
Learning Probabilistic Relational Dynamics for Multiple Tasks

Ashwin Deshpande
MIT CSAIL

Cambridge, MA 02139
ashwind@mit.edu

Brian Milch
MIT CSAIL

Cambridge, MA 02139
milch@csail.mit.edu

Luke S. Zettlemoyer
MIT CSAIL

Cambridge, MA 02139
lsz@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL

Cambridge, MA 02139
lpk@csail.mit.edu

Abstract

The ways in which an agent’s actions affect the
world can often be modeled compactly using a
set of relational probabilistic planning rules. This
paper addresses the problem of learning such rule
sets for multiple related tasks. We take a hier-
archical Bayesian approach, in which the sys-
tem learns a prior distribution over rule sets. We
present a class of prior distributions parameter-
ized by a rule set prototype that is stochasti-
cally modified to produce a task-specific rule set.
We also describe a coordinate ascent algorithm
that iteratively optimizes the task-specific rule
sets and the prior distribution. Experiments us-
ing this algorithm show that transferring infor-
mation from related tasks significantly reduces
the amount of training data required to predict
action effects in blocks-world domains.

1 Introduction

One of the most important types of knowledge for an intel-
ligent agent is that which allows it to predict the effects of
its actions. For instance, imagine a robot that performs the
familiar task of retrieving items from cabinets in a kitchen.
This robot needs to know that if it grips the knob on a cab-
inet door and pulls, the door will swing open; if it releases
its grip when the cabinet is only slightly open, the door will
probably swing shut; and if it releases its grip when the cab-
inet is open nearly 90 degrees, the door will probably stay
open. Such knowledge can be encoded compactly as a set
of probabilistic planning rules [Kushmerick et al., 1995;
Blum and Langford, 1999]. Each rule specifies a proba-
bility distribution over sets of changes that may occur in
the world when an action is executed and certain precondi-
tions hold. To represent domains concisely, the rules must
be relational rather than propositional: for example, they
must make statements about cabinets in general rather than
individual cabinets.

Algorithms have been developed for learning relational
probabilistic planning rules by observing the effects of ac-
tions [Pasula et al., 2004; Zettlemoyer et al., 2005]. But
with current algorithms, if a robot learns planning rules for
one kitchen and then moves to a new kitchen where its ac-
tions have slightly different effects (because, say, the cabi-
nets are built differently), it must learn a new rule set from
scratch. Current rule learning algorithms fail to capture an
important aspect of human learning: the ability to trans-
fer knowledge from one task to another. We address this
transfer learning problem in this paper.

In statistics, the problem of transferring predictions across
related data sets has been addressed with hierarchical
Bayesian models [Lindley, 1971]. The first use of such
models for the multi-task learning problem appears to
be due to Baxter [1997]; the approach has recently be-
come quite popular [Yu et al., 2005; Marx et al., 2005;
Zhang et al., 2006]. The basic idea of hierarchical Bayesian
learning is to regard the task-specific models R1, . . . , RK

as samples from a global prior distribution G. This prior
distribution over models is not fixed in advance, but is
learned by the system; thus, the system discovers what the
task-specific models have in common.

However, applying the hierarchical Bayesian approach to
sets of first-order probabilistic planning rules poses both
conceptual and computational challenges. In most existing
applications, the models Rk are represented as real-valued
parameter vectors, and the hypothesis space forG is a class
of priors over real vectors. But a rule set is a discrete struc-
ture that may contain any number of rules, and each rule
includes a precondition and a set of outcomes that are rep-
resented as arbitrary-length conjunctions of first-order lit-
erals. How can we define a class of prior distributions over
such rule sets? Our proposal is to let G be defined by a
rule set prototype that is modified stochastically to create
the task-specific rule sets.

Our goal is to take data from K source tasks, plus a lim-
ited set of examples from a target task K + 1, and find the
rule set R∗

K+1 for the target task with the greatest posterior
probability. In principle, this involves integrating out the

pickup(X, Y) : on(X, Y), clear(X), inhand-nil,
block(Y),¬wet

→

8
>>><

>>>:

.7 :
inhand(X),¬clear(X),¬inhand-nil,
¬on(X, Y), clear(Y)

.2 : on(X, TABLE),¬on(X, Y)

.05 : no change

.05 : noise

pickup(X, Y) : on(X, Y), clear(X), inhand-nil,
block(Y),wet

→

8
>>><

>>>:

.2 :
inhand(X),¬clear(X),¬inhand-nil,
¬on(X, Y), clear(Y)

.2 : on(X, TABLE),¬on(X, Y)

.3 : no change

.3 : noise

Figure 1: Two rules for the pickup action in the “slippery
gripper” blocks world domain.

other rule sets R1, . . . , RK and the rule set prototype G.
As an approximation, however, we use estimates ofG∗ and
R∗

1, . . . , R
∗
K found by a greedy local search algorithm. We

present experiments with this algorithm on blocks world
tasks, showing that transferring data from related tasks sig-
nificantly reduces the number of training examples required
to achieve high accuracy on a new task.

2 Probabilistic Planning Rules

Probabilistic planning rule sets define a state transition dis-
tribution p(st|st−1, at). In this section, we present a sim-
plified version of the representation developed by [Zettle-
moyer et al., 2005]. A state st is represented by a conjunc-
tive formula with constants denoting objects in the world
and proposition and function symbols representing the ob-
jects’ properties and relations. The sentence

inhand-nil ∧ on(B-A, B-B) ∧ on(B-B, TABLE) ∧ clear(B-A)
∧block(B-A) ∧ block(B-B) ∧ table(TABLE) (1)

represents a blocks world where the gripper holds nothing
and the two blocks are in a single stack on the table. This
is a full description of the world; all of the false literals
are omitted for compactness. Block B-A is on top of the
stack, while B-B is below B-A and on the table TABLE. Actions
at are ground literals where the predicate names the action
to be performed and the arguments are constant terms that
correspond to the objects which will be manipulated. For
example, at = pickup(B-A, B-B) would represent an attempt
to pick block B-A up off of block B-B.

Each rule r has two parts that determine when it is ap-
plicable: an action z and a context Ψ that encodes a set
of preconditions. Both of the rules in Fig. 1 model the
pickup(X, Y) action. Given a particular state st−1 and ac-
tion a, we can determine whether a rule applies by com-
puting a binding θ that finds objects for all the variables,
by matching against a, and then testing whether the pre-
conditions hold for this binding. For example, for the state

s in sentence 1 and a = pickup(B-A, B-B), both of the rules
in Fig. 1 would have the binding θ = {X/B-A, Y/B-B}. The
first rule would apply, since its preconditions are all sat-
isfied, while the second one would not because wet is not
true in s. We disallow rule sets in which two or more rules
apply to the same (s, a) pair (these are called overlapping
rules). In cases where no rules apply, a default rule is used
that has an empty context and two outcomes: no change
and noise, which will be described shortly.

Given the applicable rule r, the discrete distribution p over
outcomes O, described on the right of the→, defines what
changes may happen from st−1 to st. Each non-noise out-
come o ∈ O implicitly defines a successor state function fo

with associated probability po, an entry in p. The function
fo builds st from st−1 by copying st−1 and then changing
the values of the relevant literals in st to match the corre-
sponding values in θ(o). In our running example of execut-
ing pickup(B-A, B-B) in sentence 1, for the first outcome of
the first rule, where the picking up succeeds, fo would set
five truth values, including setting on(B-A, B-B) to be false.
In the third outcome, which indicates no change, fo is the
identity function. In this paper, we will enforce the restric-
tion that outcomes do not overlap: for each pair of out-
comes o1 and o2 in a rule r, there cannot exist a state–action
pair (s, a) such that r is applicable and fo1(s) = fo2(s). In
other words, if we observe the state that results from apply-
ing a rule, then there is no ambiguity about which outcome
occurred.1 Finally, the noise outcome is treated as a special
case. There is no associated successor function, which al-
lows the rule to define a type of partial model where r does
not describe how to construct the next state with probabil-
ity pnoise. Noise outcomes allow rule learners to ignore
overly complex, rare action effects and have been shown
to improve learning in noisy domains [Zettlemoyer et al.,
2005]. Since rules with noise outcomes are partial models,
the distribution p(st|st−1, at) is replaced with an approxi-
mation:

p̂(st|st−1, at) =

po if fo(st−1) = st

pnoisepmin otherwise (2)

where the set of possible outcomes o ∈ O is deter-
mined by the applicable rule. The probabilities po and
pnoise make up the parameter vector p. The constant
pmin can be viewed as an approximation to a distribution
p(st|st−1, at, onoise) that would provide a complete model.

3 Hierarchical Bayesian Model

In a hierarchical Bayesian model, as illustrated in Fig. 2,
the data points xkn in task k come from a task-specific dis-

1This restriction simplifies parameter estimation (as we will
see in Sec. 4) without limiting the class of transition distributions
that can be defined. Any rule with overlapping outcomes can be
replaced by an equivalent set of rules applying to more specific
contexts, with non-overlapping outcomes.

...

x1n x2n xKn

N1 N2 NK

R1 R2 RK

G

Figure 2: A hierarchical Bayesian model with K tasks,
where the number of examples for task k is Nk.

tribution p(xkn|Rk), and the task-specific parameters Rk

are in turn modeled by a prior distribution p(Rk|G). The
hyperparameter G has its own prior distribution p(G). By
observing data from the first K tasks, the learner gets in-
formation about R1, . . . , RK and hence about G. For in-
stance, the learner can compute (perhaps approximately)
the values (R∗

1, . . . , R
∗
K , G∗) that have maximum a poste-

riori (MAP) probability given the data on the firstK tasks.
Then when it encounters taskK +1, the learner’s estimates
of the task-specific modelRK+1 are influenced by both the
data observed for task K + 1 and the prior p(RK+1|G∗),
which captures its expectations about the model based on
the preceding tasks.

3.1 Rule Set Prototypes

In the context of learning planning rules, the task-specific
models Rk are rule sets. Our intuition is that if the tasks
are related, then these rule sets have some things in com-
mon. Certain rules may appear in the rule sets for many
tasks, perhaps with some modifications to their contexts,
outcomes, and outcome probabilities. To capture these
commonalities, we assume that the rule sets are all gen-
erated from an underlying rule set prototype G.

A rule set prototype consists of a set of rule prototypes.
A rule prototype is like an ordinary rule, except that rather
than specifying a probability distribution over its outcomes,
it specifies a vector of Dirichlet parameters that define a
prior over outcome distributions. For a rule prototype with
n explicit outcomes, this is a vectorΦ of n+2 non-negative
real numbers: Φn+1 corresponds to a special seed outcome
o∗n+1 that generates new outcomes in local rules, and Φn+2

accounts for the noise outcome. Unlike in local rule sets,
we allow overlapping rules and outcomes in rule set proto-
type to allow for better generalization.

3.2 Overview of Model

Our hierarchical model defines a joint probability distribu-
tion p(G, R1, . . . , RK , x1, . . . , xK). In our setting, each
example xkn is a state st obtained by performing a known
action at in a known initial state st−1. Thus, p(xkn|Rk)

can be found by identifying the single rule in Rk that ap-
plies to (st−1, at) (or the default rule, if no explicit rule
applies) and using Eq. 2. Then the probability of the entire
data set for task k is p(xk|Rk) =

∏Nk

n=1 p(xkn|Rk).

The distribution for G and R1, . . . , Rk is defined by a
generative process that first creates G, and then creates
R1, . . . , Rk by modifyingG. Note that this generative pro-
cess is purely a conceptual device for defining our probabil-
ity model: we never actually draw samples from it. As we
will see in Sec. 4, our learning algorithm uses the genera-
tive model solely to define a scoring function for evaluating
rule sets and prototypes.

Two difficulties arise in using our generative process to de-
fine a joint distribution. One is that the process can yield
rule setsRi that are invalid, in the sense of containing over-
lapping rules or outcomes. It is difficult to design a genera-
tive process that avoids creating invalid rule sets, but still
allows the probability of a rule set to be computed effi-
ciently. Intuitively, we want to discard runs of the gener-
ative process that yield invalid rule sets. The other diffi-
culty is that there may be many possible runs of a gener-
ative process that yield the same rule set. For instance, as
we will see, a rule set prototype is generated by choosing
a number m, generating a sequence of m rule prototypes
independently, and then returning the set of distinct rule
prototypes that were generated. In principle, a set of m∗

distinct rules could be created by generating a list of any
length m ≥ m∗ (with duplicates); we do not want to force
ourselves to sum over all these possibilities to compute the
probability of a given rule set prototype. Again, it is conve-
nient to discard certain non-canonical runs of the generative
process: in this case, runs where the same rule prototype is
generated twice.

Thus, we will define measures PG(G) and Pmod(Rk|G)
that give the probability of generating a rule set prototype
G, or a rule set Rk, through a “valid” sampling run. Be-
cause some runs are considered invalid, these measures do
not sum to one. The resulting joint distribution is:

p(G, R1, . . . , RK , x1, . . . , xK) =

1
Z

PG(G)
KY

k=1

Pmod(Rk|G)p(xk|Rk) (3)

The normalization constant Z is the total probability of
valid runs of our generative process. Since we are just inter-
ested in the relative probabilities of hypotheses, we never
need to compute this normalization constant.2

2One might be tempted to define a model where the normaliza-
tion is more local: for instance, to replace the factor Pmod(Rk|G)
in Eq. 3 with a normalized distribution Pmod(Rk|G)/Z(G).
However, the normalization factor Z(G) is not constant, so it
would have to be computed to compare alternative values of G.

3.3 Modifying the Rule Set Prototype

We begin the discussion of our generative process by de-
scribing how a rule set prototype G is modified to create a
rule set R (the process that generates G will be a simpli-
fied version of this process). The first step is to choose the
rule set size m from a distribution Pnum(m|m∗), where
m∗ is the number of rule prototypes in G. We define
Pnum(m|m∗) so that all natural numbers have non-zero
probability, butm is likely to be close tom∗, and the prob-
ability drops off geometrically for greater values ofm.

Pnum(m|m∗) =

Geom[α](m−m∗) ifm > m∗

(1− α)Binom[m∗, β](m) otherwise (4)

Here Geom[α] is a geometric distribution with success
probability α. Thus, if m > m∗, then Pnum(m|m∗) =
(1 − α)α(m−m∗). We set α to a small value to discourage
the rule set R from being much larger than G. The sum of
the Geom[α] distribution over all values greater than zero
is α, leaving a probability mass of 1− α to be apportioned
over rule set sizes from 0 through m∗. The binomial dis-
tribution Binom[m∗,β] — which yields the probability of
getting exactlym heads when flippingm∗ coins with heads
probability β — is a convenient distribution over this range
of integers. We set β to a value close to 1 to express a pref-
erence for local rule sets that are not much smaller than the
prototype set.

Next, for i = 1 to m, we generate a local rule ri. The
first step in generating ri is to choose which rule prototype
in G it will be derived from. This choice is represented
by an assignment variable Ai, whose value is either a rule
prototype in G, or a special value NIL indicating that this
rule is generated from scratch with no prototype. The dis-
tribution PA(ai|G) assigns the probability γrule to NIL and
spreads the remaining mass uniformly over the rule pro-
totypes. Since the Ai are chosen independently, a single
rule in G may serve as the prototype for several rules in R,
or for none. Next, given the rule prototype (or null value)
ai, the local rule ri is generated according to a distribution
Prule(ri|ai). We discuss this distribution in Section 3.4.

The rule set generated by this process is the set of distinct
rules in the list r1, . . . , rm. We consider a run of the gener-
ative process to be invalid if any of these rules have overlap-
ping contexts; in particular, this constraint rules out cases
where the same rule occurs twice. So the probability of
generating a set {r1, . . . , rm} on a valid run is the sum of
the probabilities of all permutations of this set. This is m!
times the probability of generating the rules in any particu-
lar order. Thus, the probability of getting a valid local rule

set R of sizem from a prototype G of sizem∗ is:

Pmod(R|G) =

Pnum(m|m∗) · m! ·
mY

i=1

X

ai∈
G∪{NIL}

PA(ai|G)Prule(ri|ai) (5)

3.4 Modifying and Creating Rules

We will now define the distribution Prule(r|r∗), where r∗

may be either a rule prototype, or the value NIL, indicating
that r is generated from scratch. Suppose r consists of a
context formula Ψ, an action term z, a set of non-noise
outcomesO, and a probability vector p. The corresponding
parts of r∗ will be referred to as Ψ∗, z∗, O∗, and Φ (recall
that this last component is a vector of Dirichlet parameters).
If r∗ = NIL, then Ψ∗ is an empty formula, z∗ is NIL, O∗

consists of just the seed outcome, and Φ is a two-element
vector consisting of a 1 for the seed outcome and a 1 for
the noise outcome.

For rules derived from a rule prototype, we assume the ac-
tion term is unchanged. So if z∗ is not NIL, we use the dis-
tribution Pact(z|z∗) that assigns probability one to z∗. If a
rule is generated from scratch, we need to generate its ac-
tion term. For simplicity, we assume that each action term
consists of an action symbol and a distinct logical variable
for each argument; we do not allow repeated variables or
more complex terms in the argument list. The distribution
Pact(z|z∗) chooses the action term uniformly from the set
of such terms when z∗ = NIL.

The next step in generating r is to choose its contextΨ. We
define the distribution forΨ by means of a general formula-
modification distribution Pfor(Ψ|Ψ∗, v̄), where v̄ is the set
of logical variables that occur in z and thus are eligible to
be included in Ψ. This distribution is explained in Sec. 3.5.

To generate the outcome set O from O∗, we use essentially
the same method we used to generate the rule setR fromG.
We begin by choosing the size n of the outcome set from
the distribution Pnum(n|n∗), where n∗ = |O∗|. The dis-
tribution Pnum here is the same one used in Sec. 3.3 (one
could use different α and β parameters here). Then, for
i = 1 to n, we choose which prototype outcome serves as
the source for the ith local outcome. This choice is rep-
resented by an assignment variable Bi. As in the case of
rules, we allow some local outcomes to be generated from
scratch rather than from a prototype; this choice is repre-
sented by the seed outcome. The value of Bi is chosen
from PB(bi|O∗), which assigns probability γout to the seed
outcome and is uniform over the rest of the outcomes.

Once the source for each local outcome has been chosen,
the next step is to generate the outcomes themselves. Recall
that an outcome is just a formula. Thus, we define the out-
come modification distribution using the general formula-

modification process Pfor(oi|bi, v̄) that we will discuss in
Sec. 3.5 (again, v̄ is the set of logical variables in z). If bi is
the seed outcome, then Pfor treats it as an empty formula. A
list of outcomes is considered valid if it contains no repeats
and no overlapping outcomes. Since repeats are excluded,
the probability of a set of n outcomes is n! times the proba-
bility of any corresponding list. Thus, we get the following
probability of generating a valid outcome set O and an as-
signment vector b, given that the prototype outcome set is
O∗ and the number of local outcomes is n:

Pout(O,b|O∗, n) = n!
nY

i=1

PB(bi|O∗)Pfor(oi|bi, v̄) (6)

The last step is to generate the outcome probabilities p.
These probabilities are sampled from a Dirichlet distribu-
tion whose parameter vector depends on the prototype pa-
rameters Φ and the assignment vector b ≡ (b1, . . . , bn).
Specifically, define the function f(Φ,b) to yield a parame-
ter vector (Φ′

1, . . . ,Φ′
n+1) such that:

Φ′
i =

8
<

:

Φbi
C(b,bi)

if i ≤ n

Φn+2 if i = n + 1
(7)

This definition says that if oi is generated from prototype
outcome bi (including the seed outcome), then Φ′

i is ob-
tained by dividing up Φbi over all the local outcomes de-
rived from bi. The number of such outcomes is computed
by the function C(b, bi), which returns the number of in-
dices j ∈ {1, . . . , n} such that bj = bi. Finally, for the
noise outcome, we have Φ′

n+1 = Φn+2.

To define the overall distribution for a local rule r given a
rule prototype r∗, we sum out the assignment variables Bi.
For valid rules r, we get:

Prule(r|r∗) = Pact(z|z∗) Pfor(Ψ|Ψ∗, v̄) Pnum(n|n∗) ·
X

b∈
(O∗∪{NIL})n

Pout(O,b|O∗, n)Dir[f(Φ,b)](p) (8)

Here Dir[f(Φ,b)] is the Dirichlet distribution with param-
eter vector f(Φ,b).

3.5 Modifying Formulas

The formulas that serve as contexts and outcomes are very
simple: they are just conjunctions of literals, where a literal
has the form t = x for some term t and value x. The term
must be simple in the sense that each of its arguments is
either a constant symbol or a logical variable; similarly,
x must be a constant symbol or a logical variable.3 We
do not care about the order of literals in a formula, and
we would also like to rule out self-contradictory formulas
in which multiple values are assigned to the same term.
It is convenient to think of a formula ϕ as a pair (T, I),

3We are treating true and false as constant symbols, so a literal
such as ¬on(X, Y) is represented as on(X, Y) = false.

where T is a set of simple terms and I is a function from
elements of T to values. This representation guarantees
that the elements of T are unordered, and each element is
mapped to only one value.

So to define our formula-modification distribution
Pfor(ϕ|ϕ∗, v̄), we will suppose ϕ = (T, I) and
ϕ∗ = (T ∗, I∗). Recall that v̄ is the set of logical
variables that may be used in ϕ and ϕ∗. To generate ϕ,
we first choose a set Tkeep ⊆ T ∗, where each term in
T ∗ is included in Tkeep independently with probability
βterm. The terms in Tkeep will be included in T . Next,
we generate a set Tnew of new terms to include in T . The
size of Tnew, denoted knew, is chosen from a geometric
distribution with parameter αterm. Then, for i = 1 to
knew, we generate a term ti according to a distribution
Pterm(ti|v̄). This distribution chooses a predicate or
function symbol f uniformly at random, and then chooses
each argument of f uniformly from the set of constant
symbols plus v̄. We consider a run invalid if any element
of Tnew is in T ∗: this ensures that while computing the
probability of a term set T given a prototype term set T ∗,
we can recover Tkeep as T ∩ T ∗ and Tnew as T \ T ∗.

Next, we choose the term-to-value function I . For a term
t ∈ T ∩T ∗, the value I(t) is equal to I∗(t) with probability
ρ, and with probability (1 − ρ) it is sampled according to
a distribution Pvalue(x|v̄). If t /∈ T ∗, then I(t) is always
sampled from Pvalue(x|v̄). This distribution Pvalue(x|v̄) is
uniform over the constant symbols in the language, plus v̄.

3.6 Generative Model for Rule Set Prototypes

The process that generates rule set prototypes G is similar
to the process that generates local rule sets from G, but
all the rule prototypes are generated from scratch — there
are no higher-level prototypes from which they could be
derived. We assume that the number of rule prototypes in
G has a geometric distribution with parameter αproto. Thus
the probability of a rule set prototype G of size m∗ with
rule prototypes {r∗1 , . . . , r∗m∗} is:

PG(G) = Geom[αproto](m
∗) · m∗! ·

m∗Y

i=1

Pproto(r
∗
i) (9)

We consider a generative run to be invalid if it generates
the same rule prototype more than once, although we allow
rule prototypes to have overlapping contexts.

The rule prototypes are generated independently from the
distribution Pproto(r∗). This is similar to the distribution
for generating a local rule from scratch (as given by Eq. 8).
The action term z∗ is chosen from the uniform distribution
Pact(z∗|NIL); the context formula Ψ∗ is generated by run-
ning our formula modification process on the empty for-
mula ∅ given the logical variables v̄ from z∗; the num-
ber of outcomes n∗ has a geometric distribution; and each
outcome o∗ in the outcome set O∗ is also generated from

Pfor(o∗|∅, v̄). The main difference from the case of local
rules is that rather than generating an outcome probabil-
ity vector p, we generate a vector of Dirichlet weights Φ,
defining a prior over outcome distributions. We use a hy-
perprior PΦ(Φ|n∗) on Φ in which the sum of the Dirichlet
weights has an exponential distribution. Thus, if r∗ con-
sists of an action term z∗ containing logical variables v̄, a
context Ψ∗, and an outcome set O∗ of size n∗, then:

Pproto(r∗) = Pact(z∗|NIL) Pfor(Ψ∗|∅, v̄)

· Geom[α](n∗)PΦ(Φ|n∗)
∏

o∈O∗

Pfor(o|∅, v̄)

4 Learning

In our problem formulation, we are given sets of exam-
ples x1, ..., xK fromK source tasks, and a set of examples
(xK+1) from the target task . In principle, one could max-
imize the objective in Eq. 3 using the data from the source
and target tasks simultaneously. However, if K is fairly
large, the data from task K + 1 is unlikely to have a large
effect on our beliefs about the rule set prototype G. Thus,
we work in two stages. First, we find the best rule set pro-
totype G∗ given the data for the K source tasks. Then,
holding G∗ fixed, we find the best rule set R∗

K+1 given G∗

and xK+1. This approach has the benefit of allowing us to
throw away our data from the source tasks, and just transfer
the relatively small G∗.

Our goal in the first stage, then, is to find the prototype G∗

with the greatest posterior probability given x1, . . . , xK .
Doing this exactly would involve integrating out the source
rule sets R1, . . . , RK . It turns out that if we think of each
rule set Rk as consisting of a structure RS

k and parame-
ters RP

k (namely the outcome probability vectors for all the
rules), then we can integrate out RP

k efficiently. However,
summing over all the discrete structures RS

k is difficult.
Thus, we apply another MAP approximation, searching for
the prototypeG and rule set structuresRS

1 , . . . , RS
K that to-

gether have maximal posterior probability. It is important
that we integrate out the parameters RP

k , because the pos-
terior density for RP

k is defined over a union of spaces of
different dimensions (corresponding to different numbers
of rules and outcomes in Rk). The heights of density peaks
in spaces of differing dimension are not necessarily com-
parable. So it would not be correct to use a MAP estimate
of RP

k obtained by maximizing this density.

4.1 Scoring Function

In our search over G and RS
1 , . . . , RS

K , our goal is to max-
imize the marginal probability obtained by integrating out

the outcome probabilities:

P (G, RS
1 , . . . , RS

K) ∝

PG(G)
KY

k=1

Z

RP
k

Pmod(Rk|G)P (xk|Rk) (10)

This equation trades off three factors: the complexity of the
rule set prototype, represented by PG(G); the differences
between the local rule sets and the prototype, Pmod(Rk|G),
and how well the local rule sets fit the data, P (xk|Rk).

Computing the value of Eq. 10 for a given choice of G
andR1, . . . , RK is expensive, because it involves summing
over all possible mappings from local rules to global rules
(the a values in Eq. 5) and all mappings from local out-
comes to prototype outcomes (the b values in Eq. 8). Inte-
grating out the outcome probabilities p in each rule is not a
computational bottleneck: we can push the integral inside
the sums over a and b, and use a modified version of a stan-
dard estimation technique [Minka, 2003] for the Polya (or
Dirichlet-multinomial) parameters.4

Rather than summing over all possible local-to-global
correspondences for rules and outcomes, we approxi-
mate by using a single correspondence. Specifically,
for each rule set Rk ≡ {r1, . . . , rm}, we choose
the rule correspondence vector â that maximizes the
probability of the local rule contexts Ψi given the
global rule contexts Ψ(ai) (ignoring outcomes) â =
argmaxa

∏m
i=1 PA(ai|G)Pfor(Ψi|Ψ∗

(ai)
, v̄i). Since each

factor contains only one assignment variable ai, we can
find the corresponding rule prototype for each local rule
separately. Given the rule correspondence â, we next con-
struct an outcome correspondence for each rule ri. We use
the outcome correspondence that maximizes the probabil-
ity of the local outcomes o1, . . . , on given the outcome set
O∗ of the rule prototype âi (ignoring the outcome probabil-
ities) b̂ = argmaxb

∏n
i=1 PB(bi|O∗)Pfor(oi|bi, v̄). Again,

the maximization decomposes into a separate maximiza-
tion for each outcome. This greedy matching scheme can
yield a poor result if a local rule ri has a context similar to
a prototype rule, but very different outcomes. So as a final
step, we compute the probability of each ri being generated
from scratch, and set âi to NIL if this is a better correspon-
dence.

These approximations yield the following scoring function
(an approximate version of Eq. 10), which we use to guide
our search.

Score(G, RS
1 , . . . , RS

K) =

PG(G)
KY

k=1

Z

RP
k

bPmod(Rk|G)P (xk|Rk) (11)

4We modify the standard technique to take into account our
hyperprior PΦ. Also, we adjust for cases where some global out-
comes are not included in a corresponding local rule. For a more
detailed explanation, see the master’s thesis by Deshpande [2007].

Here P̂mod is a version of the measure Pmod from Eq. 5 in
which we simply use â rather than summing over ai values,
and we replace Prule with a modified version that uses b̂
rather than summing over b vectors.

4.2 Coordinate Ascent

We find a local maximum of Eq. 3 using a coordinate as-
cent algorithm. We alternate between maximizing over lo-
cal rule set structures given an estimate of the rule set pro-
totypeG, and maximizing over the rule set prototype given
estimates of the rule set structures (RS

1 , ..., RS
K):

argmaxRS
1 ,...,RS

K

KY

k=1

Z

RP
k

P (xk|Rk)P (Rk|G)

argmaxG P (G)
KY

k=1

P (RS
k|G)

We begin with an empty rule set prototype, and use a
greedy local search algorithm (described below) to opti-
mize the local rule sets. Since R1, . . . , RK are condition-
ally independent given G, we can do this search for each
task separately. When these searches stabilize — that is,
no search operator improves the objective function — we
run another greedy local search to optimize G. We repeat
this alternation until no more changes occur.

4.3 Learning Local Rule Sets

During the coordinate ascent one task is to find the highest
scoring local rule set R∗

k given the rule set G. The search
is closely related the rule set learning algorithm problem
in Zettlemoyer et al. [2005]. There are three major dif-
ferences: (1) G provides a prior that did not exist before;
(2) the outcomes O for each rule are constrained to be non-
overlapping; and (3) the rule parameters p are integrated
out instead of being set to maximum likelihood estimates.

4.3.1 Rule Set Search

In this section, we briefly outline a local rule learning algo-
rithm that is a direct adaptation of the approach of Zettle-
moyer et al. [2005] and highlight the places where the two
algorithms differ. The search starts with a rule set that con-
tains only the noisy default rule. At every step, we take the
current rule set and apply a set of search operators to cre-
ate new rule sets. Each of these new rule sets is scored, as
described in section 4.1. The highest scoring set is selected
and set as the new Rk, and the search continues until no
new improvements are found.

The operators create new rule sets by directly manipulating
the current set: either adding or removing some number of
the existing rules. Whenever a new rule is created, the rel-
evant operator constructs the rule’s action and context and

uses a subalgorithm to find the best set of outcomes. This
outcome learning is done with a greedy search algorithm,
as described in the next section. The following operators
construct changes to the current rule set.

Add/Remove Rule. Two types of new rules can be added
to the set. Rules can be created by an ExplainExamples
procedure [Zettlemoyer et al., 2005] which uses a heuristic
search to find high quality potential rules in a data driven
manner. In addition, rules can be created by copying the
action and context of one of the prototypes in the global
rule set. This provides a strong search bias towards rules
that have been found to be useful for other tasks. New rule
sets can also be created by removing one of the existing
rules in the current set.

Add/Remove Literal. This operator selects a rule in the
current rule set, and replaces it with a new rule that is the
same except that one literal is added or removed from the
context. All possible additions and deletions are proposed.

Split on Literal. This operator chooses an existing rule
and a new term that does not occur in that rule’s context. It
removes the chosen rule and adds multiple new rules, one
for each possible assignment of a value to the chosen term.

Any time a new rule is added to a rule set, there is a check to
make sure that only one rule is applicable for each training
example. Any preexisting rules with overlapping applica-
bility are removed from the rule set.

4.3.2 Outcome Search

Given a rule action z and a context Ψ, the set of outcomes
O is learned with a greedy search that optimizes the score,
computed as described in section 4.1. This algorithm is
a modified version of a previous outcome search procedure
[Pasula et al., 2004], which has been changed to ensure that
the outcomes do not overlap. Initially, O contains only the
noise outcome, which can never be removed. It each step,
a set of search operators is applied to build new outcome
sets, which are scored and the best one is selected. The
search finishes when no improvements can be found. The
operators include:

Add/Remove Outcome. This operator adds or removes
an outcome from the set. Possible additions include any
outcomes from the corresponding prototype rule or an out-
come derived from concatenating the changes seen as a re-
sult of action effects in a training example (following [Pa-
sula et al., 2004]). Any existing outcome can be removed.

Add/Remove Literal. This operator appends or removes
a literal from a specific outcome in the set. Any literal that
is not present can be added and any currently present literal
can be removed.

Split on Literal. This operator takes an existing outcome
and replaces it with multiple new outcomes, each contain-
ing one of the possible value assignments for a new term.

Merge Outcomes. This operator creates a new outcome
computing the union of an existing outcome and one that
could be added by the add operator described above. The
original outcome is removed from the set.

Two of the operators, add outcome and remove function,
have the potential to create overlapping outcomes. To fix
this condition, functions are greedily added to overlapping
outcomes until no pair of outcomes overlap. This new out-
come set is scored, and the search continues.

4.4 Learning the Rule Set Prototype

The second optimization involves finding the highest scor-
ing rule set prototype G given rule sets (R∗

1, ..., R
∗
K).

Again, we adopt an approach based on greedy search
through the space of possible rule sets. This search has ex-
actly the same initialization and uses all of the same search
operators as the local rule set search. There are three differ-
ences: (1) the AddRule operator tries to add rules that are
present in the local rule sets, without directly referencing
the training sets; (2) we relax the restriction that rules and
outcomes can not overlap, simplifying some of the check-
ing that the operators have to perform; and (3) we need to
estimate the Dirichlet parameters for the outcomes for each
new prototype rule considered by the structure search.

Estimating the Dirichlet parameters for the Polya distri-
bution does not have a closed form solution, but gradient
ascent techniques have been developed for the maximum
likelihood solution [Minka, 2003]. To estimate the parame-
ters for a rule prototype r∗, the required occurrence counts
are computed for each prototype outcome and each local
rule that corresponds to r∗ (under the correspondence â
described in Sec. 4.1). If a local rule contains several out-
comes corresponding to the same prototype outcome (un-
der b̂), their counts are merged.

5 Experiments

We evaluate our learning algorithm on synthetic data from
four families of related tasks, all variants of the classic
blocks world. We restrict ourselves to learning the effects
of a single action, pickup(X, Y). Adding more actions
would not significantly change the problem: since the ac-
tion is always observed, one can learn a rule set for multiple
actions by learning a rule set for each action separately.

5.1 Methodology

Each run of our experiments consists of the following steps:

1. Generate K “source task” rule sets from a prior dis-
tribution. This prior distribution is implemented by
a special-purpose program for each family of tasks.
This is slightly more realistic than generating the rule
sets from a rule set prototype expressed in our model-
ing language.

2. For each source task, generate a set of Nsource state
transitions to serve as a training set. In each state tran-
sition, the action is pickup(A, B) and the initial state is
created by assigning random values to all functions on
{A, B}.5 Then the resulting state is sampled according
to the task-specific rule set. Note that the state tran-
sitions are sampled independently of each other; they
do not form a trajectory.

3. Run our full learning algorithm on the K source-task
training sets to find the best rule set prototype G∗.

4. Generate a “target task” rule set RK+1 from the same
distribution used in Step 1.

5. Generate a training set of Ntarget state transitions as in
Step 2, using RK+1 as the rule set.

6. Learn a rule set R̂K+1 for the target task using the
algorithm from Sec. 4.3, with G∗ as the fixed rule set
prototype.

7. Generate a test set of 1000 initial states using the same
distribution as in Step 2. For each initial state s, com-
pute the variational distance between the next-state
distributions defined by the true rule set RK+1 and
the learned rule set R̂K+1. This is defined in our case
as follows, with a equal to pickup(A, B) and s′ ranging
over possible next states:

∑

s′

∣∣∣p(s′|s, a,RK+1)− p(s′|s, a, R̂K+1)
∣∣∣

Finally, compute the average variational distance over
the test set.

Variational distance is a measure of error, but we would like
the y-axis in our graphs to be a measure of accuracy, so we
use 1− (variational distance).

The free parameters in our hierarchical Bayesian model
(and hence in our scoring function) are set to the same val-
ues in all experiments. While we found that the scoring
function in Eq. 11 leads to good results on large training
sets, we also saw that with small training sets, the very
small probabilities of formulas (in contexts and outcomes)
tend to dominate the score. For the experiments reported

5The distribution used here is biased so that A is always a
block and the robot’s gripper is usually empty; this focuses our
evaluation on cases where pickup(A, B) has a chance of success.

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 20 40 60 80 100 120 140 160 180 200

1-
(V

ar
ia

tio
na

l D
is

ta
nc

e)

Target Task Examples

Gripper Size Domain

No Transfer
1x5000
2x2500

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

1-
(V

ar
ia

tio
na

l D
is

ta
nc

e)

Target Task Examples

Slippery Gripper Domain

No Transfer
1x5000
2x2500

(a) (b)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100 120 140 160 180 200

1-
(V

ar
ia

tio
na

l D
is

ta
nc

e)

Target Task Examples

Slippery Gripper with Size Domain

No Transfer
1x5000
2x2500

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

1-
(V

ar
ia

tio
na

l D
is

ta
nc

e)

Target Task Examples

Random Domain

No Transfer
1x1000

4x250
10x100

(c) (d)

Figure 3: Accuracy using an empty rule set prototype (labeled “No Transfer”) and transfer learning, labeled KxN where
K represents the number of source tasks and N represents the number of examples per source task.

here, we use a modified scoring function in which each oc-
currence of the formula distribution Pfor is raised to the
power 0.5. The fact that this ad hoc modification yields
better results suggests that our distribution over formulas
is overly flat, and it would be worthwhile to develop a for-
mula distribution that gives common literals or subformu-
las higher probability.

5.2 Results

In this section, we present results in the four blocks world
domains. For each domain, we briefly describe the task
generation distribution and then present results.6 For each
experiment, we graph variational distance as a function of
the number of training examples in the target task. Each
experiment was repeated 20 times; our graphs show the av-
erage results with 95% confidence bars. The time required
for each run varied from 30 seconds to 10 minutes depend-
ing on the complexity of the domain.

Our first experiment investigates transfer learning in a do-
main where the rule sets are very simple — just single
rules — but the rule contexts vary across tasks. We use
a family of tasks where the robot is equipped with grip-
pers of varying sizes. There are seven different sizes of

6Deshpande [2007] presents a more detailed description of
these domains.

blocks on the table; the robot can only pick up blocks that
are the same size as its gripper. Thus, each task can be
described by a single rule saying that if block X has the
proper size, then pickup(X, Y) succeeds with some signif-
icant probability (this probability also varies across tasks).
If X has the wrong size, then no rule applies and there is
no change. Since the “proper size” varies from task to task,
the rules for different tasks have different contexts. To in-
crease the learning difficulty, two extra distracter predicates
(color and texture) are randomly set to different values in
each example state.

Fig. 3(a) shows the transfer learning curves for this do-
main. The transfer learners are consistently able to learn
the dynamics of the domain with fewer examples than the
non-transfer learner. In practice, in each source task, the
algorithm learns the specific pickup rule with the appropri-
ate size literal in the context. The algorithm learns a single
rule prototype whose context also contains some size lit-
eral. This rule prototype provides a strong bias for learning
the correct target-task rule set: the learner only has to re-
place the size literal in the prototype with the correct size
literal for the given task.

To see how transfer learning works for more complex rule
sets, our next experiment uses a “slippery gripper” domain
adapted from [Kushmerick et al., 1995]. The correct model
for this domain has four fairly complex rules, describing

cases where the gripper is wet or not wet (which influences
the success probability for pickup) and the block is being
picked up from the table or from another block (in the lat-
ter case, the rule must include an additional outcome for the
block falling on the table). The various tasks are all mod-
eled by rules with the same structure, but include relatively
large variation in outcome probabilities.

Fig. 3(b) shows the transfer learning curves for the slip-
pery gripper domain. Again, transfer significantly reduces
the number of examples required to achieve high accuracy.
We found that the transfer learners create prototype rule
sets that effectively represent the dynamics of the domain.
However, the structure of the prototype rules do not ex-
actly match the structure of the four specific rules that are
present in each source task. Despite this fact, these proto-
types still capture common structure that can be specialized
to quickly learn the correct rules in the target task.

Our third domain, the slippery gripper domain with size, is
a cross between the slippery gripper domain and the grip-
per size domain. In this domain, all four rules of the slip-
pery gripper domain apply with the addition that each rule
can only succeed if the targeted block is of a certain task-
specific size. Thus, the domain exhibits both structural and
parametric variation between tasks.

As can be seen in Fig. 3(c), the transfer learners perform
significantly better than the non-transfer learner. In this
case, the rule set prototype provides both a parametric and
structural bias to better learn the domain.

Our final experiment investigates whether our algorithm
can avoid erroneous transfer when the tasks are actually
unrelated. For this experiment, we generate random source
and target rule sets with 1 to 4 rules. Rule contexts and
outcomes are of random length and contain random sets
of literals. Since rule sets sampled this way may contain
overlapping rules or outcomes, we use rejection sampling
to ensure that a valid rule set is generated for each task.

As can be seen in Fig. 3(d), the transfer and non-transfer
learners’ performances are statistically indistinguishable.
The learning algorithm often builds a rule set prototype
containing a few rules with random structure and high vari-
ance outcome distribution priors. These prototype rules do
not provide any specific guidance about the structure or pa-
rameters of the specific rules to be learned in the target task.
However, their presence does not lower performance in the
target task.

6 Conclusion

In this paper, we developed a transfer learning approach for
relational probabilistic world dynamics. We presented a hi-
erarchical Bayesian model and an algorithm for learning a
generic rule set prior which, at least in our initial exper-
iments, holds significant promise for generalizing across

different tasks. This learning problem is particularly diffi-
cult due to the need to learn relational structure along with
probabilities simultaneously for a large number of tasks.
The current approach addresses many of the fundamental
challenges for this task and provides a strong example that
can be extended to work in more complex domains and
with a wide range of representation languages.

References

[Baxter, 1997] J. Baxter. A Bayesian/information theoretic
model of learning to learn via multiple task sampling. Ma-
chine Learning, 28:7–39, 1997.

[Blum and Langford, 1999] A. L. Blum and J. C. Langford.
Probabilistic planning in the Graphplan framework. In
Proc. 5th European Conference on Planning, 1999.

[Deshpande, 2007] A. Deshpande. Learning probabilistic
relational dynamics for multiple tasks. Master’s thesis,
Massachusets Institute of Technology, 2007.

[Kushmerick et al., 1995] N. Kushmerick, S. Hanks, and
D. S. Weld. An algorithm for probabilistic planning. Arti-
ficial Intelligence, 76:239–286, 1995.

[Lindley, 1971] D. V. Lindley. The estimation of many pa-
rameters. In V. P. Godambe and D. A. Sprott, editors, Foun-
dations of Statistical Inference. Holt, Rinehart and Win-
ston, Toronto, 1971.

[Marx et al., 2005] Z. Marx, M. T. Rosenstein, L. P. Kael-
bling, and T. G. Dietterich. Transfer learning with an en-
semble of background tasks. In NIPS Workshop on Induc-
tive Transfer, 2005.

[Minka, 2003] T. P. Minka. Estimating a Dirichlet dis-
tribution. Available at http://research.microsoft.com/
∼minka/papers/dirichlet, 2003.

[Pasula et al., 2004] H. M. Pasula, L. S. Zettlemoyer, and
L. P. Kaelbling. Learning probabilistic relational planning
rules. In Proc. 14th International Conference on Auto-
mated Planning and Scheduling, 2004.

[Yu et al., 2005] K. Yu, V. Tresp, and A. Schwaighofer.
Learning Gaussian processes from multiple tasks. In
Proc. 22nd International Conference on Machine Learn-
ing, 2005.

[Zettlemoyer et al., 2005] L. S. Zettlemoyer, H. M. Pasula,
and L. P. Kaelbling. Learning planning rules in noisy
stochastic worlds. In Proc. 20th National Conference on
Artificial Intelligence, 2005.

[Zhang et al., 2006] J. Zhang, Z. Ghahramani, and Y. Yang.
Learning multiple related tasks using latent independent
component analysis. In Advances in Neural Information
Processing Systems 18. MIT Press, 2006.

