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ABSTRACT
Interactive 3D learning environments can provide rich problem-
solving experiences with unparalleled visual impact. In these
environments, students interactively solve problems by di-
recting their avatars to navigate through complex worlds,
transport entities from one location to another, and manip-
ulate devices. However, realtime camera control is critical
to their successful deployment. To create effective learning
experiences, avirtual camera must in realtime “film” their ac-
tivities in a manner that most clearly depicts the salient aspects
of the tasks students are performing. To address this problem,
we have developed thecinematic task modeling framework
for automated realtime task-sensitive camera control in 3D
environments. Cinematic task models dynamically map the
intentional structure of users’ activities to visual structures
that continuously depict the most relevant actions and objects
in the environment. By exploiting cinematic task models,
a cinematography interface to 3D learning environments can
dynamically plan camera positions, view directions, and cam-
era movements that help users perform their tasks. To inves-
tigate the effect of the cinematic task modeling framework on
student-environment interactions, we have constructed a full-
scale cinematography interface and a 3D learning environ-
ment testbed. Focus group studies suggest that task-sensitive
camera planning significantly improves students’ interactions
with complex 3D learning environments.

KEYWORDS: 3D environments, task models, camera plan-
ning, learning environments, educational applications.

INTRODUCTION
Rapid advances in graphics technologies have paved the way
for a new generation of 3D learning environments. By en-

abling students to immersively explore and manipulate 3D
worlds depicting complex electronic, mechanical, or bio-
logical systems, 3D learning environments can provide rich
problem-solving experiences with unparalleled visual impact.
With the proliferation of inexpensive graphics accelerators,
they are quickly becoming a cost-effective means of deliv-
ering customized learning and training, and their captivating
game-like qualities may hasten the arrival of systems that blur
the distinction between education and entertainment.

Realtime camera control is critical to the successful deploy-
ment of dynamic 3D learning environments. Students inter-
actively solve problems by directing their avatars to navigate
through complex worlds, transport entities from one location
to another, and manipulate devices. To create effective learn-
ing experiences, avirtual camera must “film” their activities
in a manner that most clearly depicts the salient aspects of
the tasks they perform. Previous work on 3D camera control
either (1) depends on offline operation and does not per-
mit user interactivity [11, 6], (2) requires users to directly
control low-level camera positioning and orientation param-
eters [10, 13, 18, 24], which is problematic when users must
perform complex tasks while simultaneously issuing cam-
era control commands, or (3) provides automated realtime
camera control [4, 9, 5, 21] but does not take into account
the inherent intentionality of users’ activities as they perform
complex navigational and manipulative tasks.

To address this problem, we have developed thecinematic
task modeling framework for automated realtime task-sensitive
camera control in 3D environments. Cinematic task models
dynamically map the intentional structure of users’ activities
to visual structures that continuously depict the most rele-
vant actions and objects in the environment. Building on our
previous work on customized camera planning that consid-
ers users’ visualization preferences [4], this framework has
been implemented in UCAM,1 a user-sensitive realtime cam-
era planner. By exploiting cinematic task models, UCAM
dynamically plans camera positions, view directions, and
camera movements that help users perform by composing

1User-Customized Automated Montage



Figure 1: The CPU CITY 3D Learning Environment

shots that at each moment present the most clear views of
users’ navigation and manipulation activities.

To investigate the effect of the cinematic task modeling frame-
work on student-environment interactions,we have constructed
a 3D learning environment testbed that provides students with
navigational and manipulative controls. In CPU CITY (Fig-
ure 1), students learn about the fundamentals of computer ar-
chitecture by directing their avatars to perform the activities
comprising a computation. They navigate through multiple
environments of a 3D world housing a virtual computer, they
transport “address tickets” to RAM, they retrieve operands
from the harddrive, and they execute instructions in the CPU.
Focus group studies in which users interacted with the CPU
CITY avatar while UCAM automatically planned shot compo-
sitions in realtime are encouraging. They suggest that task-
sensitive camera planning significantly improves students’
interactions with complex 3D learning environments.

CINEMATOGRAPHY IN 3D ENVIRONMENTS
Dynamic 3D learning environments hold great promise for a
broad range of educational and training applications. By nav-
igating their avatars through virtual worlds that represent the
structure of complex systems and by interactively manipulat-
ing entities in these worlds, students can acquire an intimate
knowledge—perhaps even deep kinesthetic memories—of
the structure and function of complicated devices. Similar
benefits may be provided by immersive training systems in
which students monitor system behaviors, diagnose faults,
and enact repairs. Moreover, the growing body of evidence
provided by the entertainment industry, e.g., the phenomenal
popularity of the Nintendo 64 series, suggests that avatar-
based immersive environments can be enormously engaging
and may play a strong motivational role in returning students
to a learning environment time and time again.

Realtime Cinematography
As students solve problems in 3D worlds by steering their
avatars through expansive landscapes populated by complex
architectural structures, learning environments must continu-
ously present views of their activities that are most helpful in
assisting the students perform their tasks. Viewing problems
are particularly acute in dynamicunconstrained motion 3D
environments where fast moving, joystick-driven avatars can

go anyplace in the world, move through portals, and pick
up, carry, and deposit objects at will in order to accomplish
their goals. Unless learning environments can carefully track
avatars’ activities and, on a moment-to-moment basis, show
precisely the aspects of the scene that are most relevant to
students’ current goals, students can suffer from severe dis-
orientation and be unable to effectively manipulate objects.

Realtime camera planning in 3D learning environments en-
tails selecting camera positions and view directions in re-
sponse to changes in the avatar’s position, orientation, nav-
igation direction, and manipulations of objects. A virtual
camera must track activities by executingcuts (instantaneous
changes from one shot to another without an intervening tran-
sition),pans, tracking, andzooms (pull-ins and pull-outs) to
make on-the-fly decisions about camera viewing angles, dis-
tances, and elevations. Planning camera shots and camera po-
sitions while preserving continuity requires solving precisely
the same set of problems that are faced by cinematographers,
with the additional constraint that they must be solved in
realtime.

In dynamic 3D environments, camera planners must contin-
ually make decisions about shot types and camera positions.
Shot types are characterized by the viewing angle, elevation,
and distance relative to the subject, which collectively deter-
mine the size of the subject as it appears in the frame. For
example, an avatar occupies all of the frame for a close-up
shot. Different shot types are more useful in particular situa-
tions. For example, the camera can be placed slightly below
the subject and gaze up towards it to exaggerate its size, or
high above the subject gazing downwards to show the scene
layout. High and far shots present more information about
the scene but tend to be less interesting [14].

State of the Art
Dynamic 3D learning environments call for an approach to
camera planning that can represent and draw inferences about
the visual structure of information to be presented to users.
A growing number of projects have addressed the funda-
mental problems of multimedia planning [2, 15, 16, 12, 25],
automated illustration [22], and animated interface agents
[23, 3, 19]. Work has also begun on camera control, for
which three approaches have been proposed. In theoffline
approach of ESPLANADE [11] and the “batch” version of DCCL
[6], camera planning systems operate in “batch” mode and
hence do not permit interactivity. In thedirect control ap-
proach [10, 13, 18, 24], camera systems require users to
directly control low-level camera positioning and orientation
parameters. This is problematic when users must perform
complex tasks while simultaneously issuing camera control
commands.

In the realtime planning approach [4, 5, 9, 21], camera
systems dynamically plan camera position and orientation.
While this approach comes closest to delivering the neces-
sary functionalities required of dynamic 3D learning environ-
ments, previous work on automated 3D camera planning has
not taken into account the inherent intentionality of users’
activities. CAMDROID [9] allows the user to design a network
of camera modules and constraints but has no task model.
The JACK system [18] for simulating the interaction of virtual



humans in an environment employs automatic camera con-
trol with occlusion avoidance for smooth visual transitions
but also does not employ a task model. The VIRTUAL CINE-
MATOGRAPHER[21] uses film idioms to successfully maintain
camera shot sequences that are consistent with film conven-
tions, but it does not address camera planning for complex
user navigation and manipulation tasks in complicated en-
vironments. CATHI [5], which is part of the PPP project [3],
permits users to state visualization preferences such as the use
of spotlights, depth of field, and animation duration, as well
as animation preferences that include two cinematic styles.
However, the cinematic styles are not based on a representa-
tion of the goal structure of users’ activities.

DYNAMIC TASK-SENSITIVE CAMERA PLANNING

To enable students interacting with 3D learning environments
to focus their attention exclusively on problem-solving activ-
ities rather than on directing the camera, 3D learning envi-
ronments must provide them with an interface that automat-
ically shows the most relevant features of the virtual world
at each moment. The interface must make realtime decisions
about which subjects in the environment to focus on, how
to compose shots that will most effectively depict avatars’
activities, and how to plan the smooth tracking and panning
of the camera as students navigate the environment and ma-
nipulate objects. To address the problem of task-sensitive
camera planning, we have developed thecinematic task mod-
eling framework for 3D learning environment interfaces. This
framework is based on the following premise:

Intention-based Cinematography: By exploiting knowl-
edge about the task a student is performing in a 3D learn-
ing environment, a dynamic camera planning system can
create a narrative visual structure that reflects the inten-
tional structure of the student’s behaviors and thereby
support his or her goal-driven problem solving.

In effect, a “virtual director” can take anintentionalstance [8]
toward avatars’ actions in the environment. By forming ex-
pectations about what students’ are seeking to accomplish, it
can monitor their progress as they achieve (or fail to achieve)
their current goals. Together with precise knowledge about
avatars’ direction of travel, their location in the world relative
to key architectural structures and devices, and their manipu-
lative behaviors, it can use these expectations to dynamically
orchestrate effective immersive learning experiences.

Creating an intention-based approach to cinematography for
3D learning environments entails developing (1) a task-sensitive
camera planning architecture, (2) a dynamically maintained
representation of students’ tasks that can be used to produce
an immersive experience in which only the most relevant
aspects of the world are shown at each moment, and (3) a
computational model of task-sensitive shot composition and
camera motion planning that uses the intentional representa-
tion to support realtime problem solving. Each of these is
discussed in turn.

The Task-Sensitive Cinematography Architecture

Camera planning begins the moment a student enters a 3D
learning environment. At each tick of the clock, the task-

sensitive cinematography system (Figure 2) renders a new
frame by employing five central knowledge sources:

� Task Network: Encodes a network-based representation of
the student’s task, where goals are achieved by the student’s
problem-solving actions, and transition conditions are rep-
resented with predicates on a world model and on the avatar
state (described below). For example, in the virtual com-
puter world of the CPU CITY testbed, the task network
encodes the avatar’s sub-goals for operand handling which
include obtaining the address of an operand from the CPU,
carrying a data value from RAM to the CPU, and inserting
a data capsule into a register.

� Intentional Index Structure: Semantic indices that map
problem-solving goals to shot composition guides. The
camera planning system uses knowledge about goals in the
task network to index into the shot composition guides that
serve as the basis for composing effective views of relevant
subjects in the world. For example, manipulative goals are
mapped to shot composition guides that can clearly show
an avatar’s picking up an object or inserting an object into
a receptacle.

� Shot Composition Guides: Represent abstract shot compo-
sition plans for creating shots that will effectively help the
student in problem solving by artfully framing the avatar’s
behaviors and the relevant objects for those behaviors. Shot
composition guides, like film idioms in DCCL [6], specify
a sequence of one or more shots, each with its own recom-
mended subjects, camera elevation, viewing angle, camera-
subject distances, and duration. For example, to help the
student locate an object in a landscape, one shot composi-
tion guide encodes a high-elevation establishing shot plan
for depicting the avatar and the object it is attempting to
find.

� Avatar State: Represents the avatar’s position, orientation,
navigation vector, current behaviors, and accouterments.
For example, the avatar state of the CPU CITY world might
encode its coordinates in the CPU room and indicate that it
is walking toward an input register as it carries an address
capsule.

� World Model: Encodes the layout of the world, includ-
ing (1) scene geometries, including portal connectivities,
(2) 3D models of architectural structures, devices, and
portable objects, and (3) the properties and functionalities
of manipulable devices and objects. For example, the CPU
CITY’s world model represents the layout of the buildings
representing the CPU, RAM, harddrive, power supply, and
portals that connect them, the 3D models for these struc-
tures, the locations of all of the devices and objects in the
simulated computer (e.g., registers and data capsules), and
their properties (e.g., how they are operated and whether
they can be picked up).

As the student navigates through an environment and ma-
nipulates the objects in it, the system monitors his or her
behaviors, updates the cinematic task model, and composes
shots. At each tick of the clock, it first translates changes
to the joystick’sx-y control axes and trigger buttons to the
avatar’s navigation and manipulative behaviors. After up-
dating the avatar’s position, orientation, navigation vector,
current behavior, and accouterments, it updates the modified
properties of manipulable objects in the world model. Cam-
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Figure 2: The Task-Sensitive Cinematography Architecture

era planning begins when the system invokes theintention
monitor, which maintains the cinematic task model and se-
lects a shot composition guide. The intention monitor checks
goal satisfactions, notes proximity sensors that have been
triggered, and calls the latency checker. If any goals have
been achieved, any proximity sensors have been triggered, or
the latency checker indicates a lack of student activity, the
intention monitor updates the cinematic task model. It de-
activates goals in the task network that have been achieved,
enacts the relevant transitions, and updates goal activations.
It then uses the intentional indices to index into the shot com-
position guides and passes the selected guide to the camera
planner.

The camera planner performs three families of operations:
shot composition, occlusion checking, and transition plan-
ning. First, it interprets the selected shot composition guide
in the current world to create a shot (or sequence of shots)
that depicts the focal subjects relevant to the current goal.
Second, it checks for occlusion constraint violations. By in-
specting the geometry of the current scene, it determines if
structures in the scene block the view of the focal subjects.
If so, it selects an alternate viewing angle. Third, it plans
shot transitions that either cut from one shot to another or,

more likely, smoothly track and pan the camera to the next
viewpoint.

The product of these computations is a set of executable
camera directives specifyingshot type (e.g., close-up, long),
viewing angle (e.g., front-left),viewing elevation (e.g., high,
medium, or low),transitions (cut, tracking, panning),shot
duration, andpanning andtracking speeds to depict the focal
subjects. These directives are then passed to the renderer,
which composes the next frame depicting the 3D environ-
ment. The net effect of viewing these rapidly rendered frames
is an immersive experience that is customized for students’
tasks.

Cinematic Task Modeling

Cinematic task modeling is the process of tracking students
problem-solving activities and determining the most appro-
priate types of shots to help them achieve their goals. By
observing students’ avatars’ behaviors and exploiting knowl-
edge of the task that they are performing, learning environ-
ments can infer their intentionsand recommend plans for shot
compositions. A cinematic task model must provide a solu-
tion to each of the following problems: (1) how to represent
the student’s task, (2) how to infer the student’s intentions



from the behaviors of their avatars, and (3) how to select an
abstract shot composition plan that, when interpreted in the
context of the current scene, will create a view of the world
that helps the student achieve their current goal.

Procedural Task Networks A representation of students’
tasks should easily encode procedural task knowledge, per-
mit rapid updates for realtime performance, and be simple
and extensible to facilitate the economic deployment of 3D
learning environments. In contrast to more complex and
labor-intensive approaches to task modeling such as task-
action grammars (TAGs) [17] or production systems [1], the
cinematic task modeling framework encodes task knowledge
in a network-based representation reminiscent of early plan-
ning systems [20].Task networks represent procedures as a
network of goals and the temporal relations holding between
them. While task networks lack the flexibility of TAGS, pro-
duction systems, and sophisticated planning representations,
they offer a practical alternative for 3D learning and training
environments, in large part because of their ease of construc-
tion and maintenance for procedural tasks [19].

Task networks encode the intentional structure of the problem-
solving activities students perform with their avatars. Each
goal node contains a representation of (1) its supergoal,
(2) participants, (3) successor goals, (4) goal type, (5) con-
ditionalized transitions (expressed as predicates on the world
model and the avatar state) from predecessor goals to the cur-
rent goal and (6) from the current goal to successor goals,
(7) relevant actions, (8) side effects (optional), (9) pedagogi-
cal advisory overlays, which consist of brief textual reminders
about the current goal, and (10) latency, which denotes the
time threshold above which it can be inferred that the student
is not making sufficient progress towards achieving the goal.
For example, Figure 3 shows aPut-In-Receptaclegoal
from the CPU CITY learning environment. It is a manipula-
tive goal, i.e., achieving it requires the avatar to manipulate an
object or device. Its participants include anactor (an avatar
named Whizlo), anobject (a data capsule), and areceptacle
(a register in the CPU). For the goal to become active, its
entrance transition conditions must be satisfied. In this case,
Whizlo must be in the CPU room, and he must be carrying
a particular data capsule. After he performs the relevant ac-
tion (inserting the data capsule into a specific register), the
exit transition conditions are asserted (the fact that the data
capsule occupies the register), as are the side-effects (the
data capsule disappears from the input register, and the re-
sult value appears in the output register). The pedagogical
advisory overlay specifies a relevant help message, and the
latency indicates that the student should spend a maximum
of 15 seconds to achieve the goal.

Cinematic Intention Monitoring Dynamically creating views
of the world in order to help students perform their tasks re-
quires the learning environment to recognize their intent, but
plan recognition is a notoriously difficult problem [7]. To ad-
dress it, the cinematography system exploits the procedural
knowledge encoded in the task network and, in Andersonian
model-tracing style [1], carefully tracks students’ goals and

Put-In-Receptacle(Whizlo, Data-Capsule-B,
CPU-Input-Register-2)

SUPER-GOAL: Operand-Handling
GOAL-TYPE: Manipulative
PARTICIPANTS: Actor: Whizlo

Object: Data-Capsule-B
Receptacle: CPU-Input-Register-2

ENTRANCE-TRANSITION-CONDITIONS:
In-Room(Whizlo, CPU)
Carrying(Whizlo, Data-Capsule-B)

PEDAGOGICAL-ADVISORY-OVERLAY:
“Place the value of B in Register 2.”

ACTIONS: Insert(Whizlo, Data-Capsule-B,
CPU-Input-Register-2)

SUCCESSOR-GOAL:
Remove-From-Receptacle(Whizlo, Result-Value,

CPU-Output-Register)
EXIT-TRANSITION-CONDITIONS:

In-Receptacle(Data-Capsule-B,
CPU-Input-Register-2)

SIDE-EFFECTS: Disappear-In-Receptacle(Data-Capsule-B,
CPU-Input-Register-2)

Appear-In-Receptacle(Result-Value,
CPU-Output-Register)

LATENCY: 15 seconds

Figure 3: A goal node from the CPU CITY task net-
work

doesn’t permit them to stray far from the correct solutionpath.
These functionalities are provided by the intention monitor.
As students direct their avatars through a learning environ-
ment, the intention monitor inspects the world model and the
avatar state to dynamically maintain the cinematic task model
while formulating shot composition recommendations for the
camera planner. It performs three families of tasks:

� Goal Activation Tracking: At each tick of the clock, the
intention monitor examines the world model and the avatar
state to determine if thecurrent goalGC should be updated
to its successor goalGC� . If the avatar has previously satis-
fiedGC ’s entrance transition conditions and, since the last
clock tick, it has performed the actions associated withGC ,
thenGC is deactivated, its exit transition conditions are as-
serted, andGC� is activated, indicating that the student
is now poised to perform the relevant actions to achieve
GC� . For example, if a student’s current goal is to pick up
a data capsule from the harddrive, then he/she will tran-
sition to the successor goal whenPick-Up(Whizlo,
Data-Capsule-A) becomes true. The camera planner
will use its knowledge of goal activations to compose shots
that clearly depict the participants of the current goal.

� Latency Checking: At each tick of the clock, the intention
monitor performs two types of latency checking to assess
the student’s progress. First, it conducts agoal latency
check to determine if the student is making satisfactory
progress towards achieving the current goalGC . If the
clock indicates that the time spent by the student to achieve
the active goal exceedsGC ’s permissible latency, a latency



violation is marked. For example, if the student does not
achieve theput-in-receptacle goal shown in Fig-
ure 3 before 15 seconds of effort, the intention monitor
marks a latency violation. Second, it conducts anidle la-
tency check to determine if the student has continued to be
active in problem solving. If the clock shows that the stu-
dent has been inactive for a period of time longer than idle
threshold, an idle-time-exceeded violation is marked. The
camera planner will use its knowledge of latency and idle
time violations to compose shots that will be helpful to stu-
dents who may be experiencing problem-solving impasses
(as described below).

� Proximity Sensors: To gauge the student’s progress at a
finer granularity, the intention monitor employs proxim-
ity sensors. When the student steers his or her avatar to
a region surrounding an object that is a participant in the
current goal, a proximity sensor in the intention monitor
is triggered. Proximity sensors mark the achievement of
silent goals. These are implicit goals that do not formally
belong to the task but nevertheless suggest progress towards
explicit “first class” goals that do. For example, a silent goal
preceding apick-up-object goal is achieved when a
student directs her avatar to a region guarded by a proximity
sensor attached to the relevant object in the environment.
If it is not achieved in a reasonable period of time, a latency
violation is marked so the camera planner can provide com-
pose appropriate shots; in contrast, when it is achieved, it
offers strong positive evidence that the student is making
progress towards the first class goal.

Realtime Task-Sensitive Camera Planning
The intention monitor performs its goal activation tracking,
latency checking, and proximity sensor activities to enable
the camera planner to make informed task-sensitive deci-
sions about how to best depict the world in order to assist the
student’s problem solving. Taking advantage of cinematog-
raphy conventions that have developed over the past century
[14], the camera planner operates in three phases to plan shots
and transitions between them:

1. Goal-Based Shot Composition: The intention monitor
exploits the results obtained from its goal tracking and
other activities, together with intentional indices, to find a
set of one or more shot composition guides.

2. Scene Interpretation: The camera planner selects one of
the shot composition guides and interprets it in light of the
current scene geometry to avoid potential occlusions.

3. Camera Motion Planning: The camera planner uses the
selected shot composition guide, together with cinematic
continuity conventions, to plan (a) the motion splines for
tracking and panning and (b) cuts from one shot to another.

Goal-Based Shot Composition In the shot composition
phase, the intention monitor uses the type of the activated
goal and latency violations to select one or more candidate
shot composition guides. Problem-solving goals in 3D learn-
ing environments are of two types: navigational and ma-
nipulative. If the student is attempting to achieve anavi-
gational goal, the intention monitor will bias its selection

toward views of the world that will help the student reach his
or her destination. Because destinations are represented as
features of navigational goals and the world model encodes
scene geometries and locations of all entities, the system can
compose views that clearly depict the relevant architectural
structures, devices, and objects. If the student is making ad-
equate progress towards achieving a navigational goal, the
intention monitor will propose shot compositions that feature
the avatar moving through the environment. In contrast, if
the student is experiencing difficulties in achieving the goal,
as indicated by latency violations, the intention monitor will
propose shot compositions that clearly show the location of
destination objects, either in a single shot with the avatar or
with alternating cut shots between the avatar and the desti-
nation structure, device or object. For example, if a student
interacting with the CPU CITY environment has difficulty
finding one of the “keys” to the CPU, he will be shown views
of the avatar and the key (if they are in close proximity) and
alternating cut views of the avatar and the location where the
key resides. The intention monitor also employs wide and
high establishing shots at the beginning of interactions to set
the stage for problem solving.

If the student is attempting to achieve amanipulative goal,
the intention monitor should propose shot compositions that
feature views of the avatar and the subject it is manipulating.
If the manipulative goal involves both an object and a device,
views depicting all of the participants should be composed.
For example, if the task model suggests that the student will
soon be attempting to insert a data capsule into a register, the
intention monitor should compose a shot that clearly depicts
all three of the participants (avatar, data capsule, and register).

Scene Interpretation The result of the goal-based shot
composition phase is a set of one or more instantiatedshot
composition guides. A shot composition guide specifies the
number of shots in a sequence. For each shot, it specifies
a camera elevation, a viewing angle, the desired distance of
the camera from the “primary” subject (typically the avatar),
and the proposed duration for the shot in milliseconds. Ta-
ble 1 summarizes the types of shot compositions that UCAM
currently employs. For example, an establishing shot in the
CPU CITY testbed shows a far, wide view of the relevant
characters (the avatar), manipulable objects (“keys” to gain
entrance to the CPU), and architectural structures (the RAM,
harddrive, etc.). During the scene interpretation phase, the
camera planner randomly selects one of the chosen candidate
shot composition guides and then interprets each of its shots
in the current scene. To obtain an unobstructed view of the
avatar and the relevant structures, objects, and devices (in-
dicated by the participants in the current goal), it performs
a series of occlusion evaluations by raycasting for obstacles
between the camera and avatar. If occlusion is detected,
it modifies camera shots by gradually sweeping around the
avatar until a clear view is found.

Camera Motion Planning Maintaining visual continuity
across time is critical for creating a coherent immersive
learning experience. However, achieving visual continuity



SHOT COMPOSITIONGUIDE VIEW SUMMARY

Establishing One view to include avatar
and relevant objects, prefer
high elevations

Opposing Dramatic View of subject A, cut to
view of subject B, prefer
tighter, lower views

Opposing Informative View of subject A, cut to
view of subject B, prefer
higher, farther views

Tracking 2 Angles 2 views of moving avatar,
different angles

Circling 4 Angles 4 views swinging
around subject

Manipulative Left Rear left view of avatar
with object

Manipulative Right Rear right view of avatar
with object

Table 1: UCAM shot composition guides

in 3D environments, particularly complex avatar-based envi-
ronments which require a variety of camera shots, is difficult.
Camera motions (panning, tracking, zooming) cannot be cho-
sen arbitrarily without producing visual discontinuities [14],
nor can they abruptly cut from shot to shot without intro-
ducing confusing context switches. To address this problem,
the camera planner uses the recommendations of the selected
shot composition guide to makes its decisions. For example,
some shot composition guides such as opposing views force
cut transitions between their shots. If not, the camera planner
computes a motion spline for the camera to travel between its
current position and that needed for the newly selected shot
and estimates the amount of time required for the camera to
travel that path and then (1) evaluates camera positions along
the path for occlusions, which if found, cause a cut to the new
shot. (2) It evaluates intermediate positions for visual awk-
wardness, e.g., it checks for the appearance of shots directly
over the head of the avatar, which are frequently confusing in
the context of a fast track/pan. (3) Because jump cuts from
one shot to another which is only slightly different produces
a jarring effect [14], it computes the the angular difference
between the current and new shots and opts for a track/pan
if this is excessively small. The intention monitor and the
camera planner perform all of the tasks above at each tick
of the clock to produce a continuous immersive experience
as the student interactively solves problems in the learning
environment.

IMPLEMENTATION AND EVALUATION

UCAM is a full-scale realtime implementation of the cine-
matic task modeling framework.2 To investigate UCAM’s

2UCAM is implemented in C++ andemploys the OpenGL graphics library
for 3D rendering. It runs at 15 frames/second with texture mapping in a
640x480 full-screen window on a 200 Mhz Pentium Pro computer running
Windows NT 4.0 with a Permedia 2 3D graphics accelerator and 64 MB
memory. UCAM and the CPU CITY testbed consist of approximately 27,000
lines of code.

behavior, we constructed CPU CITY, a 3D learning environ-
ment that provides immersive learning experiences to non-
technical students learning about computer architecture. CPU
CITY is built from more than 50 3D models and employs a
large but linear task network.

The student is initially set with the task of gathering the two
keys that will unlock the entrance to the CPU (and other
structures) so that they can begin to perform the operation (C
= A - B). This involves finding and picking up first a red key,
then a blue key, and then placing them into their respective
receptacles. At this time the student will be able to enter the
CPU where they will need to get the first memory address
from the control unit. The memory addresses refer to the
locations in RAM that the actual values that the operation will
perform on reside. The student then takes the first memory
address and carries it to RAM where it must be deposited
into the “IN” slot. This will cause the value of that memory
address to appear in the “OUT” slot. Similar activities are
used to obtain the value of B from the harddrive. Finally, the
student stores the result of this computation, C, in RAM.

To gauge the effectiveness of task-sensitive cinematography,
we conducted a focus group study involving 12 subjects.
Each subject interacted with two versions of UCAM. In the
first version, all of the automated camera control was disabled
and the camera was fixed relative to the avatar’s coordinate
system with “behind-the-back” shots; if subjects wanted to
change the viewpoint, they had to do it manually with a joy-
stick or menu-based interface. In the second version, the
full functionality of task-sensitivity was in play. Results of
the study suggest that task-sensitive camera planning can im-
prove learning environment interactions. Establishing shots
proved very useful in reorienting the student as they attempted
to achieve navigation goals. The automatic occlusion avoid-
ance was very favorably received. Although most subjects
were not patient enough to remain idle for the 2 seconds
needed for the automatic establishing shots and alternating
cut “hint” shots to come into play, it appears that with a lower
threshold they will be very helpful. Perhaps most telling
of the results were that subjects rarely if ever took control
of the camera in either version—it was simply too compli-
cated to attend to both the learning task and camera control
parameters.

The study also suggested several areas for future work. These
include reducing the use of cut transitions which tend to
distract students, allowing students to trigger establishing
shots to depict an overall “map” view, enabling students to
express specific preferences to direct the automatic camera
planning, and improving shot quality when viewing multiple
objects simultaneously.

In summary, intention-based cinematography holds much
promise for interactive 3D learning environments. By ex-
ploiting knowledge about the task a student is performing, a
dynamic camera planning system can create a narrative visual
structure that reflects the intentional structure of the student’s
behaviors and effectively support his or her goal-driven prob-
lem solving.
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