
The STAROS System 

7.1 Overview of STAROS 

Carnegie-Mellon’s HydraC.mmp project examined the use 
of multiprocessors in the solution of artificial intelligence prob- 
lems. C.mmp supported up to 16 processors and memories 
connected through a crossbar switch. By 1975, however, it was 
clear that multiprocessors involving hundreds of microproces- 
sors would be possible. The Cmmp crossbar scheme, which 
increases geometrically in complexity with the number of proc- 
essing elements, was infeasible for such systems. Therefore, 
the CM* project [Jones 8Oa], started in 1975 at Carnegie-Mel- 
lon, took a different approach to interconnection-one that 
grows linearly in complexity with the number of processing 
elements. By 1979, the CM* configuration contained 50 opera- 
tional processors. 

CM* consists of a large collection of computer modules, in 
which each computer module is a DEC LSI-11 processor with 
its bus, local memory, and peripherals. A computer module 
cluster, shown in Figure 7-1, is formed by a set of computer 
modules communicating through a map bus. Memory requests 
generated in each computer module are routed by a switch, 
either to local memory or to the map bus. The CM* system 
consists of a set of clusters connected by an intercluster bus. A 
computer module can issue addresses for local, intracluster, or 
intercluster memories. 

The connection between clusters is managed by a unit called 
the Kmap. The Kmap is a horizontally microprogrammed 
processor that, in addition to supporting intercluster refer- 127 



The STAROS System 

I 
/nterclusfer Buses 
to Other Chsters 

128 

1 Map Bus 

pi+ +fJ*..*, 
Local Locai Local 

Devices Devices Devices 
and and and 

Memory Memory _ Memory 

Figure 7-1. A CM* Cluster 

ences, is used to execute operating system functions. Perform- 
ance-critical parts of the operating system, such as capability 
operations, are therefore implemented in Kmap microcode. 

Two operating systems were constructed to support distrib- 
uted software for CM*: STAROS and Medusa [Ousterhout 80a, 
Ousterhout 80b]. STAROS, the subject of this chapter, is an 
object-based operating system that supports the execution of 
task forces [Jones 78b]. A task force is a collection of cooperat- 
ing processes executing concurrently to perform a single job. 
Task forces are distinguished from most cooperating process 
schemes by their dynamic nature. The structure of a task force 
corresponds to the available resources rather than to the func- 
tional requirements and can change with dynamic resource 
changes. 

In general, each of the processes within a task force is small 
if measured by its resource requirements. A task force process 
executes within a small domain and interacts with other task 
force processes for many of its needs. STAROS objects reflect 
the constrained needs of this environment, and the structure is 
much simpler than that of Hydra. The following sections take 
a brief look at object structure and addressing in the STAROS 
operating system. 



7.2 STAROS Object 
7.2 STAROS Object Support support 

All information in the STAROS system is contained within 
objects. Each object has a type, and the type defines the opera- 
tions that can be performed on the object. As with Hydra, 
objects are addressed by capabilities that name the object and 
specify the permitted rights to the object. 

A STAROS object contains two parts, a data portion and a 
capability portion (or C-list). The portions are stored in a single 
contiguous memory segment. Objects cannot grow dynami- 
cally and therefore retain the size with which they were cre- 
ated. The data portion is located at the low-address end of the 
segment, and the capability portion is located at the high- 
address end. A process possessing a suitably privileged object 
capability can directly manipulate the data portion of the ob- 
ject with processor data instructions. 

A STAROS process can directly address 64K bytes of mem- 
ory (local or remote) at any time. This limit is dictated by the 
16-bit PDF’-11 addressing architecture. STAROS partitions 
this address space into 16 4K-byte windows. Each STAROS 
object has a maximum size of 4K bytes in its data portion and 
256 slots in its capability portion. A suitably privileged process 
can request that an object’s data portion be mapped into one of 
its windows, allowing direct instruction access. 

The STAROS kernel defines a small set of object types, as 
listed in Table 7-l. These are known as representation types, and 

BASIC OBJECT Segment with data portion and C-list. 
C-LIST Basic object with capability portion only. 
PROCESS OBJECT Schedulable entity that contains the root 

C-list for addressing. 
STACK OBJECT An object supporting PUSH and POP stack 

operations. 
DEQUE OBJECT A two-ended stack, supporting PUSH and 

POP at head and tail. 
DIRECTORY OBJECT 

An object containing descriptors of physical 
object information. 

DATA MAILBOX An object for sending and receiving data 
messages. 

CAPABILITY MAILBOX 

DEVICE OBJECT 

An object for sending and receiving capabil- 
ity messages. 
The representation of a physical I/O device. 

Tab/e 7-1: STAROS Representation Types 129 



The STAROS System instances of these types are known as representation objects. 
Operations on representation objects are supported by calls to 
STAROS. All other objects are implemented by user-defined 
type managers that construct other abstractions out of the basic 
representation objects. These user-defined types are known as 
abstract types and their instances are called abstract objects. 
Thus, an abstract object has an abstract type, which indicates 
the operations that can be performed on the object, and a rep- 
resentation type, which indicates the kernel type from which 
that object is constructed. 

7.3 STAROS Capabilities 

All references to STAROS objects, representation or ab- 
stract, are made through capabilities. A STAROS capability is 
32-bits long and contains a 3-bit type field, a 13-bit rights field, 
and a 16-bit data word field, as illustrated in Figure 7-2. The 
interpretation of the data word depends on the capability type. 
STAROS supports several capability types, and the capability 
type field specifies one of the types listed in Table 7-2. The 
data capability is used to transmit small amounts (16 bits) of 
information efficiently without requiring the creation of a basic 
object and its overhead. The representation and abstract capa- 
bilities contain unique 16-bit names in their data words. A type 
manager token capability contains a unique 16-bit type identi- 
fier in its data word, allowing the possessor to operate on ab- 
stract objects of that type. 

The capability rights field consists of several type-depend- 
ent and type-independent fields, as illustrated in Figure 7-2. 

31 16 15 0 

Type Rights Data word 
1 

A 
/ \ 

1 I I 

Modify 1 Read data 

Type Write data 

Destroy - C-iist write 

COPY - -C-list read 

Restrict C-M resfrict 

Figure 7-2: S~AROS Capability and Capability Rights Word 130 



REPRESENTATION CAPABILITY 7.4 Object Addressing 

Names one of the kernel-defined representa- 
tion objects and contains kernel-interpreted 
rights to the object. 

ABSTRACT CAI'AJ3ILITY 
Names an abstract object and contains 
type-specific rights. 

TOKEN CAPABILITY 
Identifies the owner as the possessor of a 
special privilege (for example, as the garbage 
collection process or as the type manager for 
a specific type). 

NULL CAPABILITY Marks an empty slot in an object’s capability 
part. 

DATA CAPABILITY Contains a 16-bit data value in its data word. 

Tab/e 7-z: STAROS Capability Types 

Bits O-7 of the rights word contain rights to the object ad- 
dressed by the capability. For an abstract capability, this 
8-bit field is defined and interpreted by the type manager. The 
rights shown in Figure 7-2 are for a representation capability 
for a basic object. Basic object rights permit reading and writ- 
ing of the data part, loading and storing of capabilities in the 
C-list, and restriction of capability rights in the C-list of the 
object to which the capability points. 

The copy and restrict rights apply to the capability itself and 
indicate whether or not the capability can be copied or if rights 
in it can be restricted. A capability without restrict rights can 
never be deleted, so new copies of capabilities are always given 
restrict rights. Finally, the modify and destroy rights are generic 
object rights, and specify whether the addressed object can be 
destroyed or modified in any way. Modify rights operate as in 
Hydra-modification of an object requires modify rights in 
each capability along the path to the target object. 

7.4 Object Addressing 

Each representation object or abstract object is addressed 
through a capability that contains its 16-bit unique name. At 
any time there can be many capabilities for an object, but there 
is only one 16-byte descriptor for each object. The descriptor, 
which corresponds to a Hydra active fmed part, is located on 
the cluster on which the object is stored. The format of an 
object descriptor is shown in Figure 7-3. 

The garbage collection process uses the color field to indi- 131 



The STAROS System 

132 

Abstracl type 

Free chain Usable chain 

Encodedchains 

Figure 7-3. STAROS Object Descriptor Format 

cate the garbage collection status of the object (for example, 
whether a capability for the object has been passed outside the 
local cluster). The capability size and data limit fields specify 
the size of the capability portion (in slots) and data portion (in 
bytes) of the object. Since the object is stored contiguously, 
these fields determine the total size of the object and the posi- 
tion of the dividing line between data and capability portions. 

The object’s primary memory location is formed by con- 
catenating the base physical address field with the 2-bit HI 
field. This 18-bit address is local to the cluster processor speci- 
fied by the computer module number (CM). An object must be 
stored on the same cluster as its descriptor, although capabili- 
ties for an object can be passed outside the cluster. Two type 
fields contain the abstract type of the object and the represen- 
tation type used to implement it. Finally, the chain fields are 
used to form linked lists of descriptors, and R and D are refer- 
ence and dirty bits, respectively. 

Descriptors are stored in directories. Each CM* cluster can 
have up to 32 directories, each containing up to 256 descrip- 
tors. A single root directory in each cluster contains descriptors 
for itself and the 31 subdirectories. STAROS 16-bit object 
names, contained in both abstract and representation capabili- 
ties, directly locate an object descriptor in one of these direc- 
tories. A unique name specifies a 3-bit cluster number, a S-bit 
directory number, and an 8-bit directory index, as shown in 
Figure 7-4. 



I Ciuster Dkectoiy Directory index I 

7.5 STAROS Abstract 
Type Management 

0 

1 

--+ - 
Descriptors 

-F -Object 

31 

Directory 
Cluster Root Directory 

Figure 7-4: STAROS Directory Structure 

7.5 STAROS Abstract Type Management 

As previously stated, a type manager creates each new ab- 
stract object from one representation object (usually a basic 
object). The type manager returns an abstract capability for a 
new abstract object to a caller, but only the type manager can 
operate directly on the representation object implementing the 
abstraction. The possessor of an abstract capability can only 
use it as a parameter in a call to the type manager to request an 
object operation. 

The key to a type manager’s special ability is its type token, 
one of the capabilities previously described. Every type man- 
ager possesses a type token whose data word contains a unique 
identifier for its type. The type token is never given out except 
to procedures that are part of the type manager. The type man- 
ager uses the type token in the following way: 

l When a process wishes to create a new abstract object, it calls 
the appropriate type manager. The type manager, through a 
call to STAROS, creates a new representation object, for 
which it receives a fully-privileged representation capability. 
The type manager then uses this capability to initialize the 
object as needed. 

l After the object has been initialized, the type manager exe- 
cutes an ASSOCIATE TYPE instruction, specifying the object’s 
representation capability and the manager’s type token 
as parameters. This instruction stores the abstract type field 
from the token into the object’s descriptor. The ASSOCIATE 133 



The STAROS System TYPE instruction thus creates an abstract object from a repre- 
sentation object. 

l Next, the type manager executes a DEAMPLIFY instruction 
to transform its fully-privileged representation capability into 
an abstract capability. The DEAMPLIFY instruction simply 
changes the type field in the capability from “representation” 
to “abstract.” 

l The type manager then returns the abstract capability to the 
caller. This abstract capability identifies the holder as having 
authority to request operations on that object. It cannot be 
used to access the encapsulated representation object directly. 

l To perform an operation on the object, the holder of the ab- 
stract capability calls a type manager procedure, passing the 
abstract capability as a parameter. The type manager then 
executes an AMPLIFY instruction, specifying as operands 
the abstract capability and the type manager’s private type 
token. If the type token’s type matches the object’s abstract 
type, the AMPLIFY instruction turns the abstract capability 
back into a fully-privileged representation capability, allow- 
ing the type manager to access the representation object. 

134 

7.6 Discussion 

It is interesting to note the ways in which STAROS differs 
from the Hydra object model. STAROS limits direct access of 
an object’s representation to the type manager. Two basic 
types of capabilities are provided: representation capabilities 
used to access kernel types, and abstract capabilities passed to 
users of type manager implemented objects. By turning a rep- 
resentation capability into an abstract capability, the type man- 
ager seals the capability with its special type token. Although 
the abstract capability has the object ID sealed within it, it 
cannot be used to access the object’s representation. The type 
token is the key used later to unseal the capability, returning a 
representation capability that can manipulate the object. In 
this way, the type manager always receives full privilege to 
access any of the objects whose representation it controls. 

Type tokens are a simplification of the Hydra amplification 
template. Hydra permitted more precise control of object ac- 
cess; an amplification template could be used to amplify only 
those rights needed by the type management procedure. In 
contrast, the STAROS type token mechanism always gives the 
type manager complete access to one of its objects. 

The type token is thus a special type of capability used to 
seal or unseal another capability. Tokens are also used to iden- 
tify specially privileged processes. Because tokens are capabili- 
ties, they are stored in C-lists and therefore cannot be fabri- 



7.7 For Further 
cated by users. The data capability provides an efficient means Reading 

for transmitting or sharing one word of information without 
creating a single-word object. Data capabilities also allow small 
amounts of data to be sent to a capability mailbox. 

Another interesting feature of STAROS is its return to a 
small object address space. An object’s unique ID, 16 bits in 
length, can be used to directly locate the descriptor for an ob- 
ject, thus simplifying the manipulation of capabilities and ob- 
jects. The structure of the ID implies that the system can sup- 
port a maximum of 8K objects per cluster on each of 8 clusters. 
The ID leads directly to a particular cluster. Of course, this 
scheme makes it difficult to move an object from one cluster to 
another because the address is not location independent. In- 
deed, objects are never relocated in this way. 

Finally, the implementation of operating system functions 
in Kmap microcode had significant performance impact. For 
example, a standard capability operation on STAROS takes 100 
microseconds, while a similar operation on Hydra takes 1 milli- 
second. The ability to access an object’s data portion directly is 
more significant. Once an object is mapped through an ad- 
dressing window (at a cost of about 70 microseconds), data 
words can be accessed directly in several microseconds. The 
Hydra overhead for copying data from and to the object data- 
part is a millisecond. 

7.7 For Further Reading 

A more detailed description of STAROS is provided in 
[Gehringer 811, and a description of CM* switching structure 
and addressing can be found in [Swan 781. The STAROS task 
force concept is presented in [Jones 78b]. Performance meas- 
urements for ST~OS (in comparison with Medusa, a second 
operating system developed on CM*) can be found in [Jones 
SOa], which also discusses CM* and some of its applications. 

135 



The IBM System/38 computer, (Courtesy International 
Business Ma- 

chines.) 




