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Abstract. Kernel fisher discriminant analysis (KFDA) has received extensive 
study in recent years as a dimensionality reduction technique. KFDA always 
encounters an intrinsic singularity of scatter matrices in the feature space, 
namely ‘small sample size’ (SSS) problem. Several novel methods have been 
proposed to cope with this problem. In this paper, kernel uncorrelated discrimi-
nant analysis (KUDA) is proposed, which not only can bear on the SSS prob-
lem but also extract uncorrelated features, a desirable property for many appli-
cations. And then, we have conducted a comparative study on the application of 
KUDA and other variants of KFDA in radar target recognition problem. The 
experimental results indicate the effectiveness of KUDA and illustrate the util-
ity of KFDA on the problem.  

1   Introduction 

Radar target recognition is a difficulty of task in pattern recognition due to the com-
plex movement of radar target, including transformation and rotation. Particularly for 
military application, the target is so incooperative that the samples data is much insuf-
ficient and noisy. A very simple and rapid approach for recognizing radar target is 
through the use of radar range profiles which are essentially one-dimension radar 
images. Due to the high dimensionality of range profiles, it is necessary to perform 
feature extraction at first to reduce the dimensionality and then perform classification 
for recognition. 

Linear discriminant analysis (LDA), also called fisher discriminant analysis is a 
widely-used statistical method for feature extraction and dimension reduction, which 
has been successfully applied in many problems such as face recognition. Because of 
the nature of linearity, LDA is inadequate to describe the complexity in real world 
problems. The nonlinearly clustered structure is not easily captured by LDA. In recent 
years, a category of nonlinear algorithms using the so-called kernel trick have aroused 
considerable interest in the fields of pattern recognition and machine learning [1]. 
Generalization of LDA for solving nonlinear problems based on kernel trick has be-
come an active research area. A group of kernel-based fisher discriminant analysis 
(KFDA) algorithms has been proposed [2]. Extensive empirical comparisons have 
shown that KFDA works as well as other kernel based classifiers. However, because 
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of the implicit high-dimensional nonlinear mapping, the so-called “small sample size” 
(SSS) problem is very common in the feature space. 

Several techniques that might alleviate this problem have been proposed. Mika et 
al. used the regularization technique to make the inner product matrix nonsingular [3]. 
But his method was developed to handle binary classification only. Following that, 
Baudat and Anouar developed a GDA for multiple classification [4]. Yang et al. per-
formed LDA in KPCA feature space to deal with the problem [5]. Recently, Park et 
al. proposed a kernel based disciminant analysis based on the generalized singular 
value decomposition called KDA/GSVD, which works regardless of the nonsingular-
ity of the scatter matrices in either the input space or feature space [6]. 

For feature extraction, the uncorrelated attributes with minimum redundancy are 
highly desirable. Jin et al. proposed uncorrelated LDA (ULDA) for extracting feature 
vectors with uncorrelated attributes [7]. However, the proposed method has two limi-
tations, i.e. the expensive computation of the d generalized eigenvalue problems, 
where d is number of optimal discriminant vectors by ULDA, and the non-
applicability to the SSS problem as the classical LDA. To overcome these limitations, 
Ye et al. presented an efficient algorithm to compute the optimal discriminant vectors 
of ULDA and at the same time addressed the SSS problem of ULDA [8]. In [9], the 
optimization criteria of classical LDA was extended to solve the SSS problem, and 
the solutions to the proposed criterion form a family of algorithms to which ULDA 
and a novel algorithm, namely orthogonal LDA (OLDA) belong. 

In this paper, we present the nonlinear extension of ULDA based on kernel trick, 
called KUDA, which can work regardless of the SSS problem. We also investigate the 
application of KUDA and some KFDA variants in radar target recognition problem. 
Through the experiments, we not only demonstrate that KUDA is an effective nonlin-
ear dimension reduction approach, but also conclude that all the KFDA variants 
achieve higher classification accuracy on radar target recognition problem compared 
with classical LDA. Another surprisingly observation is that a special kernel function, 
Cauchy kernel, has a remarkable performance on the problem. 

2   Related Work on Kernel Fisher Discriminant Analysis 

Classical fisher discriminant analysis aims to find the optimal transformation, which 
maximizes the between-class scatter matrix while minimizing the within-class scatter 
matrix simultaneously. Thus, the cluster structure of the original high-dimensional 
space is preserved in the reduced-dimensional space. But this method fails for a 
nonlinear problem. There have been extensive researches in nonlinear discriminant 
analysis using kernel function, called by a joined name kernel fisher discriminant 
analysis (KFDA). Due to the nonlinear map by a kernel function, the dimension of the 
feature space often becomes much larger than that of the original data space, and as a 
result, the scatter matrices become singular, which is referred to as “small sample 
size” (SSS) problem. In the following, we will review some recent proposed KFDA 
algorithms, all of which attempt to deal with the SSS problem in the feature space. 



406 L. Wang, L. Bo, and L. Jiao 

KPCA plus LDA. PCA plus LDA, a two stage approach, is a popular technique for 
face recognition [5]. In Euclidean space, the theoretical foundation of why LDA can 
be performed in the PCA transformed space has been given in [10]. Since real-world 
problems are always turned into SSS problems by a nonlinear mapping, we can gen-
eralize the result directly to the data in a mapped feature space. At first stage, PCA is 
performed in the feature space. It is equivalent to performing KPCA in the input 
space. And then, in the KPCA transformed space, LDA is performed. 

The biggest challenge in using KPCA plus LDA is that it is difficult to choose an 
optimal reduced dimension m . If m  is chosen large, the eigenvalue problem in the 
discriminant stage will be expensive and unstable because of the high dimensionality. 
If too small, it may not provide sufficient discriminant information. 

GDA. Generalized discriminant analysis (GDA) is proposed for multiclass classifica-
tion. As such for LDA, the purpose of GDA method is to maximize the between class 
scatter matrix while minimizing the within class scatter matrix in the feature space. In 
order to cope with the singularity of scatter matrices in the feature space, the eigen-
vectors decomposition of the kernel matrix is employed, and the singularity is avoided 
by removing some small eigenvalues. As KPCA plus LDA, it is difficult to determine 
the magnitude of eigenvalue that should be removed. 

KDA/GSVD. A recent work on overcoming SSS problem in LDA lies in the use of 
Generalized Singular Value Decomposition (GSVD), named LDA/GSVD [11]. The 
method avoids inversing the within-class scatter matrix, so it computes the solution 
exactly without losing any information. Recently, Park presented the nonlinear exten-
sion of LDA based on kernel functions and the GSVD, named KDA/GSVD. The 
GSVD is employed to solve the generalized eigenvalue problem which is formulated 
in the feature space defined by a nonlinear mapping through kernel functions. The 
adventage of KDA/GSVD is that it can be applied regardless of singularity of the 
scatter matrics both in the original space and in the feature space. The detailed deriva-
tion can be found in [6].  

3   Kernel Uncorrelated Discriminant Analysis 

Uncorrelated linear discriminant analysis (ULDA) [7] was proposed for feature ex-
traction. The feature vectors transformed by ULDA were shown to be statistically 
uncorrelated, which is a desirable property for many applications. ULDA aims to find 
the optimal discriminant vectors that are tS -orthogonal (Two vectors x  and y  are 

tS -orthogonal, if 0T
tx S y = ). In this section, we present a nonlinear extension of 

ULDA based on kernel functions, and solve it using the technique of simultaneous 
diagonalization of the three scatter matrices [9]. 

Let n  denotes the dimension of the original sample space, and r  is the number of 

classes. And let { }1 2, , , lX = x x x  be the training samples set, where n
i X R∈ ⊂x . 

For a given nonlinear mapping φ , the input data space nR  can be mapped into the 
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feature space F : : nR Fφ → . As a result, a sample in the original input space nR  is 

mapped into a potentially much higher dimensional feature vector: ( )φ→x x  in the 

feature space F . To avoid computing the dot products in a high-dimensional feature 
space, kernel trick is introduced to facilitate the computation. A kernel is defined by 

an inner product ( ) ( )( )( , )i j i jk φ φ= ix x x x . 

Let 
(1 ,1 )

( , )i j i l j l
k

≤ ≤ ≤ ≤
⎡ ⎤= ⎣ ⎦K x x  be the kernel matrix. Then, we can consider each col-

umn in K  as a data point in the n –dimensional space. As in the LDA, we define 
between-class scatter matrix and within-class scatter and total scatter matrix in the 
feature space as below: 
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According to the definition of tS -orthogonal discriminant vector, we can define a 

trace optimization problem in the feature space as follows: 

( )1

:
arg   max ( )

t
p t T F

t

T F T F
w b

I
trace

×

−

∈ =
=

G G S G
G G S G G S G . (3) 

Since F F F
t w bS = S + S , the problem above is equivalent to 

( )1

:
arg   max ( )

t
p t T F

t

T F T F
t b

I
trace

×

−

∈ =
=

G G S G
G G S G G S G . (4) 

Note that F
tS  and F

bS  are both singular. In order to solve the problem, a natural ex-

tension is that the inverse of a matrix is replaced by the pseudo-inverse [12]:  

( )
:

arg   max ( )
t

p t T F
t

T F T F
t b

I
trace

×

+

∈ =
=

G G S G
G G S G G S G . (5) 

The above optimization problem can be solved by diagonalizing the three scatter 
matrices F

bS , F
wS , and F

tS  simultaneously.  

Let T
t =K UΣV  be the SVD of tK , where tK  is defined in (2), U  and V  are or-

thogonal, 
  t⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Σ 0
Σ

0     0
 , t t

t
×∈Σ  is diagonal, and ( )F

tt rank= S  . Then, we have 
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2   F T T T T T T Tt
t t t
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= = = = ⎜ ⎟
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Let ( )1 2,=U U U be a partition of U , such that ( )
1 2,n t n n t× × −∈ ∈U U .  (6) can be 

rewritten as 
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Since both F
bS  and F

wS  are positive semidefinite, we thus have  

1 1 1 1     
,  
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According to (7) and (8), we can derive the following equation 

1 1 1 1
1 1 1 1I T F T F

t t b t t w t
− − − −= +Σ U S U Σ Σ U S U Σ . (9) 

Denote 1
1
T

t b
−=B Σ U K  and let T=B PΣQ  be the SVD of B . Then, we get 

1 1 2
1 1
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where 2
1 1 1( , , ),  0b t q q tdiag λ λ λ λ λ λ+≡ = ≥ ≥ > = = =Σ Σ , and ( )F

bq rank= S . 

It follows from (9) that 
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According to (9), (10), and (11), F
bS , F

wS and F
tS  can be diagonalized as 
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where 
-1
t⎛ ⎞
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⎝ ⎠

Σ P   0
X U

0          I
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Let qX  be the matrix consisting of the first q  columns of X , where  

( )F
bq rank= S . F

q=G X  is the solution to the optimization problem (5) [9]. Conse-

quently, kernel uncorrelated discriminant analysis (KUDA) algorithm can be de-
scribed as the following. 
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Algorithm. KUDA 

Given a data matrix 1[ , , ] n l
lX ×= ∈Rx x  with r  classes and a 

kernel function k  
1. Compute n r

b
×∈RK , n n

w
×∈RK , and  n n

t
×∈RK  as in (2); 

2. Compute the reduced SVD of tK  as 1 1
T

t t=K U Σ V ; 

3. 1
1
T

t b
−=B Σ U K ; 

4. Compute SVD of B  as T=B PΣQ ; ( )q rank= B ; 

5. 1
1 t

−=X U Σ P ; 

6. F
q=G X ; 

4   Performance Comparison on Radar Target Recognition 

Radar target recognition refers to the detection and recognition of target signatures 
using high-resolution range profiles, in our case, in inverse synthetic aperture radar. A 
radar image represents a spatial distribution of microwave reflectivity that is sufficient 
to characterize the illuminated target. Range resolution allows the sorting of reflected 
signals on the basis of range. When range-gating or time-delay sorting is used to inter-
rogate the entire range extent of the target space, a one-dimensional image, called a 
range profile, will be generated. 

Our task is to recognize the range profile of the three different plane models, i.e. J-
6, J-7 and B-52, based on experimental data acquired in a microwave anechoic cham-
ber. The dimensionality of the range profiles is 64. The full data set is split into 363 
training samples and 721 test samples. Training samples consist of 104 1-dimensional 
images of J-6, 151 1-dimensional images of J-7 and 108 1-dimensional images of B-
52. Test samples consist of 207 1-dimension images of J-6, 300 1-dimension images 
of J-7 and 214 1-dimension images of B-52. 

Table 1. Number of misclassification of several classifiers 

Method Recognition Rate Error Number 
LDA 94.73 38 
GDA 98.61 10 

KPCA-LDA 99.69 2 
KDA/GSVD 99.71 2 

KUDA 99.86 1 

A simple classifier, k-nearest neighbor (KNN), is employed to evaluate the quality 
of different dimension reduction algorithms. Leave-one-out error is used to find the 
best number of neighbor k. The experimental results for several methods using an 
optimal kernel function are summarized in Table 1. For KPCA-LDA, we find the  
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optimal value of the principle components on an interval. From Table 1, we can see 
that only one wrong recognition occur in KUDA, and only 2 in KDA/GSVD and 
KPCA-LDA. This indicates that these algorithms proposed to bear on SSS problem 
are superior to LDA, GDA, and have similar high performance on the radar target 
recognition problem. 

After performing discriminant analysis, the dimensionality of range files is reduced 
to 2 because the class number is three. Therefore, these real world data can be visual-
ized in Figure 2. From the projection image of low dimension, we can see that LDA is 
not good enough because of the intrinsic nonlinearity for the problem, and on the 
contrary, the variants of kernel based discriminant analysis preserve the information 
for classification well. 

  

Fig. 2. 2-dimensional visualization of the radar range profiles with kernel (left) and without 
kernel (right) 

Table 2. Performance of variants of kernel discriminant analysis with different kernels 

Method RBF Coswave Cauchy 
GDA 98.61 98.20 98.61 

KPCA-LDA 97.23 97.09 99.69 
KDA/GSVD 97.45 97.05 99.71 

KUDA 97.23 97.09 99.86 

We also compare the performance of variants of kernel fisher discriminant analysis on  

three popular kernels, i.e. Gaussian RBF kernel ( )
2

2
, exp( )

2
k

p

− −
=

x y
x y , Coswave kernel 

( ) 2
,

p
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+ −
x y
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2

2
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2
k

p p

−−= × −
x yx y

x y , 

where p R∈ . The results are summarized in Table 2. From the experimental results, 

we find unexpectedly that the Cauchy kernel has a predominant performance on the 
problem. 
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5   Conclusion 

In this paper, we propose a new kernel fisher discriminant analysis, namely KUDA to 
deal with the SSS problem in the feature space. And then, we describe the application 
of KUDA and some other KFDA variants in radar target recognition problem. Ex-
periment results have shown that KUDA and the KFDA variants developed for solv-
ing the SSS problem perform significantly better than the classical LDA. Further-
more, it is worth to mention that a specific kernel, i.e. Cauchy kernel, performs best 
on the problem. These observations are expected to be useful when we attempt to 
apply kernel discriminant analysis to other target recognition problems. 
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