
Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 35–46, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Selecting a Reduced Set for Building 
Sparse Support Vector Regression in the Primal 

Liefeng Bo, Ling Wang, and Licheng Jiao 

Institute of Intelligent Information Processing 
Xidian University, Xi’an 710071, China 
{blf0218, wliiip}@163.com 

http://see.xidian.edu.cn/graduate/lfbo 

Abstract. Recent work shows that Support vector machines (SVMs) can be 
solved efficiently in the primal. This paper follows this line of research and 
shows how to build sparse support vector regression (SVR) in the primal, thus 
providing for us scalable, sparse support vector regression algorithm, named 
SSVR-SRS. Empirical comparisons show that the number of basis functions re-
quired by the proposed algorithm to achieve the accuracy close to that of SVR 
is far less than the number of support vectors of SVR. 

1   Introduction 

Support vector machines (SVMs) [1] are powerful tools for classification and regres-
sion. Though very successful, SVMs are not preferred in application requiring high 
test speed since the number of support vectors typically grows linearly with the size 
of the training set [2]. For example in on-line classification and regression, in addition 
to good generalization performance, high test speed is also desirable. Reduced set 
(RS) methods [3-4] have been proposed for reducing the number of support vectors. 
Since these methods operate as a post-processing step, they do not directly approxi-
mate the quantity we are interested in. Another alternative is the reduced support 
vector machines (RSVM) [5], where the decision function is expressed as a weighted 
sum of kernel functions centered on a random subset of the training set. Though sim-
ple and efficient, RSVM may result in a lower accuracy than the reduced set methods 
when their number of support vectors is kept in the same level. 

Traditionally, SVMs are trained by using decomposition techniques such as 
SVMlight [6] and SMO [7], which solve the dual problem by optimizing a small 
subset of the variables each iteration. Recently, some researchers show that both 
linear and non-linear SVMs can be solved efficiently in the primal. As for linear 
SVMs, finite Newton algorithm [8-9] has proven to be more efficient than SMO. As 
for non-linear SVM, recursive finite Newton algorithm [10-11] is as efficient as the 
dual domain method. Intuitively, when our purpose is to compute an approximate 
solution, the primal optimization is preferable to the dual optimization because it 
directly minimizes the quantity we are interested in. On the contrary, introducing 
approximation in the dual may not be wise since there is indeed no guarantee that 
an approximate dual solution yields a good approximate primal solution. Chapelle 
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[10] compares the approximation efficiency in the primal and dual domain and 
validates this intuition. 

In this paper, we develop a novel algorithm, named SSVR-SRS for building the re-
duced support vector regression. Unlike our previous work [11] where recursive finite 
Newton algorithm is suggested to solve SVR accurately, SSVR-SRS aims to find a 
sparse approximation solution, which is closely related to SpSVM-2 [12] and kernel 
matching pursuit (KMP) [13], and can be regarded as extension of the key idea of 
matching pursuit to SVR. SSVR-SRS iteratively builds a set of basis functions to 
decrease the primal objective function by adding one basis function at one time. This 
process is repeated until the number of basis functions has reached some specified 
value. SSVR-SRS can find the approximate solution at a rather low cost, i.e. 2( )O nm  
where n  is the number of training samples and m  the number of all picked basis 
functions. Our experimental results demonstrate the efficiency and effectiveness of 
the proposed algorithms. 

The paper is organized as follows. In Section 2, support vector regression in the 
primal is introduced. SSVR-SRS is discussed in Section 3. Comparisons with RSVM, 
LIBSVM 2.82 [14] and the reduced set method are reported in Section 4. Some con-
clusions and remarks are given in Section 5. 

2   Support Vector Regression in the Primal 

Consider a regression problem with training samples { } 1
,

n

i i i
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x  where ix  is the input 

sample and iy  is the corresponding target. To obtain a linear predictor, SVR solves 
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Eliminating the slack variables { }
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 and dividing (1) by the factor C, we get the 

unconstrained optimization problem 
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where 
1

2C
λ =  and ( ) ( )max ,0

p
l r rε ε= − . The most popular selections for p are 1 

and 2. For convenience of expression, the loss function with p=1 is referred to as 
insensitive linear loss function (ILLF) and that with p=2 insensitive quadratic loss 
function (IQLF). 
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Non-linear SVR can be obtained by using the map ( )φ i  which is determined im-

plicitly by a kernel function ( ) ( ) ( ),i j i jk φ φ=x x x xi . The resulting optimization is 
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where we have dropped b for the sake of simplicity. Our experience shows that the 
generalization performance of SVR is not affected by this drop. According to the 
representer theory [15], the weight vector w  can be expressed in terms of training 
samples, 
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Substituting (4) into (3), we have 
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Introducing the kernel matrix K  with ( ),ij i jk=K x x  and iK  the i-th row of K , (5) 

can be rewritten as  
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A gradient descent algorithm is straightforward for IQLF; however, it is not appli-
cable to ILLF since it is not differentiable. Inspired by the Huber loss function [16], 
we propose an insensitive Huber loss function (IHLF)  
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to approximate ILLF. We emphasize that Δ  is strictly greater than ε , ensuring that 
IHLF is differentiable. 

The properties of IHLF are controlled by two parameters: ε  and Δ . With certain 
ε  and Δ  values, we can obtain some familiar loss functions: (1) for 0ε =  and an 
appropriate Δ , IHLF becomes the Huber loss function; (2) for 0ε =  and Δ = ∞ , 
IHLF becomes the quadratic (Gaussian) loss function; (3) for 0ε =  and εΔ → , 
IHLF approaches the linear (Laplace) loss function; (4) for 0 ε< < ∞  and Δ = ∞ , 
IHLF becomes the insensitive quadratic loss function; and, (5) for 0 ε< < ∞  and 

εΔ → , IHLF approaches the insensitive linear loss function. 
Introducing IHLF into the optimization problem (6), we have the following primal 

objective function: 
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3   Selecting a Reduced Set in the Primal 

In a reduced SVR, it is desirable to decrease the primal objective function as much as 
possible with as few basis functions as possible. The canonical form of this problem is 
given by 
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where 
0
i  is the 0l  norm, counting the nonzero entries of a vector and m  is the 

specified maximum size of basis functions. However, there are several difficulties in 
solving (9). First, the constraint is not differentiable, so gradient descent algorithms 
can not be used. Second, the optimization algorithms can become trapped in a shallow 
local minimum because there are many minima to (9). Finally, an exhaustive search 
over all possible choices (

0
m≤β ) is computational prohibitive since the number of 

possible combinations is 
1

m

i

n

m=

⎛ ⎞
⎜ ⎟
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∑ , too large for current computers. 

Table 1. Flowchart of SSVR-SRS 

Algorithm 3.1 SSVR-SRS 

1. Set P = ∅ , { }1,2, ,Q n= , =β 0 ; 

2. Select a new basis function from Q ; let s  be its index and set 

{ }P P s= ∪  and { }Q Q s= − ; 

3. Solve the sub-problem with respect to Pβ  and the remaining variables 

are fixed at zero. 
4. Check whether the number of basis functions is equal to m , if so, 

stop; otherwise go to step 2. 

In this paper, we will compute an approximate solution using a matching pursuit-
like method, named SSVR-SRS, to avoid optimizing (9) directly. SSVR-SRS starts 
with an empty set of basis functions and selects one basis function at one time to 
decrease the primal objective function until the number of basis functions has reached 
a specified value. Flowchart of SSVR-SRS is shown in Table 1. The final decision 
function takes the form 

( ) ( ),i i
i P

f kβ
∈

=∑x x x .    (10) 

The set of the samples associated with the non-zero weights is called reduced set. 
Because here the reduced set is restricted to be a subset of training set, we consider 
this method as “selecting a reduced set”. 
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3.1   Selecting Basis Function 

Let PK  the sub-matrix of K  made of the columns indexed by P , XYK  the sub-

matrix of K  made of the rows indexed by X  and the columns indexed by Y  and Pβ  

the sub-vector indexed by P . 
How do we select a new basis function from Q ?  A natural idea is to optimize the 

primal objective function with respect to the variables Pβ  and jβ  for each j Q∈  and 

select the basis function giving the least objective function value. The selection proc-
ess can be described as a two-layer optimization problem, 
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This basis function selection method, called pre-fitting, has appeared in kernel match-
ing pursuit for least squares problem. Unfortunately, pre-fitting needs to solve the 

1P +  dimensional optimization problem Q  times, the cost of which is obviously 

higher than that of optimizing the sub-problem. 
A cheaper method is to select the basis function that best fits the current residual 

vector in terms of a specified loss function. This method originated from matching 
pursuit [17] for least squares problem and was extended to an arbitrary differentiable 
loss function in gradient boosting [18]. However, our case is more complicated due to 
the occurrence of the regularization term, and thus we would like to select the basis 
function that fits the current residual vector and the regularization term as well as 
possible. Let the current residual vector be 
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where opt
Pβ  is the optimal solution obtained by solving the sub-problem, and the index 

of basis function can be obtained by solving the following two-layer optimization 
problem, 
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Note that unlike pre-fitting, here opt
Pβ  is fixed. 

( ), jLε βΔ  is one dimensional, piecewise quadratic function and can be minimized 

exactly. However, in practice, it is not necessary to solve it precisely. A simpler 

method is to compare the square of the gradient of ( ), jLε βΔ  at 0jβ =  for all j Q∈ , 

( )( ) ( )22
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where ( )sign z  is 1 if 0z ≥ ; otherwise ( )sign z  is -1. To be fair, the square of the 

gradient should be normalized to 
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. This is an effective criterion because the gradi-

ent measures how well the j-th basis function fits the current residual vector and the 
regularization term. If set 0ε = , Δ = ∞  and 0λ = , this criterion is exactly the one in 
the back-fitting version of KMP. 

If each j Q∈  is tried, then the total cost of selecting a new basis function is 

( )2O n , which is still more than what we want to accept. This cost can be reduced to 

( )O n  by only considering a random subset O  of Q  and selecting the next basis 

function only from O  rather than performing an exhaustive search over Q , 

( )2

22

2 2

arg min
T

j

j O Q
j

s
∈ ⊂

⎛ ⎞−⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

g K

g K
.    (17) 

In the paper, we set 100O = . 

3.2   Optimizing the Sub-problem 

After a new basis function is included, the weights of basis functions, Pβ  are no 

longer optimal in terms of the primal objective function. This can be corrected by the 
so-called back-fitting method, which solves the sub-problem containing a new basis 
function and all previously picked basis functions. Thus, the sub-problem is a P  

dimensional minimization problem expressed as 
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( ), PLε Δ β  is a piecewise quadratic convex function and continuously differentiable 

with respect to Pβ . Although ( ), PLε Δ β  is not twice differentiable, we still can use the 

finite Newton algorithm by defining the generalized Hessian matrix [11]. 
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and the active matrix  

( ) ( ) ( ){ }1 , ,P P n Pdiag w w=W β β β      (21) 

by ( ) ( )2
i P i Pw s=β β . The gradient of ( ), PLε Δ β  with respect to Pβ  is 
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The generalized Hessian is 
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The Newton step at the k-th iteration is given by 
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The step size t  can be found by a line search procedure that minimizes the one di-
mensional piecewise-smooth, convex quadratic function. Since the Newton step is 
much more expensive, the line search does not add to the complexity of the algorithm. 

3.3   Computational Complexity 

In SSVR-SRS, the most time-consuming operation is computing the Newton step 
(24). When a new basis function is added, it involves three main steps: computing the 
column sK , which is ( )O n , computing the new elements of the generalized Hessian, 

which is ( )O nm  and inverting the generalized Hessian that can be computed in an 

incremental manner [12], which is ( )2O m . When the active matrix ( )PW β  is 

changed, the inversion of the generalized Hessian needs to be updated again, which is 

( )2O cm . In most cases, c  is a small constant, so it is reasonable to consider ( )O nm  

as an expensive cost since n m . Adding up these costs till m  basis functions are 

chosen, we get an overall complexity of ( )2O nm . 
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4   Experiments 

In this section, we evaluate the performance of SSVR-SRS on five benchmark data 
sets and compare them with SVM, the reduced set method and reduced SVM.  

4.1   Experimental Details 

SVR is constructed based on LIBSVM 2.82 where the second order information is 
used to select the working set. RSVM is implemented by our own Matlab code. The 

reduced set method determines the reduced vectors { } 1

m

i i=
z  and the corresponding 

expansion coefficients by minimizing 
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j j
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where ( )i i
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=∑w x  is the weight vector obtained by optimizing (5) and S  is the 

index set of support vectors. Reduced set selection (RSS) is parallel to SSVR-SRS 
and determines a new basis function by 
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Five benchmark data sets: Abalone, Bank8fh, Bank32fh, House8l and Friedman3 
are used in our empirical study. Information on these benchmark data sets is summa-
rized in Table 2. These data sets have been extensively used in testing the perform-
ance of diversified kinds of learning algorithms. The first four data sets are available 
from Torgo’s homepage: http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html. 
Friedman3 is from [19]. The noise is adjusted for a 3:1 signal-to-noise ratio. 

All the experiments were run on a personal computer with 2.4 GHz P4 processors, 
2 GB memory and Windows XP operation system. Gaussian kernel 

( ) ( )2

2
, expi j i jk γ= − −x x x x  is used to construct non-linear SVR. The free parame-

ters in the algorithms are determined by 10-fold cross validation except that Δ  in the  
 

Table 2. Information on benchmark data sets 

Problem Training Test Attribute m  
Abalone 3000 1177 8 50 
Bank8fh 5000 4192 8 50 
Bank32h 5000 4192 32 150 
House8l 15000 7784 8 300 

Friedman3 30000 20000 4 240 
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insensitive Huber loss function is fixed to 0.3. For each training-test pair, the training 
samples are scaled into the interval [-1, 1], and the test samples are adjusted using the 
same linear transformation. For SSVR-SRS, RSS and RSVM, the final results are 
averaged over five random implementations. 

4.2   Comparisons with LIBSVM 2.82 

Table 3-4 reports the generalization performance and the number of basis functions of 
SVR and SSVR-SRS. As we can see, compared with SVR, SSVR-SRS achieves the 
impressive reduction in the number of basis functions almost without sacrificing the 
generalization performance. 

Table 3. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets. 
Error denotes root-mean-square test error, Std denotes the standard deviation of test error and 
NBF denotes the number of basis functions. For SSVR-SRS, λ  is set to be 1e-2 on the first 
four data sets and 1e-3 on Friedman3 data set. 

Error SVR SSVR-SRS 
2.107 Error NBF Error Std NBF 

Abalone 2.106 1152 2.107 0.006783 18 
Bank8fh 0.071 2540 0.071 0.000165 40 

Bank32nh 0.082 2323 0.083 0.000488 83 
House8l 30575 2866 30796 126.106452 289 

Friedman3 0.115 9540 0.115 0.000211 203 

Table 4. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets. 
For SSVR-SRS, λ  is set to be 1e-5. 

SVR SSVR-SRS Problem 
Error NBF Error Std NBF 

Abalone 2.106 1152 2.106 0.012109 17 
Bank8fh 0.071 2540 0.071 0.000259 44 

Bank32nh 0.082 2323 0.083 0.000183 119 
House8l 30575 2866 30967 219.680790 282 

Friedman3 0.115 9540 0.115 0.000318 190 

4.3   Comparisons with RSVM and RSS 

Figure 1-5 compare SSVR-SRS, RSVM and RSS on the five data sets. Overall, 
SSVR-SRS beats its competitors and achieves the best performance in terms of the 
decrease of test error with the number of basis functions. In most cases, RSVM is 
inferior to RSS, especially in the early stage. An exception is House8l data set where 
RSVM gives smaller test error than RSS when the number of basis functions is be-
yond some threshold value. SSVR-SRS significantly outperforms RSS on Bak32nh, 
House8l and Friedman3 data sets, but the difference between them becomes very 
small on the remaining data sets. SSVR-SRS is significantly superior to RSVM on  
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Fig. 1. Comparisons of SSVR-SRS, RSVM and RSS on Abalone 

 

Fig. 2. Comparisons of SSVR-SRS, RSVM and RSS on Bank8fh 

 

Fig. 3. Comparisons of SSVR-SRS, RSVM and RSS on Bank32nh 

 

Fig. 4. Comparisons of SSVR-SRS, RSVM and RSS on House81 
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Fig. 5. Comparisons of SSVR-SRS, RSVM and RSS on Friedman3 

four of the five data sets and comparable on the remaining data set. Another observa-
tion from Figure 1-5 is that SSVR-SRS with small regularization parameter starts 
over-fitting earlier than that with large regularization parameter, e.g. Abalone data set. 

One phenomenon to note is that the reduced set selection has a large fluctuation in 
the generalization performance in the early stage. This is because the fact that, the 
different components of the weight vector W  usually have a different impact on the 
generalization performance and therefore the better approximation to W  does not 
necessarily leads to the better generalization performance. The fluctuation is allevi-
ated with the increasing number of basis functions because the large number of basis 
functions can guarantee that each component of W  is approximated well. 

4.4   Training Time of SSVR-SRS 

We do not claim that SSVR-SRS is more efficient than some state-of-the-art training 
decomposition algorithms such as SMO. Our main motivation is to point out that 
there is a way that can efficiently build a highly sparse SVR with the guaranteed gen-
eralization performance. In practice, depending on the number of basis functions, 
SSVR-SRS can be faster or slower than the decomposition algorithms. It is not fair to 
directly compare the training time of our algorithm with that of LIBSVM 2.82 since 
our algorithm is implemented by Matlab and however LIBSVM 2.82 by C++. But, we 
still list the training time in Table 5 as a rough reference. 

Table 5. Training time of four algorithms on benchmark data sets 

Problem SSVR-SRS RSVM LIBSVM2.82 RSS 
Abalone 5.73 2.59 1.70 2.85 
Bank8fh 7.39 4.61 8.03 9.65 
Bank32h 47.63 31.03 17.55 24.76 
House8l 416.92 391.47 98.38 118.79 

Fiedman3 565.59 462.57 1237.19 1276.42 

5   Concluding Remarks 

We have presented SSVR-SRS for building sparse support vector regression. Our 
method has three key advantages: (1) it directly approximates the primal objective 
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function and is more reasonable than the post-processing methods; (2) it scales well 
with the number of training samples and can be applied to large scale problems; (3) it 
simultaneously considers the sparseness and generalization performance of the result-
ing learner. 

This work was supported by the Graduate Innovation Fund of Xidian University 
(No. 05004). 
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