managers: that is, protected 
subsystems that create and manipulate protected objects. 

1. A user must be able to construct a type manager: an execu- 
tion environment consisting of type management procedures 
and private data segments and objects. This private environ- 
ment is usually called a domain. The domain is the static 
representation of the type management system. 

2. The type manager must be able to distribute controlled ac- 
cess for its execution environment to its clients. Access is 
passed through a capability that permits invocation of public 
procedures but gives no access to any of the private objects 
in the domain. 

3. The hardware must supply a mechanism to invoke the envi- 
ronment. Using the capability for the domain, a client must 
be able to cause execution of one of the public procedures in 
the domain. The invocation creates the dynamic type man- 
agement environment in which the executing procedure has 
access to domain-local procedures and objects not available 
to its caller. 

4. A type management procedure executing within the domain 
must be able to create new objects. It must be able to allo- 
cate segments in which the representation for new objects 
can be stored. 

5. A type management procedure must be able to return to a 
client a sealed capability for an object. The sealing mecha- 
nism must prohibit the client from directly accessing the 
object’s representation. Thus, the client holds the capability 
as proof of ownership and can pass it on to other users. Any 
operations on the object are performed by passing the capa- 
bility as a calling parameter to a type management proce- 
dure. The type manager must retain the privilege to unseal 
capabilities of its type, thus gaining access to their represen- 
tations. f96 



10.7 Object Lifetimes 
and Garbage 

Capability systems have implemented the addressing of pro- Coltection 

grammer-defined type managers in several ways. One common 
mechanism is to provide a new instance of the type manager for 
each new object. When an object is created, the type manager 
returns an enter capability for a new instance of itself. This 
capability addresses a domain that includes capabilities for 
type management procedures along with a capability for the 
representation of the new object instance. The object is manip- 
ulated by calling type management procedures through the re- 
turned domain capability. The Plessey System 250 Central 
Capability Block and CAP Enter PRL scheme are examples of 
this mechanism. 

A second mechanism is the use of restriction and amplifica- 
tion of capabilities. The type manager returns restricted capa- 
bilities for new object instances to its clients. These restricted 
capabilities cannot be used to access an object’s representation, 
although they contain type-specific rights. The type manager 
retains a private capability that permits it to amplify all capa- 
bilities of its type. Clients of such a type manager must either 
have a separate capability for the type management domain or 
be able to access the domain indirectly through the object capa- 
bility. The Hydra and Intel 432 systems .use restriction and 
amplification. The Hydra TYPECALL mechanism allows the 
possessor of the capability for an object to call the object’s type 
manager. The Intel 432 RETRIEVE TYPE DEFINITION instruction 
returns to the caller a capability for the type management do- 
main of a specified object capability. 

Whatever the mechanism, a system must be able to (1) de- 
fine a procedure execution environment that is distinct from 
the environment in which the procedure was called and (2) 
protect the representation of an object so that only its type 
manager can directly modify its storage. A system that permits 
users to create such environments simplifies the construction 
and extension of operating systems by eliminating the notion of 
privilege that exists in conventional systems. Thus, modules 
traditionally constructed as part of a monolithic privileged ker- 
nel can be implemented and debugged independently as user 
programs. 

10.7 Object Lifetimes and Garbage Collection 

The object concept has dramatically changed the conven- 
tional concept of secondary storage. Traditional systems have 
stream-, record-, or block-oriented file systems that preserve 197 



Issues in Capability- 
Based Architectures information. Program-addressable entities are by default not 

long-lived; preservation of short-lived entities requires that 
they be converted to a format acceptable to the file system. On 
object-based systems, it is natural to wish to preserve objects 
on secondary storage-that is, to provide a virtual object stor- 
age system. 

Many capability systems distinguish temporary and perma- 
nent objects. The CAL-TSS system became overly complex to 
some extent because of the decision not to handle secondary 
memory in the kernel and the inability to name temporary 
objects in the same way as permanent objects. Plessey 250 pro- 
vided a virtual segment interface to the user and handled stor- 
age of capability segments on disk. Hydra presented a large, 
flat, object address space. Object storage is provided by both 
the System38 and the Intel 432. Both of these systems also 
have temporary objects that have special treatment. The Sys- 
tern/38 reserves part of its address space for temporary objects; 
these objects do not receive normal protection and are deleted 
when the system is booted. The Intel 432 gives temporary sta- 
tus to objects allocated out of local stack storage; these objects 
are implicitly deleted when the procedure in which they are 
allocated returns. 

Object destruction is a difficult problem in capability sys- 
tems. On the System38, each object has an owner and the 
owner can delete the object explicitly. However, on most capa- 
bility systems there is no concept of an object’s owner. An 
object has some number of users, and each user possesses a 
capability for the object. Since capabilities can be easily deleted 
or passed from user to user, the set of users for an object can 
change dynamically. 

It is often difficult to tell when an object is no longer 
needed. Garbage objects must be deleted or the system’s disk 
or memory will eventually overflow with useless objects. The 
solution to this problem is garbage collection. A garbage collec- 
tion process (or processes) is responsible for finding and delet- 
ing garbage objects. An object is garbage when it can no longer 
be accessed by any user. In the simplest case, if all capabilities 
for the object have been deleted, the object can never be refer- 
enced and can safely be destroyed. 

199 

One method of garbage detection is to maintain a reference 
count with each object. The reference count indicates the num- 
ber of capabilities for the object and must be updated when- 
ever a capability for the object is copied or deleted. When a 
reference count is decremented to zero, the object can be de- 
leted. 



10.7 Object Lifetimes 
and Garbage 

There are at least two problems with reference counts that Collection 

make them insufficient to solve the garbage collection problem 
completely. First, circularities can exist in the object structure. 
For example, if object A contains a capability for object B, 
while object B contains a capability for object A, then both will 
have reference counts of at least one. However, if no other 
capabilities exist for either object, then A and B are not accessi- 
ble and should be deleted. Second, it is difficult to maintain 
the integrity of reference counts over system crashes. It would 
be costly to update a reference count on secondary storage for 
each capability copy or delete operation. If reference counts are 
only updated periodically on disk, a system crash can intro- 
duce inconsistencies. 

Object-based systems must, therefore, resort to garbage col- 
lection. A simplified garbage collector would operate as follows. 
The garbage collection process starts with a set of root objects. 
In general, each user of the system has a principal C-list or 
directory that is the root of all objects the user can access; these 
lists or directories form the roots. The garbage collector first 
marks every object in the system as being unreachable (there 
must be some way of locating all objects through a master di- 
rectory). The garbage collector then marks all objects in the 
root directories as being reachable. The C-lists of these objects 
must then be scanned to see if they refer to other objects to be 
marked as reachable, and so on recursively. Eventually all ob- 
jects will be marked as reachable or unreachable, and a pass 
can be made to delete the unreachable objects. 

Garbage collection is complex because it must operate con- 
currently with normal system processing. That is, a garbage 
collector must operate while objects and capabilities are being 
created, copied, and deleted. On some systems, such as 
STAROS, the garbage collector must be concerned with parti- 
tioning of the system. It must be able to operate while some 
nodes are unreachable and still guarantee that it will not delete 
an accessible object (worse than not deleting a garbage object). 
Similar problems exist on any system with multiple secondary 
storage devices in which one or more devices can be off-line at 
a given time. The garbage collector must be capable of finding 
objects that are not referenced at all, as well as objects that are 
members of unreachable cycles. Studies of garbage collection 
systems and algorithms can be found in [Bishop 771, [Dijkstra 
781, and [Almes 801. 

A related problem is garbage collection of the address space; 
that is, the reuse of descriptor slots in object mapping tables, 
such as the Plessey 250 System Capability Table and the Intel 199 



Issues in Capability- 
Based Architectures 432 object tables. These table slots must be reallocated because 

the table, which must be resident in physical memory, cannot 
map all objects known to the system. Therefore, on most sys- 
tems, the mapping tables are used only to hold descriptors for 
objects resident in primary memory. This implies that an ob- 
ject can have different IDS during its lifetime if it is repeatedly 
moved between primary and secondary storage. 

Systems such as Plessey and Intel solve this problem by 
using two formats for capabilities, an active form and a passive 
form (sometimes called an inform and outform). A simplified 
model of the use of active and passive capabilities follows. 
When each object is created, it is assigned an ID that is guaran- 
teed to be unique for at least the life of the object (although not 
for all time). This ID might be generated by the physical disk 
address of the secondary storage for the object. All capabilities 
for the object, when stored on secondary memory, are kept in 
passive form. Passive capabilities contain this long-term ID. 

When an object is brought into primary memory, it is allo- 
cated a mapping table descriptor. The mapping table index 
provides the short-term ID for that period of primary memory 
residency. When a capability is used as a reference, the hard- 
ware or software must be able to detect whether the capability 
is active or passive. An active capability will contain a short- 
term ID and can be used to directly access an object. A capabil- 
ity in passive form will cause a trap. The software can then 
examine the long-term ID in the passive capability and con- 
vert it to the short-term ID for the object in memory. Or, if the 
object is not currently in memory, it is swapped in and a de- 
scriptor and short-term ID are assigned. 

When an object is removed from primary memory, its capa- 
bilities are converted to passive form for storage on disk. How- 
ever, the system must ensure that no active capabilities exist 
for the object before its mapping table descriptor can be reallo- 
cated. Any remaining active capabilities must be in primary 
memory since they cannot be stored on disk. Therefore, the 
system can either maintain a reference count for active capabil- 
ities or search the C-lists of all resident processes to passivate 
any active capabilities for the object. 

200 

Another design decision to be made in managing secondary 
object storage is determining how and when an object’s sec- 
ondary storage copy will be updated. The operating system can 
manage virtual object storage, automatically moving objects 
between primary and secondary memory. This corresponds to 
swapping in conventional systems. However, this transparent 



storage mechanism does not ensure that an object’s secondary 10.8 Object Locking 
memory copy is always up to date. Some applications need to 
guarantee that certain modifications will not be lost by a crash. 
Another scheme, then, is for the system to provide explicit 
checkpointing operations for type managers. A type manager 
performs temporary object modifications in memory and 
atomically outputs the object to permanent storage by request- 
ing a checkpoint. 

An additional problem with object storage is the use of 
transportable media. Object IDS may be unique for a single 
system, but are typically not unique for all systems. Moving an 
object from one computer system to another creates problems 
because the object’s ID may be duplicated on the other system. 
Backup of objects provides a similar problem. Maintaining 
capability integrity on transportable media or over networks is 
an additional concern. 

10.8 Object Locking 

One advantage of capability systems is the ease with which 
objects can be shared among several users. This sharing poses 
problems when users of a shared object must perform multi- 
step atomic transactions. That is, a user may need to execute 
several object operations with the assurance that no other user 
can access the same object until the transaction is complete. 
Exclusion is also required to prohibit a process from operating 
on inconsistent data when an I/O device is transmitting to ob- 
ject storage. Thus, locking facilities are provided in many ca- 
pability systems. 

The Intel 432 provides instructions to lock and unlock ob- 
jects. A lock is simply a 16-bit field stored within the data part 
of a segment; the lock contains a 14-bit process ID and a 2-bit 
lock type. Objects can be locked either by hardware or soft- 
ware. Some system objects have locks in the processor-de- 
fined object data part. Hardware manipulates these locks to 
obtain exclusion when performing certain operations. Software 
uses the LOCKOBJECT and UNLOCKOBJECT instructions to obtain 
mutual exclusion to an object. Execution of a LOCK OBJECT 
instruction checks if the lock is free; if it is free, the process ID 
of the current process is stored in the lock and it is marked 
busy. The instruction returns a boolean result to indicate 
whether or not the instruction succeeded in obtaining the lock. 

The IBM System38 has a set of higher level lock operations 
to allow increased concurrency for database operations. Ob- 
jects can be locked in one of five modes: 201 



Issues in Capability- 
Based Architectures 1. shared read-user can read, other users can read or write 

2. shared read only-user can read, other users can read 
3. shared update-user can read or write, other users can read 

or write 
4. exclusive allow read-user can read or write, other users can 

only read 
5. exclusive no read-user can read or write, other users can- 

not access 

The LOCK OBJECT instruction requests one or more locks on one 
or more objects. The instruction will either succeed in obtain- 
ing all locks specified or no locks will be held; that is, if a lock 
cannot be obtained, all previous locks obtained by the instruc- 
tion are released. The instruction can specify that the program 
either wait for locks that are currently unavailable or return 
immediately. There is also a time-out parameter that indicates 
the maximum time that the instruction should contend for a 
lock. 

The horizontal microcode on the System38 maintains a 
data structure that indicates (for each object for which a lock is 
held) the type of lock being held and the ID of the requester. 
Several locks may be held for a single object; this will be indi- 
cated in the data structure. The System38 provides instruc- 
tions to examine all locks held by a process or an object. 

There are, thus, several basic types of locking facilities, 
including implicit and explicit locks. Implicit locks occur as 
the result of hardware manipulation of an object; this operation 
usually requires mutual exclusion. Software may request mu- 
tual exclusion or with more sophisticated mechanisms may 
request only certain types of exclusion to allow maximum con- 
currency. 

10.9 Revocation 

202 

One strength of capability systems is the ability to copy and 
transmit object access rights freely between processes. This 
strength can also be a weakness when a user needs to restrict 
access to an object for which capabilities have previously been 
distributed. In this case, a revocation mechanism is needed to 
retract or cancel the outstanding capabilities. A good examina- 
tion of such mechanisms is provided by Redell [Redell 74a]. 
With the exception of the System38, none of the systems ex- 
amined have attempted to support revocation. 

The System38 provides revocation through user profiles. 
Some System/38 capabilities (unauthorized capabilities) do not 



contain access rights. An object access that specifies such a 10.10 Conclusions 

capability requires a process-local profile table lookup to check 
the permitted access. The owner of an object can later revoke 
the object’s access rights stored in another process’s profile. 
This scheme combines the concept of access list with capability 
addressing. However, it adds some complexity to the use of 
capabilities because unauthorized capabilities require a profile 
search while authorized capabilities do not. Unauthorized ca- 
pabilities are not context-independent and, therefore, cannot 
always be shared with other processes. 

A program may wish to restrict capability access in other 
ways. For example, a calling procedure might want to ensure 
that a called program does not retain or pass on a capability 
parameter. The Hydra system provides access rights bits in the 
capability that specify whether a capability can be stored in a 
C-list with longer life than the procedure invocation. 

Restriction of capability copying can be handled by access 
rights, but revocation is a more difficult problem. Only the 
System38 has considered revocation an important facility to 
provide. Perhaps other systems have not been willing to pay 
the cost of the additional overhead. Or, more likely, they were 
not as concerned with the security and protection problems 
brought on by the easy propagation of capabilities. These 
problems will become more important to solve as capability 
systems find more acceptance in commercial applications. 

10.70 Conclusions 

This book has followed the history of capability systems 
from early descriptor machines and Iliffe’s codewords, through 
the first designs by Dennis and Van Horn at MIT and Fabry at 
Chicago, to the most recent commercial systems by IBM and 
Intel. Capability systems are of great interest today because of 
the object approach that is affecting the design of languages, 
operating systems, and hardware. The object approach prom- 
ises to influence to a large extent the way in which software is 
produced in the future. 

There are a number of benefits to be gained from capability 
systems. Although many of these benefits have been described 
previously, some of the most important ones are restated here. 

1. Capability systems permit great flexibility in dynamic shar- 
ing of information. This flexibility is due to the global, con- 
text-independent interpretation of capabilities, and the abil- 
ity of users to copy and transmit capabilities freely. Sharing 203 



Issues in Capability- 
Based Architectures 

204 

of data structures does not require operating system inter- 
vention for mapping shared structures or for buffering in- 
formation between processes. 

2. Capabilities provide a single uniform mechanism for naming 
objects of all types. Most traditional systems require many 
different naming schemes for operating system objects as 
well as hardware objects. 

3. Capability systems provide a good basis for protection and 
isolation of software components. A procedure’s domain can 
be restricted to include only those objects absolutely re- 
quired for operation. Different procedures, even in the same 
subsystem, can execute in disjoint, overlapping, or identical 
domains. This protection mechanism aids in software relia- 
bility. 

4. There is nothing “privileged” about protection on a capabil- 
ity system; that is, there is generally no privileged mode of 
operation. The ability to access objects is defined by the 
execution domain. Traditionally privileged software systems 
can thus be implemented as standard user programs. Users 
can add functions to the operating system base in a uniform 
way without requiring special privilege. 

5. Capability systems support a long-term, single-level object 
storage system that removes the concept of secondary stor- 
age file systems. 

6. Capability systems make an explicit distinction between 
addresses and data. This distinction makes garbage collec- 
tion of objects possible. 

In addition to these advantages, there are a number of associ- 
ated problems. 

1. Capabilities and their associated mapping information can 
consume additional storage space. For example, System38 
capabilities require 16 bytes of storage. Intel 432 capabilities 
are only 32 bits in size, but the mapping tables require 16 
bytes per object. 

2. Garbage collection of the object space may be required to 
locate objects that are no longer accessible. Garbage collec- 
tion is a complex and resource consuming task. 

3. Garbage collection of the name space may be required to 
avoid dangling references whenever an object is destroyed. 
The required capability search is particularly difficult on a 
system that uses tagging of capabilities, because all memory 
segments can potentially contain capabilities. On a system 
using C-lists, only the capability segments need to be 
searched, but this can still be a costly operation. 

4. The advantages of protection and isolation are gained 
through the use of a protected procedure mechanism. The 
call or enter mechanism used to invoke a protected proce- 
dure can be expensive, since a new addressing environment 



must be constructed. (A call on a capability system is analo- 
gous in many ways to a context switch on a conventional 
system.) This cost can force a programming style contrary to 
that intended. Although these mechanisms provide excellent 
support for small domains, they may prove expensive for 
subsystems that need to pass large, complex information 
structures. 

10.10 Conclusions 

5. Capability systems can be costly in the number of memory 
references needed to access an operand. Every operand ref- 
erence requires access to a capability and to several mapping 
tables (although this overhead exists on any segmented or 
paged system). Systems with explicit capability registers 
seem better in this respect, and caches can help as well. 

6. Whether or not capabilities can be used to build a secure 
system is still an open issue. Capability systems typically 
support unrestricted passing of information, while secure 
systems require controls on information passing. It is diffi- 
cult in most capability systems (with the exception of Sys- 
tem/38) to determine who has access to an object. 

These lists indicate that capability mechanisms may in- 
crease programming generality and protection at the possible 
cost of performance. Although capability systems may simplify 
the construction of complex systems, they add new complexi- 
ties to the hardware and operating system implementation. 
Still, the performance problems suffered by many early capa- 
bility systems were often due to peculiarities of the individual 
designs or to hardware poorly matched to the task. There is 
probably no inherent reason why a capability-based system 
cannot perform as well as a conventional architecture machine. 

It is the success or failure of the object-based programming 
approach that will eventually determine the success or failure 
of capability architectures. Although object-based program- 
ming can be supported by specialized languages on conven- 
tional machines, capability addressing provides run-time pro- 
tection and error detection. Capabilities can support an 
environment with a mix of different object-based and conven- 
tional languages on the same machine. Whether or not the 
object approach allows programmers to handle the complexity 
inherent in sophisticated applications better remains to be 
demonstrated. We have surely seen only the first generation of 
object-based and capability-based systems to appear in the 
commercial marketplace. 

205 




