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Abstract—In this paper, we present two fast sparse approxima-
tion schemes for least squares support vector machine (LS-SVM),
named FSALS-SVM and PFSALS-SVM, to overcome the limita-
tion of LS-SVM that it is not applicable to large data sets and to
improve test speed. FSALS-SVM iteratively builds the decision
function by adding one basis function from a kernel-based dic-
tionary at one time. The process is terminated by using a flexible
and stable epsilon insensitive stopping criterion. A probabilistic
speedup scheme is employed to further improve the speed of
FSALS-SVM and the resulting classifier is named PFSALS-SVM.
Our algorithms are of two compelling features: low complexity
and sparse solution. Experiments on benchmark data sets show
that our algorithms obtain sparse classifiers at a rather low cost
without sacrificing the generalization performance.

Index Terms—Fast algorithm, greedy algorithm, least squares
support vector machine (LS-SVM), sparse approximation.

I. INTRODUCTION

I N a classification problem, we are given a set of samples of
input vectors along with corresponding class labels

, and the task is to find a deterministic function that best
represents the relation between input vectors and class labels.
A successful method for classification problem is least squares
support vector machine (LS-SVM) [1], [2], which attempts to
minimize the least square error on the training samples while
simultaneously maximizing the margin between two classes.

Extensive empirical comparisons [3] show that LS-SVM ob-
tains good performance on various classification problems, but
two obvious limitations still exist. First, the training procedure
of LS-SVM amounts to solving a set of linear equations [4]. Al-
though the training problem is, in principle, solvable, in practice,
it is intractable for a large data set by the classical techniques,
e.g., Gaussian elimination, because their computational com-
plexity usually scales cubically with the size of training sam-
ples. Second, the solution of LS-SVM lacks the sparseness and,
hence, the test speed is significantly slower than other learning
algorithms such as support vector machine (SVM) [5], [6] and
neural networks (NNs) [7], [8].

Many researchers have identified the aforementioned two
limitations and tried to give their solutions. As for the fast al-
gorithms for LS-SVM, Suykens et al. [9] presented a conjugate
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gradient algorithm. Chu et al. [10] gave an improved conju-
gate gradient algorithm. Keerthi and Shevade [11] proposed a
sequential minimal optimization (SMO) algorithm. Although
these algorithms achieve low complexity, their resulting solu-
tions are not sparse. Hence, the second limitation still exists. As
for the sparseness of LS-SVM, Suykens et al. [12], [13] pro-
posed a simple approach to introduce the sparseness by sorting
the support value spectrum (SVS), i.e., the absolute value of
the solution of LS-SVM. Kruif and Vries [14] presented a more
sophisticated pruning mechanism that omits the sample bearing
the least error after it is omitted. Zeng and Chen [15] proposed
a SMO-based pruning method. However, these algorithms
require solving a set of linear equations (slowly decreasing
in size) many times, which incurs a large computational cost.
Hence, the first limitation still exists. Furthermore, Suykens
et al. [16] proposed fixed-size LS-SVM for fast finding the
sparse approximate solution of LS-SVM. Unlike the algorithms
mentioned previously, fixed-size LS-SVM (FSLS-SVM) solves
the least squares problem in the primal space instead of in
the dual space. Recently, Hoegaerts et al. [17] introduced the
similar idea to solve kernel partial least squares regression.

In this paper, we present a fast sparse approximation scheme
for LS-SVM (FSALS-SVM) to deal with the previous two
limitations simultaneously. FSALS-SVM iteratively builds
the decision function by adding one basis function from a
kernel-based dictionary at one time until the -insensitive crite-
rion is satisfied. FSALS-SVM consists of two key components:
the selection of basis function and the solution of subproblem.
By integrating some efficient schemes into these two compo-
nents, FSALS-SVM is endowed with two compelling features:
low complexity and sparse solution. It is possible to use a
probabilistic speedup scheme to further improve the speed
of FSALS-SVM and the resulting classifier is named PF-
SALS-SVM. Experiments on the benchmark data sets confirm
the feasibility and validity of FSALS-SVM and PFSALS-SVM.

The rest of the paper is organized as follows. In Section II,
we briefly introduce LS-SVM. In Section III, we interpret why
the Wolfe dual of LS-SVM can be regarded as a regularized
loss function consisting of the loss function induced by repro-
ducing Kernel–Hilbert space (RKHS) norm and of the regular-
ization term. FSALS-SVM is proposed based on a backfitting
scheme in Section IV. The convergence, probabilistic speedup
and computational complexity of FSALS-SVM is detail-ana-
lyzed in Section V. Related works are discussed in Section VI.
Experimental results are reported in Section VII. Finally, in
Section VIII, we give some concluding remarks.

For convenience, in Table I, we present some important nota-
tions used in the paper.
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TABLE I
SOME IMPORTANT NOTATIONS USED IN THE PAPER

II. LS-SVM

In this section, we concisely review the basic principles of
LS-SVM for classification. For more details, the interested
reader can refer to [1] and [2]. In the feature space, LS-SVM
takes the form

(1)

where the nonlinear mapping maps the input data into a
high-dimensional feature space whose dimension can be infi-
nite. To obtain a classifier, LS-SVM solves the following opti-
mization problem:

s.t. (2)

Its Wolfe dual problem is

s.t. (3)

Including in (3) the bias [18], we can eliminate the equality
constraint and obtain

(4)
The form in (4) is often replaced with a so-called
positive–definite kernel function .
According to Mercer’s theory [19], any positive–definite
kernel function can be expressed as the inner product of two
vectors in some feature space and, therefore, can be used in
LS-SVM. Among all the kernel functions, Gaussian kernel

is the most popular choice.
For a new sample , we can predict its label by

(5)

where and is the solution of (4).

III. RKHS NORM VIEW FOR LS-SVM

The key conclusion in this section is that the Wolfe dual
of LS-SVM can be regarded as a regularized loss function

consisting of the loss function induced by RKHS norm and of
the regularization term, which is the basis of developing greedy
approximation algorithms. Similar conclusion about support
vector regression is reported by Girosi [20].

Theorem 1 [19]: Let ; a real symmetric function
, is positive–definite if and only if, for every

set of real numbers and every set of vectors
, we have .

Let RKHS be induced by . The kernel function
satisfies the following three properties:

1) , where ;
2) , where and are finite;
3) for , , ,

where is the inner product of RKHS. In partic-
ular, .

We call , where , reproducing
norm, which can be derived from the inner product of
RKHS.

According to the property 2), we can derive that
belongs to RKHS . Measuring the

distance by RKHS norm between the target function and
, we have the following loss function:

(6)

where is RKSH norm. Equation (6) can be expanded as

(7)

Using the reproducing property 3) of kernel function, we can
transform (7) into

(8)
Since is the output of target function on the point , it is
reasonable to estimate it by (for noiseless data, )

(9)
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Adding the regularization term and the constraint term, we can
estimate and by (10) shown at the bottom of the page. Drop-
ping the constant term, we get

s.t. (11)

It is easy to check that (11) amounts completely to (4), which
enlightens us to look the Wolfe dual of LS-SVM as a regularized
loss function consisting of the loss function induced by RKHS
norm and of the regularization term. Therefore, it is reasonable
to approximate the Wolfe dual.

IV. FAST SPARSE APPROXIMATION SCHEME BY BACKFITTING

In this section, we will describe a fast sparse approxima-
tion scheme for LS-SVM, named FSALS-SVM. Given a kernel
function , the function defines one basis func-
tion for each sample in the training set. A set of basis func-
tions, , is called a kernel-based
dictionary. FSALS-SVM is a greedy algorithm, which itera-
tively builds the decision function by adding one basis function
from the kernel-based dictionary at one time. FSALS-SVM con-
sists of two key components: the selection of basis function and
the solution of subproblem. Starting with an empty index set

and a full index set , FSALS-SVM first
selects a new basis function from the set

according to some criterion. Then, the index is removed
from and added to . After determining the basis function
to be included, FSALS-SVM solves the subproblem containing
the new basis function and all previously picked basis func-
tions. This procedure is repeated until some stopping criterion
is satisfied.

We consider two schemes for the selection of basis func-
tion: prefitting and backfitting [21]. Prefitting solves the sub-
problem containing the th basis function and all previously
picked basis functions for each and selects the basis
function resulting in the largest decrease in the objective func-
tion. Backfitting solves the same subproblem as prefitting while
fixing the Lagrange multipliers corresponding to all previously
picked basis functions and selects the basis function in the same
manner.

As for the solution of subproblem, the inversion of the kernel
matrix is a computational bottleneck. If we compute it from
scratch at each iteration, the computational cost is . In

Section IV-A, we develop an iterative computation of the in-
verse kernel matrix to drop this cost.

For convenience, we reformulate (4) into

(12)
where with and denotes
the identity matrix and .

A. Iterative Computation of the Inverse Kernel Matrix

If the th basis function is chosen at the th iteration,
we have

(13)

where . Given that

has already been computed at the th iteration,

the following matrix inversion Lemma 1 allows to be
found at a cost of .

Lemma 1 [22]: Given an invertible matrix and matrices
, , and , (14), shown at the bottom of the page, holds.
Applying the formula (14) to the matrix inversion problem

given in (13), we have an updating formula

(15)

where and . Ac-

cording to (15), the formula of computing and at the th
iteration can be expressed as

(16)

Given that and at the th iteration have been computed with

the equation , we have

(17)

s.t. (10)

(14)
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Equations (15) and (17) indicate that we can efficiently update
, , and at a cost of without explicitly computing

the inverse matrix. The updating formula (15) is also used in
online SVM [18], [23] and sparse online Gaussian processes
[24]. It is worth emphasizing that this updating formula is nu-
merical stable since the regularization term greatly im-
proves the condition numbers of the matrix . Of course, one
can further improve the numerical stability by considering the
Cholesky decomposition [25]. Using the lower triangular matrix

and the identity , we have the updating formula for
the Cholesky decomposition

(18)

B. Prefitting

Prefitting solves the subproblem containing the th basis func-
tion and all previously picked basis functions for each
and selects the basis function resulting in the largest decrease in
the objective function. For a fixed , the subproblem con-
fronted by prefitting can be expressed as

(19)

With (12), we can translate (19) into (20), as shown at the bottom
of the page, where .

It is easily checked that the optimal value of (20) is

(21)

Substituting (15) into (21), we obtain

(22)

Together with and ,

we can further simplify (22) into

(23)

Thus, we can find the index of the basis function to be included
by

(24)

Equation (23) suggests the cost of doing one basis function
inclusion is . To find the basis function resulting in the
largest decrease in the objective function, we need to do the
basis function inclusion for all the basis functions, which
incurs a computational cost of . This cost is much higher
than that of solving the subproblem. Thus, we would like to go
for a cheaper method.

C. Backfitting

Backfitting solves the subproblem containing the th basis
function and all previously picked basis functions while fixing
the Lagrange multipliers corresponding to all previously picked
basis functions and selects the basis function resulting in the
largest decrease in the objective function. For a fixed , the
subproblem confronted by backfitting can be expressed as

s.t. (25)

With (12), we can translate (25) into (26), shown at the bottom
of the page.

It is easily checked that (26) can be simplified into

(27)

(20)

(26)
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where

. (28)

The optimal value of (27) is

(29)

Thus, we can find the index of the basis function to be included
by

(30)

In backfitting, the most time-consuming operation is com-
puting for each , which incurs a computational cost of

, greatly smaller than of prefitting. Consequently,
we will adopt backfitting as our final scheme.

For a greedy algorithm, it is necessary to choose an ap-
propriate stopping criterion. In this paper, we will terminate
FSALS-SVM if the -insensitive criterion

(31)

is satisfied, where is a small positive constant. Note that
is the smallest value that guarantees the unselected training sam-
ples being correctly classified. The reason for choosing the pre-
vious criterion is the following. From (28) and (31), we can de-
rive that if inequality (31) is satisfied, FSALS-SVM will pre-
dict the unselected training samples with an error smaller than
. For an small enough, the generalization performance of

FSALS-SVM will not be greatly improved by adding a new
basis function. This stopping criterion is similar to the early
stopping [26] in NNs, an effective mechanism for avoiding the
overfitting.

Combining the iterative computation of the inverse kernel
matrix, backfitting, and stopping criterion (31), we have an ef-
ficient sparse approximation scheme for LS-SVM, as shown
in Algorithm 1. Following SVM, we call the samples corre-
sponding to nonzero Lagrange multipliers as support vectors.

Algorithm 1: Fast sparse approximation for LS-SVM with
backfitting

1) Let , , , ,
, and .

2) If or , stop.
3) .

4) If

and

5) If , compute , , , and
according to (15) and (17).

6) and .
7) .
8) , go to 2).

V. CONVERGENCE, PROBABILISTIC SPEEDUP, AND

COMPUTATIONAL COMPLEXITY

A. Convergence

Theorem 2: The objective function monotonously de-
creases with an increasing number of basis functions. With
set to be 0, FSALS-SVM is equivalent to the original LS-SVM.

Proof: Assume that FSALS-SVM is at the th iteration.
Before the th basis function is included, the value of the objec-
tive function is

s.t.
(32)

After the th basis function is included, the value of the objective
function becomes

s.t.
(33)

Comparing (32) with (33), we can see that the constraint
in (32) does not appear in (33), which means that the feasible set
of (32) is the subset of that of (33). Consequently, we have

(34)

This completes the proof of the first part of Theorem 2.
Because is greater than or equal to 0, the stopping

criterion does not hold true when is set to be 0.
Hence, FSALS-SVM will select all the basis functions, exactly
resulting in the original LS-SVM. This completes the proof of
the second part of Theorem 2.

B. Probabilistic Speedup

The computational bottleneck of FSALS-SVM is to update
, which can be further reduced by only considering the

random subset of with size . In other words, we select the
basis function only from a random subset rather than perform
an exhaustive search in the full set . The resulting classifier is
named probabilistic FSALS-SVM (PFSALS-SVM), which is
described in Algorithm 2. PFSALS-SVM is a feasible scheme
due to Lemma 2.
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TABLE II
COMPARISONS OF FSALS-SVM, PFSALS-SVM, CG, AND SMO IN TERMS OF

MEMORY REQUIREMENT, TRAINING COST, AND PREDICTION COST

Algorithm 2: Probabilistic fast sparse approximation for
LS-SVM

1) Let , , , ,
, and .

2) If or , stop.
3) .

4) If

and

5) If , compute , , , and
according to (15) and (17).

6) and .
7) Randomly choose a subset of size 146 from .
8) .
9) , go to 2).

Lemma 2 [27]: Denote by identical distributed
independent random variables with the common cumulative dis-
tribution function . Then, the cumulative distribution func-
tion of is .

For the uniform distribution [0, 1], the distribution of
is . Thus, in order to obtain an estimate with proba-

bility 0.975 among the best 0.025 of all estimates, we only need
a random subset of size

(35)

C. Computational Complexity

At each iteration of FSALS-SVM, we need to update ,
which is , and compute , which is . Adding up
these costs till basis functions are selected, we have the com-
putational cost of . The prediction cost of FSALS-SVM
is . The memory requirement of FSALS-SVM is .
For PFSALS-SVM, the cost of the selection of basis function
is dropped to , so updating becomes a computational
bottleneck. Successive such updates incur a computational
cost of . The memory requirement of PFSALS-SVM is

. The time and space complexity of FSALS-SVM, PF-
SALS-SVM, conjugate gradient (CG), and SMO are summa-
rized in Table II.

VI. RELATED WORK

There are many efforts for kernel methods in greedy styles.
Our discussion will focus on a few key algorithms close related
to the least square loss function. The typical examples include
kernel match pursuit (KMP) [21] and sparse greedy Gaussian
process (SGGP) [27].

Kernel matching pursuit is an extension to the kernel-based
dictionary of matching pursuit [28] primarily developed from
the signal processing domain. Given a kernel function ,
KMP uses a set of basis functions centered on the training sam-
ples: as a dictionary. During
training, one only considers the values of the basis functions
at the training samples, so that it amounts to doing matching
in a vector-space of dimensions. According to Vincent and
Bengio’s suggestion, the error estimated on an independent val-
idation set is a good stop criterion. In using the least square loss
function, the computational cost of KMP is if one uses
all the training samples as the candidate support vectors. It is
possible to use a small random set of the training samples as the
candidate support vectors, which will drop the computational
cost of KMP to .

Sparse greedy Gaussian process is another greedy algorithm.
Like KMP and FSALS-SVM, SGGP incrementally builds
the decision function by adding one basis function from a
kernel-based dictionary at one time until an appropriate crite-
rion is satisfied. The key contribution is that the accuracy of the
approximate solution can be estimated by a simple approach.
The computational cost of SGGP is if one uses all
the training samples as the candidate support vectors. In using
a small random set of the training samples as the candidate
support vectors, the cost is dropped to , with the
size of random set.

Although FSALS-SVM and PFSALS-SVM are similar with
KMP and SGGP in many aspects, they have some novel behav-
iors due to the difference among the loss functions used. In de-
tails, the loss function of KMP is

(36)

where is the gram matrix and is a regularization parameter,
and that of SGGP is

(37)

and that of our algorithms is

(38)

Due to the concise loss function, the selection of basis
function and the updating formula in FSALS-SVM and PF-
SALS-SVM are much cheaper than those in KMP and SGGP.
In Table III, we show the memory requirement, training cost,
and prediction cost of FSALS-SVM, KMP, and SGGP.

Table III does not imply that the computational cost of
FSALS-SVM is necessarily lower than that of KMP or SGGP
because the number of support vectors of FSALS-SVM, ,
may be much larger than that of KMP or SGGP for some
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TABLE III
COMPARISONS OF FSALS-SVM, KMP, AND SGGP IN TERMS OF MEMORY REQUIREMENT, TRAINING COST, AND PREDICTION COST

TABLE IV
INFORMATION ON BENCHMARK DATA SETS

classification problems. In other words, the computational cost
of the above three algorithms depends on specific problems.
However, we still can obtain from Table III the valuable in-
formation: when the three algorithms are comparable in terms
of the number of support vectors, FSALS-SVM will give the
lowest computational cost.

VII. EMPIRICAL STUDY

In order to investigate the behavior of our algorithms, we per-
form three kinds of experiments. In Section VII-A, we compare
our algorithms with LS-SVM, SVS, and SVM on Ringnorm,
Satimage, USPS, and MNIST data sets in terms of the classi-
fication accuracy, the training time, and the number of support
vectors. The information of benchmark data sets is described in
Table IV. In Section VII-B, we show the variation of classifica-
tion accuracy, training time, and the number of support vectors
with the insensitive parameter and give some related remarks.
In Section VII-C, we compare our algorithms with KMP and
SGGP on Ringnorm and USPS data sets.

One-against-all is used to extend FSALS-SVM to multiclass
classification, which has been independently devised by dif-
ferent researchers. Rifkin and Klautau [29] carefully compared
one-against-all with some other popular multiclass strategies
and concluded that one-agianst-all is as accurate as any other
approaches if the underlying binary classifiers are well-tuned
regularized classifiers.

A. Comparisons With CG, SMO, SVS, and SVM

Ringnorm data set comes from [30]. This is 20 dimen-
sions,two-class data. Class 1 is multivariate normal with mean
zero and covariance matrix four times the identity. Class 2 has
unit covariance matrix and mean . The
3000 randomly generated samples are used for training the
classifiers and the 4400 randomly generated samples for testing
the generalization performance.

Satimage data set comes from Statlog collection [31]. This
data set consists of 4435 training samples and 2000 test samples
with 36 dimensions for each sample. Before training, we scale all
the training samples with zero mean and unit variance, and then
adjust the test samples using the same linear transformation.

USPS data set [32] is well known and has been extensively
used for testing the performance of diversified kinds of classi-
fiers. This data set consists of 7291 training samples and 2007
test samples. Each sample is a 16 16 image represented as a
256-dimentional vector with entries between 0 and 1.

MNIST data set [33] consists of 60 000 training samples and
10 000 test samples. Each sample is a 28 28 image represented
as a 784-dimentional vector with entries between 0 and 1. We
perform two experiments on MNIST data set. In the first one,
only first 20 000 training samples are used for training classifiers
and, in the second one, all the training samples are used.

We implement our own C code for FSALS-SVM and PSALS-
SVM, which is available online at http://see.xidian.edu.cn/grad-
uate/lfbo/. LS-SVM is constructed by two methods, i.e., CG im-
plemented by LS-SVMlab 1.5 [16] and SMO implemented by
our own C code. The stopping criterion used in CG and SMO is
the same and based on the value of the mean-square error (mse),
i.e.

(39)

where . SVM is constructed using library of SVM
(LIBSVM) [34] that implements the improved SMO for SVM.
The elements of Gram matrix are computed using Gaussian
kernel function of form . All
the experiments are run in a personal computer with 2.4-GHz
processor, 1-G memory, and Windows XP operation system. In
the most experiments, is set to be 0.5. We have found that it
works well by using this setting for various data sets. We also
try some other values on USPS and MNIST data sets.

For each data set, we fix at a suitable value which gives
good generalization performance and vary over a wide range.
In all the experiments, we try the following 12 values: ,

.
We compare FSALS-SVM, PFSALS-SVM, LS-SVM, SVS,

and SVM in terms of the classification accuracy, the training
time, and the number of support vectors in Tables V–XVII.
For fair comparison, the number of support vectors of SVS and
FSALS-SVM is kept equal for each binary classifier. The re-
sults of some classifiers on USPS, MNIST1, and MNIST data
sets are not reported because of not enough memory or too long
training time.

Note that the number of unique support vectors is reported for
multiclass problems. We say ”unique” support vectors because
a training sample may be support vector in different binary clas-
sifiers. Here, we only report the number of the training samples
that are support vectors of at least one binary classifier, because
it is a dominant factor that affects the test time.
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TABLE V
ACCURACIES OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TEST SET OF RINGNORM DATA SET

TABLE VI
NUMBER OF SUPPORT VECTORS OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TRAINING SET OF RINGNORM DATA SET

TABLE VII
TRAINING TIME OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TRAINING SET OF RINGNORM DATA SET.

TIME DENOTES THE CPU TIME IN SECONDS

TABLE VIII
ACCURACIES OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TEST SET OF SATIMAGE DATA SET
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TABLE IX
NUMBER OF SUPPORT VECTORS OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TRAINING SET OF SATIMAGE DATA SET

TABLE X
TRAINING TIME OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, SVS, AND SVM ON THE TRAINING SET OF SATIMAGE DATA SET.

TIME DENOTES THE CPU TIME IN SECONDS

TABLE XI
ACCURACIES OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, AND SVM ON THE TEST SET OF USPS DATA SET

From Tables V–X, we can see that the classification accu-
racy of FSALS-SVM and PFSALS-SVM is comparable with
that of SVS for the small values and higher than that of SVS
for the large values. The training time of FSALS-SVM and
PFSALS-SVM is significantly shorter than that of SVS.

From Tables V–XIII, we can see that the classification accu-
racy of FSALS-SVM and PFSALS-SVM is comparable with
that of LS-SVM for all the values. The number of unique
support vectors of FSALS-SVM and PFSALS-SVM is
times that of LS-SVM, so we can expect that the test time
of FSALS-SVM and PFSALS-SVM is times that of
LS-SVM. The training time of FSALS-SVM and PFSALS-SVM
is significantly shorter than that of SMO and CG on these data
sets. We do not report the results of LS-SVM on MNIST1 and
MNIST data sets because of a too long training time.

From Tables V –XVII, we can see that the classification ac-
curacy of FSALS-SVM and PFSALS-SVM is comparable with
that of SVM for all the values. The best classification accuracy
of FSALS-SVM and PFSALS-SVM is slightly better than that
of SVM on USPS and MNIST data sets and slightly worse than
that of SVM on Ringnorm and Satimage data sets. The number
of unique support vectors of FSALS-SVM and PFSALS-SVM
is nearly as many as that of SVM, so we can expect that the
test time of FSALS-SVM and PFSALS-SVM is comparable
with that of SVM. The training time of FSALS-SVM and PF-
SALS-SVM is also comparable with that of SVM.

B. Insensitive Parameter

In this section, we will investigate the variation of the per-
formance measure with the insensitive parameter . Two small
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TABLE XII
NUMBER OF SUPPORT VECTORS OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, AND SVM ON THE TRAINING SET OF USPS DATA SET

TABLE XIII
TRAINING TIME OBTAINED BY FSALS-SVM, PFSALS-SVM, LS-SVM, AND SVM ON THE TRAINING SET OF USPS DATA SET

TABLE XIV
ACCURACIES, NUMBER OF SUPPORT VECTORS, AND TRAINING TIME OBTAINED BY FSALS-SVM AND SVM ON MNIST1 DATA SET.

ACC DENOTES THE CLASSIFICATION ACCURACY ON TEST SET, NSV DENOTES THE NUMBER OF SUPPORT VECTORS ON TRAINING SET,
AND TIME DENOTES THE CPU TIME IN SECONDS ON TRAINING SET

data sets, Ringnorm and Satimage, are used for this purpose. For
each data set, is set to be a suitable value giving the best gen-
eralization performance. Plots of the classification accuracy, the
number of support vectors, and the training time as functions of

are shown in Figs. 1–3.
We can see that the number of support vectors and the

training time of FSALS-SVM monotonously decrease with
an increasing value of , which can be explicitly explained
by the meaning of . However, the classification accuracy
of FSALS-SVM possibly suffers from an ascending and de-
scending process with an increasing value of , which means
that LS-SVM, i.e., FSALS-SVM with , may not be the

best choice if our purpose is to achieve the best generalization
performance.

C. Comparisons With KMP and SGGP

The task of this section is to compare PSASLS-SVM with
KMP and SGGP. All three algorithms use the probabilistic
speedup scheme with the random set of size 146. All the free
parameters are tuned using tenfold cross validation [35]. The
results of the three algorithms on Ringnorm and USPS data sets
are shown in Tables XVIII and XIX.

For Ringnorm data set, the classification accuracy of PF-
SALS-SVM is slightly higher than KMP and SGGP. The
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TABLE XV
ACCURACIES, NUMBER OF SUPPORT VECTORS, AND TRAINING TIME OBTAINED BY PFSALS-SVM ON MNIST1 DATA SET. ACC
DENOTES THE CLASSIFICATION ACCURACY ON TEST SET, NSV DENOTES THE NUMBER OF SUPPORT VECTORS ON TRAINING SET,

AND TIME DENOTES THE CPU TIME IN SECONDS ON TRAINING SET

TABLE XVI
ACCURACIES, NUMBER OF SUPPORT VECTORS, AND TRAINING TIME OBTAINED BY PFSALS-SVM AND SVM ON MNIST DATA SET. ACC DENOTES

THE CLASSIFICATION ACCURACY ON TEST SET, NSV DENOTES THE NUMBER OF SUPPORT VECTORS ON TRAINING SET,
AND TIME DENOTES THE CPU TIME IN SECONDS ON TRAINING SET

TABLE XVII
ACCURACIES, NUMBER OF SUPPORT VECTORS, AND TRAINING TIME OBTAINED BY PFSALS-SVM ON MNIST DATA SET. ACC DENOTES THE CLASSIFICATION

ACCURACY ON TEST SET, NSV DENOTES THE NUMBER OF SUPPORT VECTORS ON TRAINING SET,
AND TIME DENOTES THE CPU TIME IN SECONDS ON TRAINING SET

number of support vectors of PFSALS-SVM is more than
that of KMP and SGGP, however, the training time of PF-
SALS-SVM is comparable with that of KMP and significantly
shorter than that of SGGP. For USPS data set, PFSALS-SVM
outperforms KMP and SGGP in terms of the classification
accuracy, the number of support vectors, and the training time.
In particular, the training time of PFSALS-SVM is about 1/20
that of KMP and 1/200 that of SGGP.

VIII. CONCLUSION

LS-SVM is a successful approach to classification, but
two obvious limitations still exist. First, its computational
complexity usually scales cubically with the size of training
samples. Second, the solution of LS-SVM lacks the sparseness
and, hence, the test speed is very slow. This paper describes
a fast greedy algorithm for LS-SVM, named FSALS-SVM,
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Fig. 1. Variation of the classification accuracy of FSALS-SVM with parameter �. (a) Ringnorm data set with 
 = 2 . (b) Statimage data set with 
 = 2 .

Fig. 2. Variation of the number of support vectors of FSALS-SVM with parameter �. (a) Ringnorm data set with 
 = 2 . (b) Statimage data set with 
 = 2 .

Fig. 3. Variation of the training time of FSALS-SVM with parameter �. (a) Ringnorm data set with 
 = 2 . (b) Statimage data set with 
 = 2 .

TABLE XVIII
RESULTS OF PFSALS-SVM, KMP, AND SGGP ON RINGNORM DATA SET.

NSV DENOTES THE NUMBER OF SUPPORT VECTORS, ACC DENOTES

THE CLASSIFICATION ACCURACY, AND TIME DENOTES

THE TRAINING TIME IN SECONDS

which attempts to overcome the two limitations simultaneously.
Using a probabilistic speedup scheme, we can further improve
the speed of FSALS-SVM and the resulting classifier is named
PFSALS-SVM. FSALS-SVM and PFSALS-SVM achieve
both low complexity and sparseness due to the introduction
of -insensitive criterion. Extensive empirical comparisons

TABLE XIX
RESULTS OF PFSALS-SVM, KMP, AND SGGP ON USPS DATA SET.
NSV DENOTES THE NUMBER OF SUPPORT VECTORS, ACC DENOTES

THE CLASSIFICATION ACCURACY, AND TIME DENOTES

THE TRAINING TIME IN SECONDS

suggest that FSALS-SVM and PFSALS-SVM yield good
generalization performance on various classification problems.
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