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Abstract

Material recognition is a fundamental problem in perception that is receiving in-
creasing attention. Following the recent work using Flickr [16, 23], we empirically study
material recognition of real-world objects using a rich set of local features. We use the
Kernel Descriptor framework [5] and extend the set of descriptors to include material-
motivated attributes using variances of gradient orientation and magnitude. Large-Margin
Nearest Neighbor learning is used for a 30-fold dimension reduction. We improve the
state-of-the-art accuracy on the Flickr dataset [16] from 45% to 54%. We also introduce
two new datasets using ImageNet and macro photos, extensively evaluating our set of
features and showing promising connections between material and object recognition.

1 Introduction
Perceiving and recognizing material properties of surfaces and objects is a fundamental as-
pect of visual perception. Understanding materials enables us to interact with a world full
of novel objects and scenes. A robust material recognition solution will find a wide range of
uses such as in context awareness and robotic manipulation.

Visual perception of materials is traditionally studied as texture classification: close-up
views of material samples are carefully captured in a lab with varying viewing angles and
illuminations, such as in the CUReT dataset [9]. Near-perfect accuracy has been reported
(e.g. in [25]). However, studies have also shown that material recognition in the real world
is much more challenging and is far from solved [8].

Most recently, researchers have been trying to push material recognition into the real-
world. The Flickr dataset from MIT [23] selects photos from Flickr as samples for common
material categories, demonstrating the difficulties of material recognition and coming much
closer to real-world conditions and applications. State-of-the-art material recognition [16]
combines a large number of heterogeneous features in a Bayesian framework. However,
there have been virtually no comparative studies. Efforts are clearly needed to explore ques-
tions such as “how hard is real-world material recognition?”, “what are the best features for
material recognition?”, and “how does material recognition connect to object recognition?”.
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Figure 1: We study material recognition in real-world images. We take a discriminative
approach by utilizing a rich set of material-motivated features based on kernel descriptors [5],
dimension-reduced with large margin distance learning. We show extensive evaluations on
the Flickr dataset [16] as well as new datasets using ImageNet and macro photos.

In this work we seek empirical answers to these questions by exploring state-of-the-
art visual features and discriminative learning techniques. Figure 1 shows an overview of
our approach. We utilize a rich set of local features under a single framework of Kernel
Descriptors [5]. We study and evaluate both standard features (shape and color) as well
as material-motivated features (variances of gradient orientation and magnitude) that aim at
capturing different aspects of material properties. We use large-margin distance learning [26]
to reduce descriptor dimensions by a factor of 30, and use efficient match kernels [4] to
compute image-level features for SVM classification.

We show extensive results and comparisons on the MIT Flickr dataset. Our approach
greatly improves the state of the art on real-world material recognition, pushing the accuracy
on the Flickr dataset from 45% to 54%. Moreover, We evaluate how the five kernel descrip-
tors, individually or combined, perform on the material recognition task, and compare that
to the object recognition task.

We also evaluate our approach on two new datasets: a much larger dataset of 7000 images
collected from ImageNet, covering 7 material and 67 object categories, as well as a macro
dataset photographing physical objects with both a low-res webcam and a high-res macro
lens. These datasets allow us to evaluate, in greater depth, real-world material recognition for
everyday objects. In addition, we show interesting connections between material recognition
and object recognition that lead to promising future directions.

2 Related Work
Material perception is a fundamental problem in vision [1] that has been studied from a
number of perspectives. One line of approach seeks to model detailed underlying reflectance
properties of materials using the Bidirectional Reflectance Distribution Function (BRDF)
and Bidirectional Texture Function (BTF) [9, 21].

Material recognition is typically viewed as a texture classification problem. The work
on 3D textons [15] directly addresses material recognition using multiple aligned images of
varying viewpoint and lighting conditions. In recent years, the CUReT dataset [9] has be-
come a standard. CUReT and similar benchmarks have motivated a lot of progress on texture
research, including joint modeling of filter responses [24] and non-parametric patch-based
models [25], with results approaching 100%. On the other hand, there are a lot of challenges
not revealed in these benchmarks, such as scale variation and intra-class variation [7, 8].

A more interesting development in material perception recognition is to move from lab
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conditions into the real world. Sharan et al [23] presented the Flickr material dataset which
used Flickr photos, captured under unknown real-world conditions, to cover common mate-
rial categories found in daily life. The work of Liu et al [16] presented extensive experiments
and analysis on this new challenging task. Our work is directly motivated by these efforts to
bring material recognition closer to real-world scenarios.

Material recognition and object recognition are often perceived as closely related prob-
lems and their solutions share many things in common [3]. The work of Zhang et al [28]
is a good example of how state-of-the-art visual features and classification techniques are
applied to both object and material recognition. There are a few interesting examples in
which material and object recognition interact, such as separating material from shape and
illumination [18] and using reflectance features for object recognition [19].

In image classification, extracting visual features is crucial. SIFT features [17] have been
the most popular and are used in almost all modern visual recognition systems. Recently, Bo
et al [5] proposed a set of kernel descriptors which uses kernel approximations to outperform
SIFT on many benchmarks. We heavily use the kernel descriptor framework in our system.

One separate line of interest is the learning of distance metrics and supervised dimension-
ality reduction. There has been a lot of work on distance metric learning (LMNN) [2, 27]
and dimensionality reduction [22] and its applications in vision [12]. We use large margin
nearest neighbor learning [26] – which has been successful in many problem settings – to
dramatically reduce the dimensionality and computational costs of our kernel descriptors.

3 Material Recognition with Kernel Descriptors

In this work, we want to take one step further toward real-world material perception by
considering material recognition to be a part of the bigger picture of visual recognition. In
particular, we want to study material recognition in the framework of state-of-the-art object
recognition systems, both in terms of processing pipelines and techniques.

The most popular and successful local descriptors are orientation histograms including
SIFT and HOG, which are robust to minor transformations of images. Recent work on
kernel descriptors [5] show that orientation histograms are equivalent to a certain type of
match kernel over image patches. Based on this novel view, a family of kernel descriptors
are proposed, which are able to turn pixel attributes into patch-level features. It has been
shown that kernel descriptors outperform SIFT on many recognition tasks. In this work
we use and extend a family of visual features, the kernel descriptors [5], as the basis for
visual recognition. We evaluate the three kernel descriptors in [5] in the context of material
recognition and also introduce two new kernel descriptors, based on the variance of gradient
magnitude and orientation, to capture local variations found in texture patterns.

3.1 Kernel Descriptors for Material Recognition

Kernel descriptors are a family of patch-level features that are recently introduced for visual
recognition. The basic idea of kernel descriptors is that the similarity between patches can be
formulated as a match kernel, and highly non-linear match kernels can be well approximated
through kernel PCA, leading to kernel descriptors over local image patches.

A standard set of three descriptors, based on three pixel-level features, have been intro-
duced and evaluated for object recognition (see [5] for details):
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1. Shape: using local binary patterns, the shape kernel descriptor captures brightness
variation patterns in a 3x3 neighborhood. Local binary patterns are then combined
with a position kernel and a gradient-based weighting scheme to produce a patch-level
shape descriptor that is very effective for shape-based recognition. We find that the
shape descriptor is particularly useful for material recognition, possibly because of the
high-frequency variations in textures.

2. Gradient: the gradient kernel descriptor uses gradient magnitude and orientation as
the underlying similarity measure. It is again integrated with a position kernel to
produce patch-level features. Somewhat surprisingly, we find that the gradient kernel
descriptor is a lot less effective for material recognition than for object recognition,
possibly because shape per se is less important in the material case.

3. Color: the color kernel descriptor uses RGB color values as the underlying pixel-level
feature. The color descriptor is very useful for materials such as foliage or water.
It is also superior to a color histogram representation, as it behaves much more like
bag-of-words where it implicitly discovers recognition-related structures in the color
space.

Motivated by visual characteristics of different materials, we here introduce two novel
kernel descriptors that aim at capturing local variations:

1. Variance of gradient orientation. We also use the standard deviation of the gradient
orientation. The intuition behind the variance-of-gradient-orientation descriptor is to
capture the difference between a sharp corner versus a soft corner. For instance, metal
is often made to have sharp corners because of molding properties. On the other hand,
plastic objects are a lot more likely to have round corners.

2. Variance of gradient magnitidue. We use the standard deviation of the gradient
magnitude in a 3x3 neighborhood as the underlying pixel-level feature. The motivation
behind this descriptor is that we try to differentiate between a hard edge (e.g. occlusion
boundary) versus a soft edge (e.g. smooth illumination change). A soft edge will have
more smooth transitions in the gradient across a neigborhood. Intuitively, metal tends
to have hard edges and glass, with transparency, would tend to have smooth edges.

More specifically, the shape kernel descriptor is based on the local binary pattern [20]:

Ks(P,Q) = ∑
z∈P

∑
z′∈Q

s̃zs̃z′kb(bz,bz′)kp(z,z′) (1)

where P and Q are patches from two different images, z denotes the 2D position of a pixel
in an image patch (normalized to [0,1]), s̃z = sz/

√
∑z∈P s2

z + εs, sz is the standard deviation
of pixel values in the 3× 3 local window around z, εs a small constant, and bz is a binary
column vector that binarizes the pixel value differences in the 3×3 local window around z.
kb(bz,bz′)= exp(−γb‖bz−bz′‖2) is a Gaussian kernel that measure the similarity between the
census transform around each pixel z and z′; and finally, kp = exp(−γp‖z−z′‖2) is a gaussian
kernel over two-dimensional pixel coordinates. Together, Ks(P,Q) measures similarity of
shape between two patches.

Following the kernel descriptor framework, we extended the shape kernel descriptor by
adding a linear kernel over the variance of the pixel gradient orientation values; a second
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descriptor was constructed by adding a linear kernel over the variance of the pixel gradient
magnitude values.

Let σo
z be the standard deviation of gradient orientation around z (using angles), and σo

z′
the standard deviation of orientation at z′. Let σm

z and σm
z′ be the standard deviations of

gradient magnitude. The gradient orientation kernel KGO, and gradient magnitude kernel,
KGM , are as follows:

KGO(·, ·) = ∑
z

∑
z′

s̃zs̃z′kgo(σ
o
z ,σ

o
z′)kb(bz,bz′)kp(z,z′) (2)

KGM(·, ·) = ∑
z

∑
z′

s̃zs̃z′kgm(σ
m
z ,σm

z′ )kb(bz,bz)kp(z,z′) (3)

where kgo and kgm are Gaussian kernels that measure the similarity of the variance of gradient
orientation and gradient magnitude, respectively.

Match kernels are computationally expensive when image patches are large. Kernel de-
scriptors provide a way to extract compact low-dimensional features from match kernels by
projecting infinite dimensional features to a low dimensional space [5]. The gradient orien-
tation kernel descriptor has the following form:

F t
GO(P) =

dgo

∑
n=1

db

∑
i=1

dp

∑
j=1

α
t
ni j

{
∑
z∈P

s̃zkgo(σ
o
z ,un)kb(bz,vi)kp(z,w j)

}
(4)

where {u}dgo
n=1, {v}db

i=1 and {w}dp
j=1 are uniformly sampled from their support region, dgo,

db and dp are the sizes of basis vectors for kgo, kb and kp, and α t
ni j are projection co-

efficients computed by applying KPCA to the joint basis vector set: {φgo(u1)⊗ φb(v1)⊗
φp(w1), · · · ,φgo(udgo)⊗φb(vdb)⊗φp(wdp)} (⊗ is Kronecker product), with t going through
the dimensions of the descriptor.

Shape, gradient, color, gradient orientation, gradient magnitude kernel descriptors are
strong in their own right and complement one another. Their combination turns out to be
always (much) better than the best individual feature. In section 4 we will show how two
novel kernel descriptors improve material recognition.

3.2 Supervised Dimensionality Reduction

Because kernel descriptors use unsupervised dimensionality reduction and have to support
all possible tasks after this step, the resulting dimensionality needs to be pretty high (for in-
stance, 300 dimensions) in order for accuracy to also remain high. Here, we use supervised
dimensionality reduction to reduce the dimensionality by more than a factor of 30 (from
300) without sacrificing recognition accuracy. In fact, in many cases we also see recog-
nition accuracy improve. To achieve this, we choose to use Large Margin Nearest Neigh-
bor (LMNN) [26], as it has shown to be successful in many computer vision applications.
LMNN is best known as a method of distance metric learning for nearest neighbor classifi-
cation. Given a set of training examples {(xi,yi}N

i=1, LMNN optimally learns a Mahalanobis
distance metric L>L such that “neighboring” examples with the same label are pushed closer
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together, and “imposter” examples with dissimilar labels are pulled further apart

N

∑
i j

ηi j‖L(xi− x j)‖2 +C
N

∑
i j

ηi j(1− yil)ξi jl (5)

s.t.‖L(xi− xl)‖2−‖L(xi− x j)‖ ≤ 1−ξi jl

ξi jl ≥ 0
i, j, l = 1, · · · ,N

where ηi j is 1 if the input x j is a target neighbor of input xi and 0 otherwise.
Nearest neighbor classification then defines the distance between any two examples xi

and x j using the learned Mahalanobic distance metric L:

dL(xi,x j) = ‖L(xi− x j)‖2 (6)

The matrix L is used simply to transform the space in a way that increases nearest neighbor
classification performance. However, initializing L to be rectangular essentially forces the
resulting transformed features into a lower dimensional space. Because the learning of the
distance metric makes use of training labels, LMNN is regarded as a successful method for
supervised dimensionality reduction.

In our experiments, we obtain a feature vector for each patch in an image using the kernel
descriptors described above. To apply LMNN, we represent each image as single feature vec-
tor formed from the average of all of its patches. We choose this averaging scheme because
raw image patches seemed too diverse and devoid of contextual information; when given
as input to LMNN, computation was slow (given the massive number of total patches), and
proved to have too many constraints for LMNN to learn a useful transformation. We then use
these per-image feature vectors as input into LMNN to obtain a rectangular distance metric
that should push similar images (with the same class label) closer together, and dissimilar
images (with different labels) further apart. We show in our experimental results that the
combination of applying LMNN to our kernel descriptors maintains very high performance,
even at extremely low dimensions. For the classification model on top of these features,
we have experimented with a number of them including spatial pyramid matching [13, 14],
naive Bayes nearest neighbor [6], and the efficient match kernel (EMK) [4]. For efficiency
and performance reasons we choose EMK in our experiments.

4 Experimental Evaluations
We use three datasets in our experiments: the MIT Flickr dataset [23]; and two new datasets
we have collected, one using ImageNet and one using macro images. We evaluate all five
kernel descriptors on the three datasets. We use large margin distance learning (LMNN) [26]
to reduce dimensions from 300 to 10. For the Flickr/MIT dataset, we have observed large
variations (up to 2%) due to the small size of the data, and we report average accuracies over
5 trials. For the ImageNet and Lowres-Macro datasets, we report accuracies over 5 trials as
well, by randomly splitting training and testing data.

The Flickr/MIT Dataset. The Flickr dataset is collected at MIT [23] by Sharan et al
using Flickr photos. This includes 1000 images in 10 common material categories, ranging
from fabric, paper, and plastic, to wood, stone, and metal. Liu et al [16] reported state-of-the-
art results by exploring a large set of heterogeneous features and latent Dirichlet allocation.
In all our experiments on Flickr, we do five trials and report the average accuracies.
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Figure 2: Results on MIT/Flickr. (a) Material recognition accuracies of five kernel descrip-
tors with LMNN=10; with object recognition accuracies on Caltech 101 from [5]. (b) Accu-
racy vs dimension in LMNN for the best performing descriptor (shape), compared to kPCA.
(c) Confusion matrix for material recognition using combined features.

Figure 2 (a) shows our results on the Flickr dataset of five kernel descriptors and their
combination. The shape descriptor does very well on material recognition, and so does the
two novel variance kernel descriptors we introduce. They reach 49% accuracy by them-
selves, higher than the best accuracy reported in [16] (45%), and much higher than any of
the single features tested there (35% for SIFT). By combining 5 descriptors, the accuracy is
54%, a significant improvement over [16] toward practical material recognition.

In Figure 2(a) we also include the results from [5] on Caltech 101 [11] on the three
standard kernel descriptors. Interestingly, the gradient descriptor does about the same on
Caltech comparing to the shape descriptor, but much worse on the material task. This may
be due to its inability to capture high-frequency variations or the lack of information in large-
scale shapes (e.g. long, smooth contours). Relatively speaking, color does better on material
than on object recognition. On both Flickr and Caltech, combinations of features only offer
marginal improvements over the best single feature.

Figure 2(b) shows the evaluation of the supervised dimensionality reduction using large
margin nearest neighbor (LMNN), on the best performing descriptor (shape). LMNN per-
forms very well, as there is no drop in accuracy going from 300 dimensions to 10. In com-
parison, kernel PCA is much less effective, losing 12% accuracy when reducing to 10 di-
mensions. This reduction greatly improves computational efficiency of kernel descriptors.

Figure 2(c) shows the confusion matrix of the combined classification. Foliage is among
the easiest to classify, no doubt partly due to its unique color. Metal, on the other hand, is
the hardest, consistent with the findings from [16]. It is followed by fabric and paper, which,
interestingly, differs from that in [16]. In particular, we do fairly well on wood, possibly due
to the combination of color and texture cues used.

ImageNet-Material7 Dataset. We use ImageNet [10], the vast publicly available image
database, to collect a much larger material dataset that focuses on everyday objects. We
chose 7 common material categories, a subset of those in the Flickr dataset (water, leather
and stone are uncommon in household settings and were left out). For each material, we
picked 10 object categories that are commonly associated with that material. 1. For instance,
the material plastic, contained object categories including bottles, keyboards, and (plastic)
cans. Figure 3 shows several examples from this dataset. One key difference between this
dataset and the Flickr dataset is that we do not manually filter out photos that do not “fit” into
a material recognition experiment. The dataset includes 100 images for each object category,
1000 total for each material category, i.e. 10 times the size of the Flickr dataset.

1We only choose object categories that have a unique material type and leave to future work cases that are not.
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Figure 3: Examples from our ImageNet-Material7 dataset. (Left) Examples from the fabric
material category, which consists of 10 object categories such as curtains, bags, and rugs.
(Right) Examples of the plastic category, covering 10 object categories such as bottles, key-
boards and plastic cans. The dataset covers 7 material categories, 10 objects per material,
about 7000 images total. This dataset has both object and material labels for images. It
covers a wide variety of objects and scenes, more challenging than the Flickr dataset.
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Figure 4: Results on ImageNet-Material7. (a) Accuracy of material recognition, comparing
to object recognition. Two setups for material recognition: material 1 uses all the objects in
both training and testing (different images), and material 2 uses half of the object categories
(5 per material) in training and half in testing. (b) Does object recognition help material
recognition? Using outputs from an object recognizer, accuracy on material recognition
(setup 1) is significantly increased. (c) Does material recognition help object recognition?
Assuming that much of the high accuracy on material recognition in Setup 1 is due to object
information (such as shape), we expect that it does not help much – and it is indeed the case.

We set up two experiments: material 1, which uses the same set of objects in training
and testing for material recognition. That is, for each object category with 100 images, we
randomly choose 50 for training and 50 for testing. The training knows what objects to
expect in testing, so we can imagine that a lot of object information, for example boundary
shape, would be included in the models. We also set up material 2, which does not allow
object categories to overlap in training and testing. This way, we minimize the impact of
object knowledge, such as shape, on material recognition.

Figure 4 (a) shows the accuracies for the two experiments on material recognition, as
well as results on the object recognition task. As we expect, material 2, deprived of ob-
ject information, has much lower accuracy than material 1. The two novel variance kernel
descriptors again perform very well. Interestingly, color does relatively well on material
2, outperforming shape and gradient descriptors. Combining the five descriptors provides
a much larger improvement compared to what we achieve on the Flickr dataset, possibly
because the dataset is larger and leaves more room for learning interactions between de-
scriptors.

Because the ImageNet material dataset has both material and object labels, we can ex-
plore interesting questions such as how material and object recognition tasks interact with
each other. As a first step, we do the following experiment under material 1: to evaluate
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(a) (b) (c)
Figure 5: Results on lowres+macro dataset. (a) An example of the macro and lowres images
(of a towel). (b) Material and object recognition accuracy on the macro images. (c) Material
and object recognition accuracy on the lowres images.

how much object recognition helps material recognition, we first run the object recognizer
(using the same setup with kernel descriptors). Then we use the (soft SVM) outputs from
the object recognizer and add them as input to the material recognizer. Similarly we can run
the material recognizer first, and then feed the outputs into the object recognizer.

The results are very encouraging, as shown in Figure 4 (b) and (c). For each of the
five kernel descriptors, by incorporating object recognition outputs, we improve the material
recognition accuracy by about 10%. This may be due to the fact that, instead of training
all the objects (of a certain material) altogether, the system knows how to split the big set
into consistent subsets in object recognition training. It thus has a better chance to discover
distinctive features. On the other hand, material information does not help object recognition
much, probably because in this dataset object information is a lot more specific than material,
and there is also sufficient training data.

Lowres-Macro Dataset. We used 30 physical objects commonly found in everyday life
and took two types of images: one type is low-res, low-quality, and taken with a cheap
webcam at 640x480 resolution. The other type is 24 M pixels (reduced to 6M for easier
processing), taken by a DSLR with a high quality macro lens that provides 1:1 magnification.
Five photos were taken for each object at different viewing angles. We compare material
recognition using both types of images.

Figure 5 (a) is an example of the macro versus lowres images in the dataset, where close-
up macro images are very distinctive from lowres object images. Recognition results are
shown in Figure (b) and (c). Overall, the results look similar, and the two new variance-
based kernel descriptors do well. There are several interesting things worth noting: (1)
object recognition is generally much better with the lowres images, showing the benefits
of whole-object shape information; (2) the two variance-based descriptors seem to capture
texture details better than the gradient descriptor, doing better on macro; (3) color does better
on lowres images, possibly because of the spatial information encoded in the color kernel
descriptor. We believe such a dataset with both macro and lowres images of physical objects
can be very useful in exploring the synergies between material and object recognition.

5 Discussion
We have presented empirical studies of material recognition in the setting of photos of real-
world objects. We use a rich set of local features under the kernel descriptor framework,
combined with large margin nearest neighbor learning. We show that supervised dimension-
ality reduction works very well, reducing descriptor dimensions from 300 to 10. We report
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large improvements on the challenging Flickr material dataset [16], from 45% to 54%.
We have done extensive evaluations on three material datasets of everyday objects, ex-

ploring the use of various kernel descriptors in material recognition and comparing them to
the case of object recognition. Shape and color descriptors demonstrate different characteris-
tics for handling material and object recognition. The two novel variance kernel descriptors
work very well for both recognition tasks.

Our work makes solid progress toward robust material recognition and its applications
under real-world conditions. The interaction between material and object recognition is of
particular interest. We have shown that the same set of local features and classification
techniques work well for both recognition tasks, and there are interesting interactions when
considering the two tasks together. This opens up many promising directions for future work
such as to explore multi-task learning.
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