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Abstract

We propose a variable decomposition algorithm–
greedy block coordinate descent (GBCD)–in or-
der to make dense Gaussian process regression
practical for large scale problems. GBCD breaks
a large scale optimization into a series of small
sub-problems. The challenge in variable decom-
position algorithms is the identification of a sub-
problem (the active set of variables) that yields
the largest improvement. We analyze the limita-
tions of existing methods and cast the active set
selection into a zero-norm constrained optimiza-
tion problem that we solve using greedy meth-
ods. By directly estimating the decrease in the
objective function, we obtain not only efficient
approximate solutions for GBCD, but we are also
able to demonstrate that the method is globally
convergent. Empirical comparisons against com-
peting dense methods like Conjugate Gradient or
SMO show that GBCD is an order of magnitude
faster. Comparisons against sparse GP methods
show that GBCD is both accurate and capable of
handling datasets of 100,000 samples or more.

1 Introduction

Solving linear systems is frequently encountered in least
squares kernel methods. A relevant example is Gaussian
process regression (GPR) with Gaussian noise (Williams
& Rasmussen, 1996; Rasmussen & Williams, 2006), a
method that has become increasingly popular in the field
of machine learning. Given a set of training samples {xi}ni=1
along with the corresponding targets {yi}ni=1, the predictive
mean and variance of the estimator can be computed in
closed form

m(x∗) = k�∗
(
K + σ2I

)−1
y (1)
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v (x∗) = k(x∗, x∗) + σ2 − k�∗
(
K + σ2I

)−1
k∗ (2)

where k(xi, x j) is a positive definite kernel function, K is a
n × n matrix with Ki j = k(xi, x j), k∗ is a n × 1 vector with
the i-th component being k∗ = [k(x∗, xi)], and σ2 is noise
variance. GPR requires an n×n matrix inversion with O(n3)
training cost and O(n2) requirements for memory storage,
which is non-trivial since the kernel matrix K can not be
fitted into memory for large datasets (this is known as the
out-of-memory case). Many standard linear system solvers,
such as Cholesky factorization, implicitly assume the stor-
age of K is possible, which limits their applicability in this
case. Alternatively, one can recompute K on the fly, but
this becomes computationally prohibitive if K is frequently
needed.

Instead of directly inverting the covariance matrix, one can
use iterative methods such as the conjugate gradient algo-
rithm (CG) in order to train GPR. This starts with an initial
guess and modifies the current solution iteratively until a
given stopping condition is satisfied. CG has speed of con-
vergence guarantees in that it takes no more than n steps
to reach the exact solution. In practice, the actual number
of iterations necessary for a given precision is often much
smaller than n, hence CG is usually faster than direct ma-
trix inversion. Unfortunately, CG is again not well adapted
for GPR in the out-of-memory case because expensive co-
variance matrix re-evaluations are necessary inbetween it-
erations.

Another way to attack the out-of-memory case is the
block coordinate descent (BCD) method (Bertsekas, 1999),
known as the block Gauss-Seidel for linear systems (Ortega
& Rheinboldt, 1970). At each iteration, block coordinate
descent splits variables into two subsets, the set of the ac-
tive variables and the set of inactive ones, then minimizes
the objective function along active dimensions while inac-
tive variables are fixed at current values. Block coordinate
descent is attractive since only the kernel matrix indexed by
the active set needs to be (re)evaluated, thus significantly
reducing the cost per iteration.

The efficiency of block coordinate descent methods de-



pends strongly on the active set selection. A frequently
used method is to select the active set in cyclical order.
Beatson et al. (2000) applied the cyclical block coordi-
nate descent for solving radial basis function interpolation
equations and Li et al. (2007) adopted it to train regularized
least squares classifiers. The potential weakness of cycli-
cal block coordinate descent is that it does not exploit any
information about the objective function in the process of
selecting the active set. The gradient-based active set selec-
tion is an alternative method that maximizes the gradient
norm (Zoutendijk, 1970; Joachims, 1999). However, the
gradient-based active set selection still does not directly re-
late the variable selection and the decrease in the objective
function, leading to non-optimal updates.

In this paper, we propose a greedy block coordinate de-
scent (GBCD) method in order to improve the selection of
sub-problems solved during optimization. We show that
active set selection can be cast as a zero-norm constrained
optimization problem. While the exact solution requires
combinatorial search, we show that greedy algorithms can
be used to obtain approximate solutions with O(m3) cost,
where m is the size of sub-problems. This maintains the
same computational complexity as gradient-based active
set selection, per iteration, yet it achieves significant speed-
ups. Differently from existing active set methods that se-
lect all active variables simultaneously, our method con-
structs the active set incrementally. Hence, it can build
upon the current optimization context in order to implicitly
avoid redundancy in previously selective active variables.
This avoids inefficiencies due to the inclusion of high corre-
lated variables in the active set. Our experiments show that
GBCD compares favorably with existing methods, both
dense and sparse (and against the constraints expected in
each case, i.e. accuracy vs. speed). We do not only present
experiments on standard machine learning benchmarks but
also on real-world large scale computer vision applications
like the reconstruction of three-dimensional human mo-
tions like walking, running, gestures or boxing from image
sequences acquired with a single video camera, as available
in the HumanEva dataset (Sigal & Black, 2006).

1.1 Related Work

Sequential minimal optimization: Decomposition algo-
rithms (Platt, 1999; Keerthi et al., 2001) have been widely
used in the field of support vector machines (SVMs). Se-
quential minimal optimization (SMO) (Platt, 1999) is the
most prominent method in which the working set only in-
cludes two variables, hence the sub-problems can be solved
analytically. The most popular way to select the active set
for SMO is the maximal violating pair method, first pro-
posed by (Keerthi et al., 2001) and used in many SVMs
packages such as LIBSVM 2.71 (Chang & Lin, 2001).
Keerthi and Shevade (2003) extended SMO to least square
support vector machines, a problem very similar with the

one we consider here, hence SMO also can be adopted for
GPR. SMO differs from our method in the way the active
variables are chosen and in the size of sub-problems.

Fast multipole methods: The most time-consuming step
in CG is the multiplication of a kernel matrix with a vec-
tor. This can be sped up by fast multipole methods and
KD-Trees. In particular, Yang et al. (2005) and Shen et al.
(2006) have applied this method to Gaussian process re-
gression. While the methods appear to be effective on low-
dimensional problems, they have not been demonstrated
yet for high dimensional problems. The quality of Hermite
or Taylor approximations used may also degrade exponen-
tially as a function of the dataset dimensionality.

Sparse GPR models: Recently, there has been substantial
research on deriving sparse approximations to the full GPR
(Smola & Bartlett, 2001; Csató & Opper, 2002; Lawrence
et al., 2003; Seeger et al., 2003; Keerthi et al., 2006;
Keerthi & Chu, 2006) that reduce the training and stor-
age cost. The methods select a representative subset of re-
gressors, thus dropping the training complexity to O(np2),
where p is the size of the subset. Since p � n in most
cases, sparse approximations achieve substantial speedups
relative to the full GPR. Though very appealing, sparse
approximations are not always the best choice in applica-
tions that require high accuracy. Indeed, recent research
(Rasmussen & Candela, 2005; Quiñonero-Candela & Ras-
mussen, 2005) confirms that sparse GP can sometimes lead
to unreasonable predictive distributions. Our experiments
also show that sparse GP methods can sometimes be sig-
nificant less accurate compared to the full GPR model.

2 Greedy Block Coordinate Descent

It is well-known that the solution to the positive definite
linear system (1) and (2) can be obtained from a quadratic
optimization problem

min
α

[
f (α) =

1
2
α�K̄α − y�α

]
(3)

where K̄ = K + σ2I.

Let gk = K̄αk−y be the current gradient vector. A gradient-
based method selects the active set B by solving the follow-
ing optimization problem

max
|B|=m,B⊆{1,···,n}

|gk
B| (4)

where m is the size of active set. A key observation is that
the gradient-based active set selection is not directly related
with the decrease in the objective function, possibly leading
to non-optimal improvement. In contrast, we integrate the
active set selection into the solution to sub-problems. At
each iteration of decomposition, it is desirable to decrease
the objective function as much as possible for a given size
of the active set. The zero-norm formulation of this prob-



Algorithm 1 Greedy Block Coordinate Descent

1. Set k = 0, αk = 0, and gk = −y
2. If αk is an optimal solution of (3), stop; otherwise go

to step 3

3. Solve (6) using greedy algorithm and obtainΔαopt and
the active set B

4. Set αk+1
B = αk

B + Δα
opt
B , αk+1

N = αk
N , and gk+1 =

gk + K̄BΔα
opt
B where K̄B is the sub-matrix made of

the columns indexed by B and αk
B is the sub-vector

indexed by B. Let k = k + 1 and go back to step 2

lem can be written as

min
Δα

[
1
2
(αk + Δα)�K̄(αk + Δα) − y�(αk + Δα)

]
s.t. ‖Δα‖0 = m

(5)

where ‖·‖0 is the zero-norm, counting the nonzero entries
of a vector, and m is the number of nonzero entries, i.e. the
size of the active set. Eliminating the constant term in (5),
we obtain

min
Δα

[
1
2
Δα�K̄Δα + (gk)�Δα

]
s.t. ‖Δα‖0 = m

(6)

where gk= g(αk) = K̄αk−y. There are several difficulties
in solving (6). First, the constraint is not differentiable, so
gradient descent algorithms can not be used. Second, the
optimizers can get trapped in a shallow local minimum be-
cause the cost (6) is not necessary convex. An exhaustive
search over all possible choices (‖Δα‖0 = m) is expensive

as the number of possible combinations

(
n
m

)
is usually too

large to enumerate even on current computers. One op-
tion is to use more sophisticated search algorithms such as
branch-and-bound in order to decrease the cost of exhaus-
tive search. But, branch-and-bound is still too expensive
for large n, and it seems unwise to spend too much work on
sub-problems anyway. In fact, although the approach can
decrease the objective faster and may take fewer iterations
to converge, the overall training time may not be reduced
since each iteration is expensive.

A more practical view is to decrease the objective function
as much as possible with little extra work. In this paper,
we compute an approximate solution to (6) using a greedy
algorithm. This gives a balanced tradeoff between the de-
crease in objective function and the computational cost
of each iteration, and converges fast in our experiments.
We refer to this novel decomposition algorithm as Greedy
Block Coordinate Descent (GBCD), and its steps are de-
scribed in the table associated with Algorithm 1 (Greedy
Block Coordinate Descent).

2.1 Greedy Approximation

Unlike cyclical and gradient-based active set methods that
select all variables simultaneously, our greedy algorithm
selects the active variables incrementally. Starting with
an empty active set, our greedy optimizer selects one ac-
tive variable at a time, so that the objective function is de-
creased. The selection process stops when the number of
active variables reaches a predefined value m.

Let B = ∅ and N = {1, · · · , n}. How do we select an active
variable from N? A natural idea is to optimize the objective
with respect to ΔαB and Δαi for each i ∈ N and select the
variable giving the largest decrease. This process leads to a
two-layer optimization problem

s = argmin
i∈N

[
min
ΔαB,Δαi

1
2

[
ΔαB

Δαi

]� [
K̄BB K̄Bi

K̄iB K̄ii

] [
ΔαB

Δαi

]

+

[
gk

B
gk

i

]� [
ΔαB

Δαi

]]
(7)

where K̄Bi is the sub-matrix made of rows indexed by B and
the column indexed by i. This active set selection method,
called prefitting, has appeared in the (prefitting) version of
kernel matching pursuit (KMP) (Vincent & Bengio, 2002)
and the sparse greedy Gaussian process (Smola & Bartlett,
2001). However, prefitting needs to solve m+1 dimensional
optimizations |N| times, which obviously has a higher cost
than optimizing the sub-problem.

A cheaper method is to fix Δαt
B and optimize (7) only with

respect to Δαi. This can be expressed as a two-layer opti-
mization problem

s = argmin
i∈N

[
hi = min

Δαi

1
2

[
Δαt

B
Δαi

]� [
K̄BB K̄B j

K̄iB K̄ii

] [
Δαt

B
Δαi

]

+

[
gk

B
gk

i

]� [
Δαt

B
Δαi

]]
(8)

Eliminating the constant in (8), we get

hi = min
Δαi

[
1
2

(
k(xi, xi) + σ2

)
Δα2

i + et
iΔαi

]
, i ∈ N (9)

where et
i = K̄iBΔαt

B + gk
i . This is a one dimensional

quadratic programming problem and can be solved analyt-
ically. Thus, we can determine the new active variable by
the formula

s = argmin
i∈N

⎡⎢⎢⎢⎢⎣hi =
−(et

i)
2

2(k(xi, xi) + σ2)

⎤⎥⎥⎥⎥⎦ (10)

In solving the sub-problems, the inversion of the covariance
matrix is the computational bottleneck. In the (t+1)-th iter-
ation, the inversion of the covariance indexed by the current
active set can be written as

Rt+1 =

[
K̄BB k̄s

k̄�s K̄ss

]−1
(11)

where k̄s = [K̄b1s, K̄b2s, · · · , K̄bt s]. Applying the Woodbury
inversion identity (Stoer & Bulirsch, 1993) to (11), we get



Algorithm 2 Greedy Approximation with Random Subset

1. Set t=0, Δαt=0, et= gk, B=∅, and O=N= {1, · · ·, n}
2. If t = m, stop; otherwise go to step 3

3. s = argmin
i∈O

⎡⎢⎢⎢⎢⎣ −(et
i)

2

2(k(xi, xi) + σ2)

⎤⎥⎥⎥⎥⎦
4. If t=0, Rt+1 =

1
k(xi, xi) + σ2

and Δαs =
−es

k(xi, xi) + σ2
,

otherwise compute Rt+1, Δαt+1
B , and Δαt+1

s according
to (12) and (13)

5. Set B = B + {s}, N = N − {s}
6. Randomly choose a subset O of size κ from N. Let

et+1
O = K̄OBΔαt+1

B + gk, t = t + 1, and go to step 2

an update formula

Rt+1 =

[
Rt 0
0� 0

]
+ η

[
β
−1

][
β� −1

]
(12)

where β = Rtk̄s, η = (K̄ss − k̄�s β)−1. Combining (12) and
Δαt

B = −Rtgk
B, we obtain the update formula for Δαt+1[

Δαt+1
B

Δαt+1
s

]
= −Rt+1

[
gk

B
gk

s

]
=

[
Δαt

B
0

]
− η

(
β�gk

B − gk
s

) [ β
−1

]
(13)

(12) and (13) indicate that we can efficiently update Rt+1

and Δαt+1 at a cost of O(t2) without explicitly computing
the inverse matrix. The update formula (12) is numerical
stable since the regularization term σ2I greatly improves
the condition number of the matrix K. One can improve
the numerical stability further, by using Cholesky decom-
position (Stoer & Bulirsch, 1993). Integrating the active
set selection and the solution of the sub-problems, we ob-
tain the greedy approximation algorithm shown in the table
associated with Algorithm 2 (Greedy Approximation with
Random Subset).

The greedy approximation involves three operations: 1)
computing the new column of the covariance which is
O(cn), where c is the cost of evaluating the kernel func-
tion one time, 2) updating et which is O(nm), and 3) se-
lecting the new active variable according to (10) which is
O(n). The cost of solving sub-problems is dominated by
updating the inverse of the covariance sub-matrix which is
O(m2). Adding up, the cost of choosing m active variables
gives the overall complexity O(cnm + nm2 + m3).

For large m values, updating et dominates the cost of greedy
optimizer, which is still more than what we want to accept.
This cost can be reduced to O(κm2) by only considering the
random subset O of N with size κ and selecting the active
variables only from O rather than exhaustively searching
the full set N. Note that the number of covariance function
evaluations at each iteration is still O(cnm) because step 4
of GBCD requires computing a covariance matrix indexed

by the active set.

2.2 Convergence

Theorem 1: Let

λmin = min
B⊆{1,···,n}:|B|=m

[
min eig

(
K̄BB

)]
(14)

where min[eig(K̄BB)] denotes the smallest eigenvalue of the
matrix K̄BB. The following inequation holds

f
(
αk+1

)
− f

(
αk

)
≤ −1

2
λmin

∥∥∥αk+1 − αk
∥∥∥2

2
(15)

Theorem 1 indicates that a random chosen active set can
give the objective function (3) sufficient decrease if the co-
variance function is positive definite.

Theorem 2: {αk} converges to the global minimum of (3).

Proofs to Theorems 1 and 2 are given in the Appendix.

2.3 Intuitions on Active Set Selection

This section analyses the efficiency of decomposition algo-
rithms and motivates why the greedy active set selection
we propose works better than competing methods. We at-
tribute the efficiency of our decomposition to its gains over
gradient correlation: if inputs xi and x j are neighbors, their
gradients gi and gi are correlated with high probability. In
contrast, our method selects variables with uncorrelated
gradients. We validate this conjecture further by means of
a quantitative experiment, where we randomly choose an
input xi and find its 50 neighbors based on the Euclidean
distance between xi and the other inputs. We then track
the optimization process of GBCD and record the gradient
of xi and its neighbors across 50 successive iterations. Fi-
nally, we compute correlation coefficients for the gradient

of xi and its neighbors using
cov(gi, g j)

std(gi)std(g j)
. We repeat the

process over 100 inputs randomly chosen from training set.
Counting the frequency of correlation coefficients falling
in different intervals, we obtain the histograms in fig. 1.
One can see that the gradients of xi and its neighbors are
non-negligibly correlated.

Intuitively, one should select the active set in a way that
makes the gradients as uncorrelated as possible, because
this brings in diversity from variables outside the active set.
This explains our experimental findings: the cyclical active
set selection works better than the gradient-based one. The
latter works by selecting variables that maximize the gra-
dient infinite norm, thus it tends to select many correlated
variables, which prevents rapid progress during optimiza-
tion. The cyclical method avoids this on average, because it
is random; similarly does SMO, which selects the maximal
violating pair as the active set—this is usually uncorrelated
with high probability. Our greedy method selects the ac-
tive set incrementally, hence it exploits information in the



Table 1: Number of training and test samples, and size of
attribute vector from benchmark datasets. No matter the
algorithm, the samples we test on are never used for vali-
dation or training.

Problem Training Test Attribute
Calhouse 18000 2640 8
Outaouais 20000 9000 37
Kin40k 30000 10000 8
Sarcos 44484 4449 21

Friedman1 100000 5000 10

previously chosen active variables and avoids the selection
of highly correlated ones. The gradients corresponding to
variables that are highly correlated with ones previously se-
lected are usually small–in contrast the other greedy meth-
ods will likely select variables with simply large gradients,
see (10).

3 Experiments

In this section, we empirically study the behavior of GBCD
on several benchmark datasets and compare it to existing
methods, both dense and sparse. The benchmarks are pre-
sented in table 1. Kin40k are available from Torgo’s home-
page1, Outaouais is from the Evaluating Predictive Uncer-
tainty Challenge2, Friedman1 is from the author, Friedman
(1991), Sarcos from the book Gaussian processes for ma-
chine learning3. Gaussian noise with unit standard devi-
ation is added to the training samples. For all datasets,
each attribute of the training inputs and outputs are lin-
early scaled to zero mean and unit variance and the same
transformation is used for the test set. Unless otherwise
specified, we report the normalized root mean squared er-
ror (RMSE) on the test set given by

RMS E =

√√
1
t

t∑
i=1

(y′i − mi)2

var(y)
(16)

where y
′
i is the output of test samples, mi is the predictive

mean and var(y) is the variance of training samples. For al-
gorithms that require random numbers, RMSE is averaged
over 10 trials.

All algorithms are implemented in VC++ 6.0 and run on a
PC with 3.6 GHz P4 processors, 2 GB memory, and Win-
dows XP. Greedy approximations based on random search
are used. The size of the random subset κ is set to 60.
(Smola and Schölkopf (2000) have also found that the ran-
dom set of size 59 achieved good performance). Optimiza-
tion is assumed converged when the infinite norm of gra-
dient is within 10−4 tolerance. The size of sub-problems is
set to 500 for BCDC, BCDG and GBCD.

1http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html
2http://predict.kyb.tuebingen.mpg.de
3http://www.gaussianprocess.org/gpml/data/

The squared exponential function k(xi, x j) =

exp(−∑d
l=1 γt(x

l
i − xl

j)
2) is used to construct the ker-

nel matrix. The optimal values for hyperparameters
(γ1, · · · , γd, σ2), are determined, for each model, by
maximizing the marginal likelihood on a tractable subset
of 2000 samples randomly sampled from the training
set. BFGS is used to optimize the hyperparameters. The
termination tolerance on the marginal likelihood and on
the hyperparameters is set to 10−4.

To compute the predictive mean of GPR, we only need
to solve one linear system whereas in order to compute
the predictive variance, we need to solve a linear system
per sample. In the sequel, training time is measured as
time required to solve the linear system K + σ2I = y;
mean time is the time necessary to compute the predictive
mean; variance time is the time needed to compute the pre-
dictive variance, which requires solving one linear system
K + σ2I = k∗. If the computation variance is required, this
will dominate test time.

3.1 Comparisons with Other Iterative Methods

This section compares CG, SMO, Cholesky factorization,
BCDC, BCDG and GBCD. BCDC selects an active set us-
ing the cyclic order and BCDG selects an active set using
gradient information. We only use a subset of 10,000 sam-
ples randomly chosen from training samples for all algo-
rithms, which allows us store the full covariance matrix and
solve GPR using Cholesky factorization. Cholesky factor-
ization serves as baseline, in order to know whether the so-
lutions obtained by the iterative algorithms we test are close
to the exact one. We do not include the gradient-based ac-
tive set selection method because the cyclic method outper-
forms it in all of our experiments. For CG, SMO, BCDC,
BCDG and GBCD, we re-calculate the covariance matrix
whenever needed in order to simulate the out-of-memory
case.

Table 2 gives the training time and RMSE of four al-
gorithms. GBCD is significantly faster than CG, SMO,
BCDC and BCDG on all the datasets. BCDG is signifi-
cantly slower than other methods because of selection of
many correlated variables. In particular, for Sarcos, GBCD
is 10 times faster than BCDC, 20 times faster than SMO
and 59 times faster than CG. CG, SMO, BCDC, BCDG and
GBCD have RMSE accuracy that is similar to the result of
Cholesky factorization up to 3 significant digits. This con-
firms that our iterative algorithms find good solutions for
the convergence tolerances used.

Fig. 2 shows the RMSE, gradient infinite norm and objec-
tive function on the test set, for all algorithms as function
of training time. We do not include the test error of CG and
BCDG because these give significantly higher test errors
at the initial stages of optimization and affects the scal-
ing / readability of plots even on log-scale. GBCD con-
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Figure 1: Frequency of correlation coefficients of neighboring points, histogramed. Plots on top row are obtained by
solving the linear system K+σ2I = y, the ones on the bottom row are obtained by solving the linear system K+σ2I = k∗.
Correlation coefficients for the regime shown on the bottom are higher than the corresponding ones on the top. This
indicates that the linear system K + σ2I = k∗ is easier to solve, which is consistent with our experiments, discussed in §3.

verges significantly faster than other algorithms in terms of
both the objective function decrease and the gradient infi-
nite norm. GBCD usually achieves stable test accuracy far
before the specified convergence criterion is reached. This
indicates that a looser criterion can be used when training
time constraints exist.

Fig. 3 plots the gradient infinite norm and the objective
function across iterations. As expected, greedy active set
selection decreases the objective significantly faster than
active set section based on cyclic ordering, or gradient
based active set selection, further confirming our analysis
given in §2. 2.
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Figure 3: Objective function and infinite gradient norm
among iterations. Notice that GBCD gives significantly
faster objective decrease than BCDC and BCDG.

Fig. 4 plots training time as function of the size of dataset
Friedman1. Notice that the gap between BCDC and GBCD
further increases with the size of the dataset, showing that
it is impractical to train large scale models using BCDC.

Table 3 gives the averaged variance time of GBCD on each
test sample and RMSE of the predictive variance relative to
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Figure 4: Training time as a function of the dataset size
for different models. The training time gap widens as the
dataset increases, showing that it is impractical to train
BCDC models in this case. BCDC and GBCD are assumed
converged when the infinite gradient norm is smaller than
10−4.

Cholesky factorization√√√
1
t

t∑
i=1

(
v
′
i − vi

v
′
i

)2

(17)

where v
′
i is the predictive variance of Cholesky, vi is the

predictive variance of GBCD. As one can see, the relative
error is 0.02 in the worst case. This indicates that the pre-
dictive variance of GBCD is very close to that of Cholesky
factorization. We are not able to report the relative RMSE
of the predictive variance of the other algorithms relative
to that of Cholesky, due to extremely long runtime. Unlike
the predictive mean where one only needs to solve a linear
system, one needs to solve different linear systems for each



Table 2: Training time and RMSE on test set of CG, SMO, BCDC, BCDG and GBCD. Chol denotes Cholesky factorization.
Optimization is stopped when the infinite norm of the gradient is smaller than 10−4. ’/’ show that the values are not
available. Bold indicates the lowest training time among all iterative methods. Cholesky factorization stores the full
covariance matrix while other method don’t.

Training Time (second) Root Mean Squared Error
Chol CG SMO BCDC BCDG GBCD Chol CG SMO BCDC BCDG GBCD

Calhouse 128 1958 231 331 25563 92 0.477 0.477 0.477 0.477 0.477 0.477
Outaouais 136 24408 10320 5366 >10 hours 1154 0.216 0.216 0.216 0.216 / 0.216
Kin40k 130 14956 5910 3677 >10 hours 975 0.098 0.098 0.098 0.098 / 0.098
Sarcos 132 12880 4295 2172 >10 hours 217 0.128 0.128 0.128 0.128 / 0.128

Friedman1 126 4732 32899 122 >10 hours 106 0.017 0.017 0.017 0.017 / 0.017
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Figure 2: Infinite norm of the gradient, objective function and test error of CG, SMO, BCDC, BCDG and GBCD function
of training time, in seconds. The infinite norm of the GBCD gradient converges to 10−4 precision earlier than competing
methods. A similar behavior is observed for the objective function and the test error of GBCD, which stabilize more rapidly
than for the other algorithms we have tested.

test sample in order to obtain the predictive variance.

3.2 Comparisons with Sparse GPR

This section compares GBCD and three sparse GPR mod-
els. The first is referred as SD (Subset of the Data), which
estimates a GPR predictor based on a subset of size p in the
training set. The second is known as SR which only uses a
random subset of regressors. The third is MPGP which se-
lects the subset of regressors using matching pursuit. The
memory requirement of SR and MPGP is O(pn).The size
of the subset, p is set to 2000 for all five datasets.

From Table 4, we see that GBCD always achieves lower
RSME than sparse GPR models. For Outaouais, GBCD
achieves a 55% improvement relative to the best sparse
GPR model. This is not surprising because GBCD com-
putes the predictive mean and variance of the full GPR
while sparse GPR only gives an approximation. An ob-
vious limitation of sparse GPR models is that computa-
tionally feasible p values my lead to less accurate solutions
compared to the full GPR. On the other hand, sparse GPR
models are faster in testing than GBCD, hence GBCD is
well fitted for for problems that require accuracy whereas
sparse GPR models are suitable for applications that re-



Table 4: Training time, variance time and root mean squared error on the test set for GBCD and sparse GPR models.
Time is given in seconds. All methods use the same hyperparameters, see section 3.1 for details. The variance time is
needed to compute the predictive variance. The sparse GPR model is stopped when the specified number of regressors is
reached. Convergence for GBCD is assumed when gradient falls below 10−4. Lowest test error among all methods shown
in boldface.

Training Time (second) Variance Time/sample (second) RootMean Squared Error
SD SR MPGP GBCD SD SR MPGP GBCD SD SR MPGP GBCD

Calhouse 3 48 514 221 0.02 0.02 0.02 19 0.514 0.477 0.475 0.472
Outaouais 5 61 627 5021 0.02 0.02 0.02 12 0.434 0.326 0.221 0.122
Kin40k 3 85 815 4233 0.02 0.02 0.02 48 0.386 0.164 0.113 0.071
Sarcos 4 142 1389 1879 0.02 0.02 0.02 31 0.169 0.128 0.121 0.107

Friedman1 3 231 2721 3301 0.02 0.02 0.02 75 0.031 0.015 0.012 0.009

Table 3: Average variance time of GBCD on each test sam-
ple and root mean square error of the predictive variance
relative to that of Cholesky factorization. Variance time de-
notes the time of computing the predictive variance. Time
is given in seconds. GBCD is stopped when the infinite
norm of the gradient is smaller than 10−4.

Variance Time/sample Relative RMSE
Calhouse 12 0.00004
Outaouais 6 0.001
Kin40k 20 0.02
Sarcos 6 0.002

Friedman1 4 0.001

quire fast testing speed. GBCD can be eventually used also
in a sparse GPR setting with very large datasets–in this case
even representative (sparse) subsets would be large.

3.3 Human Pose Estimation

This section presents our results on the HumanEva-1
dataset (Sigal & Black, 2006), a computer vision database
that contains a number of human motion sequences of
walking, jogging, throw-catch, gestures, and boxing (the
backgrounds are known and fairly uniform, hence silhou-
ettes can be computed). See (Bo et al., 2008; Bo & Smin-
chisescu, 2008; Sminchisescu et al., 2006) for alternative
predictors, image representatons and results reported for
this problem. The training set consists of pairs of human
(image) silhouette-based descriptors and three-dimensional
human poses (obtained using a motion capture system, that
delivers synchronized images of people and corresponding
information about their 3D pose) represented as 45d vec-
tors of three-dimensional body joint positions (a 3d posi-
tion per human body joint x 15 joints). All poses are pre-
processed by subtracting the root joint location from the
other joint centers for every frame. We use datasets corre-
sponding to the same set of human motions, captured from
three different cameras: C1, C2, C3. The human silhou-
ettes are represented using histograms of semi-local shape
contexts – a descriptor that encodes the spatial arrange-
ment of edges around a given image location. To compute
shape context descriptors (HistoSC), contours are extracted

Table 5: Training time and mean joint error of MPGP and
GBCD on HumanEva 1. Time is given in seconds and er-
ror given in mm, normalized per three-dimensional human
body joint location.

Training Time Mean Joint Error
MPGP GBCD MPGP GBCD

HistoSC 5237 3891 62.4 59.6

from the silhouette image and 400 points are sampled on
its edges, both internal and external. The shape context de-
scriptor at each point is computed based on 15 angular bins
and 8 radial bins, surrounding it. The SC at each of the
400 sample points are accumulated over images subsam-
pled from the training set (typically every 15) and used to
generate a codebook using vector quantization. The code-
book has 300 clusters obtained using k-means (hence the
descriptor size is 300). The descriptor of a new human sil-
houette, e.g. for testing, is obtained by extracting shape
contexts on the edges and vector-quantizing with respect to
the existing codebook.

Training and test sets consist of 26572 and 8757 samples,
respectively. The size of the subset of regressors is set to
2000 for MPGP. We report the mean joint error in table 5.
As expected, our method is more accurate than sparse GPR
models. The point is not that much to re-confirm an intu-
itive outcome, but to show that it is practical to obtain more
accurate results on large datasets, otherwise only approach-
able using sparse methods.

4 Conclusions

We have presented an efficient variable decomposition al-
gorithm that is capable of solving large scale Gaussian
Process regression problems. The algorithm, referred to
as GBCD converges to the global optimum of the objec-
tive function and can accurately handle large data sets of
100,000 training samples or more. We have shown that
GBCD offers competitive solutions both in terms of ac-
curacy and in terms of training/test time, and it compares
favorably with dense and sparse GP methods on machine



learning and computer vision datasets. Although we have
focused on Gaussian process regression, GBCD is poten-
tially relevant for the solving kernel-based linear systems
arising in other models or applications. The idea of break-
ing a large scale optimization into a series of smaller sub-
problems and then selecting an active set by objective-
sensitive greedy algorithms is quite general. We hope that
this strategy will be useful for other optimization problems.

Appendix

Proof of Theorem 1

From the running process of GBCD, we have
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Since K̄BB is a positive definite matrix, there exists one
orthonormal matrix U such that K̄BB = UΛU�, where
Λ = diag (λ1(B), · · · , λm(B)). Thus we have(
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where λmin(B) = min1≤i≤m (λi(B)). Since U is orthonormal,
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Proof of Theorem 2

The strictly positive definiteness of K̄ guarantees λmin > 0.
(22) implies that { f (αk)} is a decreasing sequence. Given
that f (αk)≥− 1

2y�K̄−1y>−∞, we have that limk→∞( f (αk))=
− 1

2y�K̄−1y. Applying (22) again, we obtain that {αk+1−αk}
converges to 0.

Since f (α) is a positive definite quadratic form, the set
{α| f (α)≥ f (α0)} is compact. {αk} lies in this set, so it is
a bounded sequence. Let ᾱ be the limit of any convergent

subsequence {αk}, k∈Γ. Since there are only a finite num-
ber of variables, there exists at least one active set B∗ which
occurs infinitely in this subsequence. Let Γ∗ ⊆ Γ be the set
of superscripts corresponding to B∗ and s1 the index in B∗
first selected by GBCD. The s1-th component of the gradi-
ent vector at ᾱ is

gs1(ᾱ)= lim
k→∞,k∈Γ∗
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Given B(k), the active set at the k-th iteration, we have
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Substituting Δαopt
B(k) = −K̄−1B(k)B(k)g

k
B(k) into (24), we get

gB(k)(αk+1)=0. This indicates that limk→∞,k∈Γ∗(gs1(α
k+1))=

0. Since {αk+1−αk} converges to 0, limk→∞,k∈Γ∗(gs1(α
k)−

gs1(α
k+1)) = 0. Thus, we obtain

gs1 (ᾱ) = 0 (25)

From step 3 of the greedy approximation (we search ex-
haustively for the first active variable), we have
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Because K̄ is a positive definite matrix, k(xi, xi) > 0, ∀i ∈
{1, · · · , n}. Taking the limit of (26), we get
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= 0 ∀i ∈ {1, · · · , n} (27)

Thus, ᾱ is the optimal solution of (3). Strict convexity of
f (α) further implies that the sequence {αk} itself converges
to the global optimum of (3).
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