
Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 35–46, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Selecting a Reduced Set for Building
Sparse Support Vector Regression in the Primal

Liefeng Bo, Ling Wang, and Licheng Jiao

Institute of Intelligent Information Processing
Xidian University, Xi’an 710071, China
{blf0218, wliiip}@163.com

http://see.xidian.edu.cn/graduate/lfbo

Abstract. Recent work shows that Support vector machines (SVMs) can be
solved efficiently in the primal. This paper follows this line of research and
shows how to build sparse support vector regression (SVR) in the primal, thus
providing for us scalable, sparse support vector regression algorithm, named
SSVR-SRS. Empirical comparisons show that the number of basis functions re-
quired by the proposed algorithm to achieve the accuracy close to that of SVR
is far less than the number of support vectors of SVR.

1 Introduction

Support vector machines (SVMs) [1] are powerful tools for classification and regres-
sion. Though very successful, SVMs are not preferred in application requiring high
test speed since the number of support vectors typically grows linearly with the size
of the training set [2]. For example in on-line classification and regression, in addition
to good generalization performance, high test speed is also desirable. Reduced set
(RS) methods [3-4] have been proposed for reducing the number of support vectors.
Since these methods operate as a post-processing step, they do not directly approxi-
mate the quantity we are interested in. Another alternative is the reduced support
vector machines (RSVM) [5], where the decision function is expressed as a weighted
sum of kernel functions centered on a random subset of the training set. Though sim-
ple and efficient, RSVM may result in a lower accuracy than the reduced set methods
when their number of support vectors is kept in the same level.

Traditionally, SVMs are trained by using decomposition techniques such as
SVMlight [6] and SMO [7], which solve the dual problem by optimizing a small
subset of the variables each iteration. Recently, some researchers show that both
linear and non-linear SVMs can be solved efficiently in the primal. As for linear
SVMs, finite Newton algorithm [8-9] has proven to be more efficient than SMO. As
for non-linear SVM, recursive finite Newton algorithm [10-11] is as efficient as the
dual domain method. Intuitively, when our purpose is to compute an approximate
solution, the primal optimization is preferable to the dual optimization because it
directly minimizes the quantity we are interested in. On the contrary, introducing
approximation in the dual may not be wise since there is indeed no guarantee that
an approximate dual solution yields a good approximate primal solution. Chapelle

36 L. Bo, L. Wang, and L. Jiao

[10] compares the approximation efficiency in the primal and dual domain and
validates this intuition.

In this paper, we develop a novel algorithm, named SSVR-SRS for building the re-
duced support vector regression. Unlike our previous work [11] where recursive finite
Newton algorithm is suggested to solve SVR accurately, SSVR-SRS aims to find a
sparse approximation solution, which is closely related to SpSVM-2 [12] and kernel
matching pursuit (KMP) [13], and can be regarded as extension of the key idea of
matching pursuit to SVR. SSVR-SRS iteratively builds a set of basis functions to
decrease the primal objective function by adding one basis function at one time. This
process is repeated until the number of basis functions has reached some specified
value. SSVR-SRS can find the approximate solution at a rather low cost, i.e. 2()O nm
where n is the number of training samples and m the number of all picked basis
functions. Our experimental results demonstrate the efficiency and effectiveness of
the proposed algorithms.

The paper is organized as follows. In Section 2, support vector regression in the
primal is introduced. SSVR-SRS is discussed in Section 3. Comparisons with RSVM,
LIBSVM 2.82 [14] and the reduced set method are reported in Section 4. Some con-
clusions and remarks are given in Section 5.

2 Support Vector Regression in the Primal

Consider a regression problem with training samples { } 1
,

n

i i i
y

=
x where ix is the input

sample and iy is the corresponding target. To obtain a linear predictor, SVR solves

the following optimization problem

()
2

,
1

min
2

. .

, 0, 1,2,

n
p p

i i
b

i

i i i

i i i

i i

C

s t b y

y b

i n

ξ ξ

ε ξ
ε ξ

ξ ξ

=

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

⋅ + − ≤ +

− ⋅ + ≤ +

≥ =

∑
w

w

w x

w x

. (1)

Eliminating the slack variables { }
1

,
n

i i i
ξ ξ

=
 and dividing (1) by the factor C, we get the

unconstrained optimization problem

() () 2

,
1

min ,
n

i i
b

i

L b l b yε ε λ
=

⎛ ⎞= ⋅ + − +⎜ ⎟
⎝ ⎠

∑
w

w w x w , (2)

where
1

2C
λ = and () ()max ,0

p
l r rε ε= − . The most popular selections for p are 1

and 2. For convenience of expression, the loss function with p=1 is referred to as
insensitive linear loss function (ILLF) and that with p=2 insensitive quadratic loss
function (IQLF).

 Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal 37

Non-linear SVR can be obtained by using the map ()φ i which is determined im-

plicitly by a kernel function () () (),i j i jk φ φ=x x x xi . The resulting optimization is

() ()() 2

,
1

min ,
n

i i
b

i

L b l yε ε φ λ
=

⎛ ⎞= ⋅ − +⎜ ⎟
⎝ ⎠

∑
w

w w x w , (3)

where we have dropped b for the sake of simplicity. Our experience shows that the
generalization performance of SVR is not affected by this drop. According to the
representer theory [15], the weight vector w can be expressed in terms of training
samples,

()
1

n

i i
i

β φ
=

=∑w x . (4)

Substituting (4) into (3), we have

() () ()
1 1 1

min
n n n

i i j i i j i j
i j i

L l k y kε ε β λ β β
= = =

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑β

β x x x x . (5)

Introducing the kernel matrix K with (),ij i jk=K x x and iK the i-th row of K , (5)

can be rewritten as

() ()
1

min
n

T
i i

i

L l yε ε λ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑β
β K β β Kβ . (6)

A gradient descent algorithm is straightforward for IQLF; however, it is not appli-
cable to ILLF since it is not differentiable. Inspired by the Huber loss function [16],
we propose an insensitive Huber loss function (IHLF)

 () ()
()()

2

,

0

2

if z

l z z if z

z if z

ε

ε

ε ε

ε ε
Δ

⎧ ≤
⎪⎪= − < < Δ⎨
⎪

Δ − − Δ − ≥ Δ⎪⎩

, (7)

to approximate ILLF. We emphasize that Δ is strictly greater than ε , ensuring that
IHLF is differentiable.

The properties of IHLF are controlled by two parameters: ε and Δ . With certain
ε and Δ values, we can obtain some familiar loss functions: (1) for 0ε = and an
appropriate Δ , IHLF becomes the Huber loss function; (2) for 0ε = and Δ = ∞ ,
IHLF becomes the quadratic (Gaussian) loss function; (3) for 0ε = and εΔ → ,
IHLF approaches the linear (Laplace) loss function; (4) for 0 ε< < ∞ and Δ = ∞ ,
IHLF becomes the insensitive quadratic loss function; and, (5) for 0 ε< < ∞ and

εΔ → , IHLF approaches the insensitive linear loss function.
Introducing IHLF into the optimization problem (6), we have the following primal

objective function:

() (), ,
1

min
n

T
i i

i

L l yε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑β
β K β β Kβ . (8)

38 L. Bo, L. Wang, and L. Jiao

3 Selecting a Reduced Set in the Primal

In a reduced SVR, it is desirable to decrease the primal objective function as much as
possible with as few basis functions as possible. The canonical form of this problem is
given by

() (), ,
1

0

min

. .

n
T

i i
i

L l y

s t m

ε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

≤

∑β K β β Kβ

β
, (9)

where
0
i is the 0l norm, counting the nonzero entries of a vector and m is the

specified maximum size of basis functions. However, there are several difficulties in
solving (9). First, the constraint is not differentiable, so gradient descent algorithms
can not be used. Second, the optimization algorithms can become trapped in a shallow
local minimum because there are many minima to (9). Finally, an exhaustive search
over all possible choices (

0
m≤β) is computational prohibitive since the number of

possible combinations is
1

m

i

n

m=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , too large for current computers.

Table 1. Flowchart of SSVR-SRS

Algorithm 3.1 SSVR-SRS

1. Set P = ∅ , { }1,2, ,Q n= , =β 0 ;

2. Select a new basis function from Q ; let s be its index and set

{ }P P s= ∪ and { }Q Q s= − ;

3. Solve the sub-problem with respect to Pβ and the remaining variables

are fixed at zero.
4. Check whether the number of basis functions is equal to m , if so,

stop; otherwise go to step 2.

In this paper, we will compute an approximate solution using a matching pursuit-
like method, named SSVR-SRS, to avoid optimizing (9) directly. SSVR-SRS starts
with an empty set of basis functions and selects one basis function at one time to
decrease the primal objective function until the number of basis functions has reached
a specified value. Flowchart of SSVR-SRS is shown in Table 1. The final decision
function takes the form

() (),i i
i P

f kβ
∈

=∑x x x . (10)

The set of the samples associated with the non-zero weights is called reduced set.
Because here the reduced set is restricted to be a subset of training set, we consider
this method as “selecting a reduced set”.

 Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal 39

3.1 Selecting Basis Function

Let PK the sub-matrix of K made of the columns indexed by P , XYK the sub-

matrix of K made of the rows indexed by X and the columns indexed by Y and Pβ

the sub-vector indexed by P .
How do we select a new basis function from Q ? A natural idea is to optimize the

primal objective function with respect to the variables Pβ and jβ for each j Q∈ and

select the basis function giving the least objective function value. The selection proc-
ess can be described as a two-layer optimization problem,

() (), ,,
1

arg min min
P j

T
n

PP PjP P

iP P ij j i
j Q i j jjP jj

s L l yε εβ
λ

β βΔ Δ
∈ =

⎛ ⎞⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟= = + − + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎜ ⎟⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎝ ⎠
∑β

K Kβ β
β K β K β

K K
. (11)

This basis function selection method, called pre-fitting, has appeared in kernel match-
ing pursuit for least squares problem. Unfortunately, pre-fitting needs to solve the

1P + dimensional optimization problem Q times, the cost of which is obviously

higher than that of optimizing the sub-problem.
A cheaper method is to select the basis function that best fits the current residual

vector in terms of a specified loss function. This method originated from matching
pursuit [17] for least squares problem and was extended to an arbitrary differentiable
loss function in gradient boosting [18]. However, our case is more complicated due to
the occurrence of the regularization term, and thus we would like to select the basis
function that fits the current residual vector and the regularization term as well as
possible. Let the current residual vector be

()
()

opt opt
P P P

opt opt
i P iP P ir y

⎧ = −⎪
⎨

= −⎪⎩

r β K β y

β K β
, (12)

where opt
Pβ is the optimal solution obtained by solving the sub-problem, and the index

of basis function can be obtained by solving the following two-layer optimization
problem,

() ()(), ,
1

arg min min
j

Topt optn
PP PjP Popt

j i P ij j
j Q i j jP jj j

s L l rε εβ
β β λ

β βΔ Δ
∈ =

⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟= = + + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
∑

K Kβ β
β K

K K
. (13)

Note that unlike pre-fitting, here opt
Pβ is fixed.

(), jLε βΔ is one dimensional, piecewise quadratic function and can be minimized

exactly. However, in practice, it is not necessary to solve it precisely. A simpler

method is to compare the square of the gradient of (), jLε βΔ at 0jβ = for all j Q∈ ,

()() ()22

, 0 2T opt
j P PjLε λΔ∇ = +g K β K , (14)

where

40 L. Bo, L. Wang, and L. Jiao

()
()() ()() ()
()()() ()

0

2

2

opt
i P

opt opt opt
i i P i P i P

opt opt
i P i P

if r

g sign r r if r

sign r if r

ε

ε ε

ε

⎧ ≤
⎪
⎪= − < < Δ⎨
⎪
⎪ Δ − ≥ Δ⎩

β

β β β

β β

, (15)

where ()sign z is 1 if 0z ≥ ; otherwise ()sign z is -1. To be fair, the square of the

gradient should be normalized to

()2

22

2 2

T
j

j

g K

g K
, (16)

where
2 opt

Pλ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

g
g

β
 and

j

j
Pj

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K
K

K
. This is an effective criterion because the gradi-

ent measures how well the j-th basis function fits the current residual vector and the
regularization term. If set 0ε = , Δ = ∞ and 0λ = , this criterion is exactly the one in
the back-fitting version of KMP.

If each j Q∈ is tried, then the total cost of selecting a new basis function is

()2O n , which is still more than what we want to accept. This cost can be reduced to

()O n by only considering a random subset O of Q and selecting the next basis

function only from O rather than performing an exhaustive search over Q ,

()2

22

2 2

arg min
T

j

j O Q
j

s
∈ ⊂

⎛ ⎞−⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

g K

g K
. (17)

In the paper, we set 100O = .

3.2 Optimizing the Sub-problem

After a new basis function is included, the weights of basis functions, Pβ are no

longer optimal in terms of the primal objective function. This can be corrected by the
so-called back-fitting method, which solves the sub-problem containing a new basis
function and all previously picked basis functions. Thus, the sub-problem is a P

dimensional minimization problem expressed as

() (), ,
1

min
P

n
T

P iP P i P PP P
i

L l yε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑β
β K β β K β . (18)

(), PLε Δ β is a piecewise quadratic convex function and continuously differentiable

with respect to Pβ . Although (), PLε Δ β is not twice differentiable, we still can use the

finite Newton algorithm by defining the generalized Hessian matrix [11].

 Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal 41

Define the sign vector () () ()1 , ,
T

P P n Ps s= ⎡ ⎤⎣ ⎦s β β β by

()
()
()

1

1

0

i P

i P i P

if r

s if r

otherwise

ε
ε

< < Δ⎧
⎪

= − − Δ < < −⎨
⎪
⎩

β

β β , (19)

the sign vector () () ()1 , ,
T

P P n Ps s= ⎡ ⎤⎣ ⎦s β β β by

()
()
()

1

1

0

i P

i P i P

if r

s if r

otherwise

≥ Δ⎧
⎪

= − ≤ −Δ⎨
⎪
⎩

β

β β , (20)

and the active matrix

() () (){ }1 , ,P P n Pdiag w w=W β β β (21)

by () ()2
i P i Pw s=β β . The gradient of (), PLε Δ β with respect to Pβ is

() () () () () (), 2 2 2 2T T T
P P P P P P P P PP PLε ε ε λΔ∇ = − + Δ − +β K W β r β K s β K s β K β . (22)

The generalized Hessian is

() ()2
, 2 2T

P P P P PPLε λΔ∇ = +β K W β K K . (23)

The Newton step at the k-th iteration is given by

()() ()1
1 2

, ,
k k k k
P P P Pt L Lε ε

−+
Δ Δ= − ∇ ∇β β β β . (24)

The step size t can be found by a line search procedure that minimizes the one di-
mensional piecewise-smooth, convex quadratic function. Since the Newton step is
much more expensive, the line search does not add to the complexity of the algorithm.

3.3 Computational Complexity

In SSVR-SRS, the most time-consuming operation is computing the Newton step
(24). When a new basis function is added, it involves three main steps: computing the
column sK , which is ()O n , computing the new elements of the generalized Hessian,

which is ()O nm and inverting the generalized Hessian that can be computed in an

incremental manner [12], which is ()2O m . When the active matrix ()PW β is

changed, the inversion of the generalized Hessian needs to be updated again, which is

()2O cm . In most cases, c is a small constant, so it is reasonable to consider ()O nm

as an expensive cost since n m . Adding up these costs till m basis functions are

chosen, we get an overall complexity of ()2O nm .

42 L. Bo, L. Wang, and L. Jiao

4 Experiments

In this section, we evaluate the performance of SSVR-SRS on five benchmark data
sets and compare them with SVM, the reduced set method and reduced SVM.

4.1 Experimental Details

SVR is constructed based on LIBSVM 2.82 where the second order information is
used to select the working set. RSVM is implemented by our own Matlab code. The

reduced set method determines the reduced vectors { } 1

m

i i=
z and the corresponding

expansion coefficients by minimizing

()
2

1

m

j j
j

α φ
=

−∑w z , (25)

where ()i i
i S

β φ
∈

=∑w x is the weight vector obtained by optimizing (5) and S is the

index set of support vectors. Reduced set selection (RSS) is parallel to SSVR-SRS
and determines a new basis function by

()

2

2

2

,

arg min
, ,

SjT T
S P

Pj

T Tj O Q
S P j j

s
k∈ ⊂

⎛ ⎞⎛ ⎞⎡ ⎤⎜ ⎟⎡ ⎤− −⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎜ ⎟=
⎜ ⎟⎡ ⎤−⎣ ⎦⎜ ⎟
⎜ ⎟
⎝ ⎠

K
β α

K

β α x x
. (26)

Five benchmark data sets: Abalone, Bank8fh, Bank32fh, House8l and Friedman3
are used in our empirical study. Information on these benchmark data sets is summa-
rized in Table 2. These data sets have been extensively used in testing the perform-
ance of diversified kinds of learning algorithms. The first four data sets are available
from Torgo’s homepage: http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html.
Friedman3 is from [19]. The noise is adjusted for a 3:1 signal-to-noise ratio.

All the experiments were run on a personal computer with 2.4 GHz P4 processors,
2 GB memory and Windows XP operation system. Gaussian kernel

() ()2

2
, expi j i jk γ= − −x x x x is used to construct non-linear SVR. The free parame-

ters in the algorithms are determined by 10-fold cross validation except that Δ in the

Table 2. Information on benchmark data sets

Problem Training Test Attribute m
Abalone 3000 1177 8 50
Bank8fh 5000 4192 8 50
Bank32h 5000 4192 32 150
House8l 15000 7784 8 300

Friedman3 30000 20000 4 240

 Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal 43

insensitive Huber loss function is fixed to 0.3. For each training-test pair, the training
samples are scaled into the interval [-1, 1], and the test samples are adjusted using the
same linear transformation. For SSVR-SRS, RSS and RSVM, the final results are
averaged over five random implementations.

4.2 Comparisons with LIBSVM 2.82

Table 3-4 reports the generalization performance and the number of basis functions of
SVR and SSVR-SRS. As we can see, compared with SVR, SSVR-SRS achieves the
impressive reduction in the number of basis functions almost without sacrificing the
generalization performance.

Table 3. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets.
Error denotes root-mean-square test error, Std denotes the standard deviation of test error and
NBF denotes the number of basis functions. For SSVR-SRS, λ is set to be 1e-2 on the first
four data sets and 1e-3 on Friedman3 data set.

Error SVR SSVR-SRS
2.107 Error NBF Error Std NBF

Abalone 2.106 1152 2.107 0.006783 18
Bank8fh 0.071 2540 0.071 0.000165 40

Bank32nh 0.082 2323 0.083 0.000488 83
House8l 30575 2866 30796 126.106452 289

Friedman3 0.115 9540 0.115 0.000211 203

Table 4. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets.
For SSVR-SRS, λ is set to be 1e-5.

SVR SSVR-SRS Problem
Error NBF Error Std NBF

Abalone 2.106 1152 2.106 0.012109 17
Bank8fh 0.071 2540 0.071 0.000259 44

Bank32nh 0.082 2323 0.083 0.000183 119
House8l 30575 2866 30967 219.680790 282

Friedman3 0.115 9540 0.115 0.000318 190

4.3 Comparisons with RSVM and RSS

Figure 1-5 compare SSVR-SRS, RSVM and RSS on the five data sets. Overall,
SSVR-SRS beats its competitors and achieves the best performance in terms of the
decrease of test error with the number of basis functions. In most cases, RSVM is
inferior to RSS, especially in the early stage. An exception is House8l data set where
RSVM gives smaller test error than RSS when the number of basis functions is be-
yond some threshold value. SSVR-SRS significantly outperforms RSS on Bak32nh,
House8l and Friedman3 data sets, but the difference between them becomes very
small on the remaining data sets. SSVR-SRS is significantly superior to RSVM on

44 L. Bo, L. Wang, and L. Jiao

Fig. 1. Comparisons of SSVR-SRS, RSVM and RSS on Abalone

Fig. 2. Comparisons of SSVR-SRS, RSVM and RSS on Bank8fh

Fig. 3. Comparisons of SSVR-SRS, RSVM and RSS on Bank32nh

Fig. 4. Comparisons of SSVR-SRS, RSVM and RSS on House81

 Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal 45

Fig. 5. Comparisons of SSVR-SRS, RSVM and RSS on Friedman3

four of the five data sets and comparable on the remaining data set. Another observa-
tion from Figure 1-5 is that SSVR-SRS with small regularization parameter starts
over-fitting earlier than that with large regularization parameter, e.g. Abalone data set.

One phenomenon to note is that the reduced set selection has a large fluctuation in
the generalization performance in the early stage. This is because the fact that, the
different components of the weight vector W usually have a different impact on the
generalization performance and therefore the better approximation to W does not
necessarily leads to the better generalization performance. The fluctuation is allevi-
ated with the increasing number of basis functions because the large number of basis
functions can guarantee that each component of W is approximated well.

4.4 Training Time of SSVR-SRS

We do not claim that SSVR-SRS is more efficient than some state-of-the-art training
decomposition algorithms such as SMO. Our main motivation is to point out that
there is a way that can efficiently build a highly sparse SVR with the guaranteed gen-
eralization performance. In practice, depending on the number of basis functions,
SSVR-SRS can be faster or slower than the decomposition algorithms. It is not fair to
directly compare the training time of our algorithm with that of LIBSVM 2.82 since
our algorithm is implemented by Matlab and however LIBSVM 2.82 by C++. But, we
still list the training time in Table 5 as a rough reference.

Table 5. Training time of four algorithms on benchmark data sets

Problem SSVR-SRS RSVM LIBSVM2.82 RSS
Abalone 5.73 2.59 1.70 2.85
Bank8fh 7.39 4.61 8.03 9.65
Bank32h 47.63 31.03 17.55 24.76
House8l 416.92 391.47 98.38 118.79

Fiedman3 565.59 462.57 1237.19 1276.42

5 Concluding Remarks

We have presented SSVR-SRS for building sparse support vector regression. Our
method has three key advantages: (1) it directly approximates the primal objective

46 L. Bo, L. Wang, and L. Jiao

function and is more reasonable than the post-processing methods; (2) it scales well
with the number of training samples and can be applied to large scale problems; (3) it
simultaneously considers the sparseness and generalization performance of the result-
ing learner.

This work was supported by the Graduate Innovation Fund of Xidian University
(No. 05004).

References

1. Vapnik, V: Statistical Learning Theory. New York Wiley-Interscience Publication (1998)
2. Steinwart, I. Sparseness of support vector machines. Journal of Machine Learning Re-

search 4 (2003) 1071–1105
3. Burges, C. J. C. and Schölkopf, B. Improving the accuracy and speed of support vector

learning machines. Advances in Neural Information Processing System 9 (1997) 375-381
4. Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., K. Muller, K. R., Raetsch, G., and

Smola, A. J. Input space vs. feature space in kernel-based methods. IEEE Transactions on
Neural Networks 10 (1999) 1000-1017

5. Lee, Y. J. and Mangasarian, O. L. RSVM: Reduced support vector machines. In Proceed-
ings of the SIAM International Conference on Data Mining. SIAM, Philadelphia (2001)

6. Joachims, T. Making large-scale SVM learning practical. In Advances in Kernel Methods -
Support Vector Learning, MIT Press, Cambridge, Massachussetts (1999)

7. Platt, J. Sequential minimal optimization: a fast algorithm for training support vector ma-
chines. In Advance in Kernel Methods - Support Vector Learning, MIT Press, Cambridge,
Massachussetts (1999)

8. Mangasarian, O. L. A finite Newton method for classification. Optimization Methods &
Software 17(5) (2002) 913-929

9. Keerthi, S. S. and Decoste D. M. A modified finite Newton method for fast solution of
large scale linear svms. Journal of Machine Learning Research 6 (2005) 341-361

10. Chapelle, O. Training a Support Vector Machine in the Primal. Neural Computation
(2006) (Accepted)

11. Bo, L. F., Wang, L. and Jiao L. C. Recursive finite Newton algorithm for support vector
regression in the primal. Neural Computation (2007), in press.

12. Keerthi, S. S., Chapelle, O., and Decoste D. Building Support Vector Machines with Re-
duced Classifier Complexity. Journal of Machine Learning Research 7 (2006) 1493-1515

13. Vincent, P. and Bengio, Y. Kernel matching pursuit. Machine Learning 48 (2002) 165-187
14. Fan, R. E., Chen P. H., and Lin C. J. Working Set Selection Using Second Order Informa-

tion for Training Support Vector Machines. Journal of Machine Learning Research 6
(2005) 1889-1918

15. Kimeldorf, G. S. and Wahba G. A correspondence between Bayesian estimation on sto-
chastic processes and smoothing by splines. Annals of Mathematical Statistics 41 (1970)
495-502

16. Huber, P. Robust Statistics. John Wiley, New York (1981)
17. Mallat, S. and Zhang, Z. Matching pursuit with time-frequency dictionaries. IEEE Trans-

actions on Signal Processing 41(12) (1993) 3397-3415
18. Friedman, J. Greedy Function Approximation: a Gradient Boosting Machine. Annals of

Statistics 29 (2001) 1189-1232
19. Friedman, J. Multivariate adaptive regression splines. Annals of Statistics 19(1) (1991)

1-141

	Introduction
	Support Vector Regression in the Primal
	Selecting a Reduced Set in the Primal
	Selecting Basis Function
	Optimizing the Sub-problem
	Computational Complexity

	Experiments
	Experimental Details
	Comparisons with LIBSVM 2.82
	Comparisons with RSVM and RSS
	Training Time of SSVR-SRS

	Concluding Remarks
	References

