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Abstract. Hard margin support vector machines (HM-SVMs) have a risk of get-
ting overfitting in the presence of the noise. Soft margin SVMs deal with this 
problem by the introduction of the capacity control term and obtain the state of 
the art performance. However, this disposal leads to a relatively high computa-
tional cost. In this paper, an alternative method, greedy stagewise algorithm, 
named GS-SVMs is presented to deal with the overfitting of HM-SVMs without 
the introduction of capacity control term. The most attractive property of GS-
SVMs is that its computational complexity scales quadratically with the size of 
training samples in the worst case. Extensive empirical comparisons confirm the 
feasibility and validity GS-SVMs. 

1   Introduction 

Hard margin support vector machines have a risk of getting overfitting in the presence 
of the noise [1]. To deal with this problem, soft margin SVMs [2] introduce the capac-
ity control parameter that allows a little training error to obtain the large margin. This 
is a highly effective mechanism for avoiding overfitting, which leads to good gener-
alization performance. Though very successful, we can identify some shortages of 
soft margin SVMs: 

① The training procedure of soft margin SVMs amounts to solving a constrained 
quadratic programming. Although the training problem is, in principle, solvable, 
in practice it is intractable by the classical optimization techniques, e.g. interior 
point method because their computational complexity usually scales cubically 
with the size of training samples. 

② Capacity control parameter depends on the task at hand; hence there is no fool-
proof method for determining it before training. Usually, we have to resort to a 
cross validation procedure, which is wasteful in computation [3]. 

In the past few years, a lot of fast iterative algorithms were presented for tackling 
the problem ①. Probably, the most famous method among them is sequential minimi-
zation optimization algorithm (SMO), which is proposed by Platt [4] and further im-
proved by Keerthi [5]. Some other examples include SVMlight [6], SimpleSVM [7], 
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SVMTorch [8], and so on. These algorithms proved to be effective and boosted the 
development of SVMs. 

In this paper, an alternative method, greedy stagewise algorithm, named GS-
SVMs is presented to deal with the overfitting of HM-SVMs. Instead of employing 
the capacity control term, GS-SVMs attempts to control the capacity of hypothesis 
space by algorithm itself. In summary, the proposed algorithms possess the following 
two attractive properties:  

① The computational complexity of GS-SVMs is ( )O nl , where l  and n  are the 

size of training samples and support vectors, respectively. Even in the worst 
situation that all the training samples are the support vectors, the computational 

complexity of GS-SVMs is only ( )2O l . 

② No extra capacity control parameter is required. 

2   Greedy Stagewise Algorithm for SVMs 

The Wolfe dual of hard margin SVMs 
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can be regarded as a loss function induced by reproducing kernel Hilbert space norm. 
This allows us to approximate it using greedy algorithm. Due to the room limitation, 
the detailed interpretation is ignored and the interested reader can refer to [9]. Though 
HM-SVM is, in principle, solvable by the classical optimization technique, in practice 
it suffers from two serious problems: (1) their computational complexity usually 
scales cubically with the size of training samples; (2) there often is a risk of getting 
overfitting due to no capacity control term. Here, we will deal with the two problems 
by greedy stagewise algorithm, which attempts to approximate (1) quickly while 
avoids the overfitting. Greedy stagewise algorithm [10] can be described as the  
following. 
For 1,2,m l= L , 
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and then 

( )1 ,
mm m mf f w K β−= + x x .    (3) 

where ( )L �  denotes loss function, 0 0f ≡  and the constraint terms guarantee that 

each basis function is used once at most.  
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For SVMs, w  takes the form , 0yβα α ≥ . Using the loss function (1) we have 
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Note that the first two terms of (4) can be ignored. Define the gradient vector 
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We can reformulate (4) as 
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(6) can be solved in two steps. In the first step, we fix β  and compute the minimal 

value 1mhβ
−  of (6) with respect to α . In the second step, we compute mβ  by minimiz-

ing 1mhβ
−  with respect to β , and then compute mα  in terms of mβ . Fixing β , we 

have the subproblem 
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Since (7) is a single variable quadratic programming, we can give its analytical  
solution, i.e. 
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According to the positive definite property of kernel function, we have 

( ), 0K β β >x x . Thus (8) can be further simplified as 
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Combining (7) and (9), we get 
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In GS-SVMs, each basis function corresponds to a specified training sample and vice 

versa. Hence, if the basis function ( ),K βx x  does not appear in mf , we say its corre-

sponding training sample βx  unused. From (10), we can derive that if the gradients of 

all the unused training samples are larger than zero, the loss function (1) will stop 
decreasing. Hence we will terminate the algorithm if the above condition is satisfied. 

Considering (9) and (10), we can obtain the parameter pairs ( ),m mα β  by the fol-

lowing equations 
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Thus the greedy stagewise algorithm for SVMs (GS-SVMs) can be described as 

Algorithm 1: GS-SVMs 

1. Set 0 ( ) 0f =x ,α = 0 , 0 = −g 1 , 0 = −h 1 , {1, 2, }Q l= L , P = ∅ ; 

2. For 1m =  to l , do: 
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5.   { }mP P β= ∪ , { }mQ Q β= − ; 

6.   ( )1 , ,
m m

m m
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7. Update 1,mh Qβ β− ∈  according to (4.9); 

8.     ( )1( ) ( ) ,
m mm m mf f y Kβ βα−= +x x x x ; 

9. End For 
10. End Algorithm 

Fig. 1. Pseudo code of GS-SVMs 

Updating ,k Qβ β ∈g  is an operation of cost ( )O l  and successive n  update incurs a 

computational cost of ( )O nl , where n  is the size of support vector. Besides that, the 

memory requirement of GS-SVMs is only ( )O l . 
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3   Empirical Comparison 

In all the experiments, the kernel matrix is constructed by Gaussian kernel 

( ) ( )2
, expi j i jK θ= − −x x x x . Following [4], we compare the number of kernel 

evaluations of GS-SVMs and SMO, which is an effective measure of the algorithm’s 
speed. For the sake of fair comparison, we use the same data sets and kernel parame-
ter as in [4]. Note that the number of kernel evaluations of SMO in Table 1. denotes 
the average number under the different capacity control parameters.  

Table 1. Number of kernel evaluations of GS-SVMs and SMO. Each unit corresponds to 610  
kernel evaluations. SMO-1 and SMO-2 correspond to SMO-Modification 1 and SMO-
Modification 2 in [5] 

Problems Size θ  Dim SMO-1 SMO-2 GS-SVMs 
Adult-1 1605 0.05 123 29.518 17.375 0.845 
Adult-4 4781 0.05 123 344.977 231.349 6.791 
Adult-7 16100 0.05 123 856.212 698.864 73.014 
Web-1 2477 0.05 300 11.543 11.187 0.439 
Web-4 7366 0.05 300 79.415 79.008 3.224 
Web-7 24692 0.05 300 691.419 703.495 31.981 

From Table 1, we can see that GS-SVMs obtain the speedup range from 10 to 30 
on the different data sets. In order to validate the performance of GS-SVMs, we 
compare it with hard magin and Soft margin SVMs on the fifteen benchmark data 
sets that are from UCI machine learning repository [11]. One-against-one method is 
used to extend binary classifiers to multi-class classifiers. 

On each data set, ten-fold cross validation is run. The average accuracy of ten-fold 
cross validation is reported in Table 2. For each training-test pair, ten-fold cross vali-
dation is performed on training set for tuning free parameters. The detailed experi-
ment setup is the following: 

(a) For soft margin SVMs, Kernel width and capacity control parameter are chosen 
from intervals ( )log 2 [ 8, 7, ,7,8]θ = − − L  and ( )log 2 [ 1,0,1, 8,9,10]C = − L . 

This range is enough for our problems. The number of trainings on each train-
ing-test pair needed by this method is 10 17 12 2040× × = . 

(b) For GS-SVMs and HM-SVMs, Kernel width is chosen from inter-
val ( )log 2 [ 8, 7, ,7,8]θ = − − L . The number of trainings on each training-test pair 

needed by this method is 10 17 170× = . 

The two-tailed t-tests also indicate that GS-SVMs are significantly better than 
SVMs on Glass and worse than SVMs on Liver. As for the remaining data sets, GS-
SVMs and SVMs obtain the similar performance. Hence we have the conclusion that 
GS-SVMs are significantly better in speed than SMO and comparable in performance 
with SMO.  
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Tabel 2. Accuracy of GS-SVMs, HM-SVMs and SVMs 

Problems Size Dim Class GS-SVMs HM-SVMs SVMs 
Australian 690 15 2 84.93 78.55 84.49 
German 1000 20 2 74.20 69.30 75.40 

Glass 214 9 6 71.54 68.66 66.81 
Heart 270 13 2 83.70 76.67 83.23 

Ionosphere 351 34 2 94.00 94.00 94.02 
Iris 150 4 3 95.33 92.00 96.00 

Liver 345 6 2 66.03 61.69 71.29 
Page 5473 10 4 96.45 96.50 96.93 

Diabetes 768 8 2 77.21 70.55 77.08 
Segment 2310 18 7 97.32 96.84 97.01 

Splice 3175 60 3 96.72 96.31 96.25 
Vowel 528 10 11 98.29 99.05 99.05 
WDBC 569 30 2 97.72 96.49 97.54 
Wine 178 13 3 98.89 96.64 98.89 
Zoo 101 10 7 97.09 96.09 96.09 

Mean / / / 88.63 85.96 88.67 

4   Conclusion 

This paper proposes a greedy stagewise algorithm, named GS-SVMs to deal with the 
overfitting of HM-SVMs. Empirical comparisons confirm the feasibility and validity 
of GS-SVMs. 
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