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ABSTRACT
We present a novel approach for improving communication success
between users of speech-to-speech translation systems by automat-
ically detecting errors in the output of automatic speech recogni-
tion (ASR) and statistical machine translation (SMT) systems. Our
approach initiates system-driven targeted clarification about errorful
regions in user input and repairs them given user responses. Our
system has been evaluated by unbiased subjects in live mode, and
results show improved success of communication between users of
the system.

Index Terms— Speech translation, error detection, error correc-
tion, spoken dialog systems.

1. INTRODUCTION

Interacting via natural language between a human and machine to
accomplish a task, such as speech translation, poses two key techni-
cal challenges to human-machine communication systems:

1. The complexity, ambiguity, and informality of natural spoken
language have a significant negative impact on the overall per-
formance of existing dialog systems.

2. User intent is conveyed not only by what is explicitly said but
also by how and in what context it is said.

State-of-the-art linguistic tools are most successful on formal,
edited data (e.g., news stories) and tend to break down with sponta-
neous, unedited natural language input in a speech-to-speech human-
machine communication system. ASR systems are constantly im-
proving, but their performance degrades significantly in the pres-
ence of out-of-vocabulary (OOV) words and ambiguous words. In
a speech-to-speech translation setting, such system errors result in
loss of communication between users and in a poor user experience.
Thus, it is critical to detect and fix these errors, preferably before
translation, to avoid cascaded errors in dialog.

Most existing human-machine communication systems follow
simple clarification mechanisms to address certain types of errors in
recognition, usually in the form of generic “please rephrase” ques-
tions. While this strategy is useful to recover from some errors, it
frequently fails because the users do not have a clear indication of
which portion of their original utterance is causing the recognition
system to fail, and they do not have clear instructions for rephrasing
their original utterance. Therefore, the ability to detect misrecog-
nized portions of user speech and to ask targeted clarification ques-
tions to address these misrecognitions is important for success in
human-machine communication systems.

∗Author performed the work while visiting Columbia University.

Our previous work on speech-to-speech translation systems has
shown that there are seven primary sources of errors in translation:

• ASR named entity OOVs: Hi, my name is Colonel Zigman.
• ASR non-named entity OOVs: I want some pristine plates.
• Mispronunciations: I want to collect some +de-MOG-raf-ees

about your family? (demographics)
• Homophones: Do you have any patients to try this medica-

tion? (patients vs. patience)
• MT OOVs: Where is your father-in-law?
• Word sense ambiguity: How many men are in your com-

pany? (organization vs. military unit)
• Idioms: We are clear as a bell on the level of supplies.

In this work, we present a new architecture for a speech-to-
speech translation system with machine-initiated clarification func-
tionality to resolve these sources of errors in ASR and MT output.
The novelty of the proposed architecture is its ability to localize the
errors and ambiguities in ASR and MT outputs, ask targeted ques-
tions to address only those regions of errors and ambiguities, and
merge user responses with the original utterance before translation.

2. SYSTEM OVERVIEW

Figure 1 presents the architecture of our speech-to-speech translation
system with machine-initiated clarification capability. More specif-
ically, this work is focused on speech-to-speech translation between
English and Iraqi-Arabic. The user speech is first recognized by
an ASR system to produce a 1-best ASR hypothesis, a word con-
fusion network, a lattice, and several prosodic features. Next, the
error detection module’s OOV detection component processes the
word confusion networks generated by the ASR system, and identi-
fies OOV candidates—both named and non-named entities. Then a
confidence prediction component assigns a probability of misrecog-
nition to each word in the 1-best ASR hypothesis. This probability
score is generated by a statistical classifier trained on a combination
of ASR posterior probabilities, prosodic features, and syntactic fea-
tures associated with each word. The ASR error detection module
makes a final decision about errorful segments. It employs a condi-
tional random field (CRF) tagger, a dependency parser, and an error
hypothesis re-ranker to process all the features and scores generated
by the previous components, and generates a set of candidate error
segments, which might span multiple words.

The answer extraction and merging module combines the initial
user input with subsequent user answers to system-initiated clari-
fication questions by extracting the relevant portions from user re-
sponses to compose the final answer that will be translated. If no
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Fig. 1. Clarification dialog in a speech translation system: The user
speech is passed through error detection modules. If the system finds
an error in the input, it initiates a clarification dialog with the user.
Once all errors are resolved, the system translates the best input sen-
tence generated by the answer-merging module over several turns.

ASR errors are detected in the merged output, the dialog manager
sends the merged output to the translation engine. The MT error de-
tector analyzes the translation and checks for errors, such as words
unknown to the translation engine. If no errors are found in the trans-
lation, the system sends this final translation to the other party in the
conversation. If there are any ASR or MT errors, however, the di-
alog manager formulates a question according to the type of error
detected, and plays back this question to the user through a text-to-
speech synthesizer (TTS) to finish the current turn. Figure 2 illus-
trates how the system detects errors, initiates a dialog with the user,
and generates the final translation.

3. RELATED WORK

Early work in OOV detection in ASR hypotheses for constrained-
domain applications used OOV word classes in the language model
[1, 2]. Better results were obtained using multiple sub-word frag-
ments as words [3], especially in highly inflected languages and for
spoken term detection. Another approach is based on word confi-
dence estimation techniques, using ASR word posteriors with con-
textual features such as word lattice topology, and predicting OOVs
instead of or in addition to ASR errors [4, 5]. ASR error detection is
considered as a generalization of OOV detection where word-level
errors predictors are trained on ASR hypotheses [6, 7]. It is achieved
by learning from lexical, syntactic and prosodic features [8, 9, 10], as
well as ASR confidence metrics such as word posteriors and depth of
confusion networks [5] and by decoupling the most probable acous-
tic and linguistic hypotheses [3]. Error recovery strategies developed
for multimodal scenarios [11, 12] allows editing of recognized words
using speech commands such as select, correct, spell that [13]. Fu-
sion of multiple sentences has been studied in the context of sum-
marization, by aligning and merging dependency parse trees with
rule-based and integer linear programming methods [14, 15]. Clari-
fication based error correction in speech-to-speech systems is a rela-
tively new approach and only one other work is reported in [16].

Star%ng	  Sentence	   We	  need	  to	  coordinate	  the	  rescue	  efforts	  at	  Hawija	  Street	  
Speech	  Recogni%on	   we	  need	  to	  coordinate	  the	  rescue	  efforts	  at	  all	  i	  just	  street	  
Transla%on	   	احنا  	نحتاج  	ننسق  	الانقاذ  	جهود  	بس  	اني  	شارع  
Gloss	   we		)احنا(    need	  to		)نحتاج(    coordinate		)ننسق(    the	  rescue		)الانقاذ(    

efforts		)جهود(    only		)بس(    I		)اني(    street		)شارع(    
Clarifica%on	  Ques%on	   I	  think	  I	  heard	  a	  name	  when	  you	  said	  

PLAY_USER_SPEECH(Hawija).	  Is	  that	  right?	  
User	  Response	   yes	  
Clarifica%on	  Ques%on	   OK,	  can	  you	  please	  spell	  that	  name?	  
User	  Response	   harry	  adam	  william	  ike	  jim	  adam	  
Transla%on	  Input	   we	  need	  to	  coordinate	  the	  rescue	  efforts	  at	  

$name{Hawijaحويجه}	  	  street	  
Transla%on	   	  	احنا  	نحتاج  	ننسق  	الانقاذ  	جهود  	بشارع  	حويجه  
Gloss	   we		)احنا(    need	  to		)نحتاج(    coordinate		)ننسق(    the	  rescue		)الانقاذ(    

efforts		)جهود(    at		)ب(    Hawija		)حويجه(    street		)بشارع(    

Fig. 2. Sample Dialog between Human and Machine: The system
identifies a named entity OOV error and initiates a clarification di-
alog. The name provided by the user using a standard spelling al-
phabet is transliterated by the system and merged with the original
user input. After all the errors are resolved, the system translates the
merged user input.

4. SYSTEM COMPONENTS

This section describes in detail each component outlined in Figure 1.

4.1. Automatic Speech Recognition

Our ASR system uses standard acoustic models that have cross-word
triphones modeled as hidden Markov models with output distribu-
tions modeled by Gaussian mixture distributions trained discrimina-
tively using the minimum phone error criterion. The front-end signal
processing uses Mel-frequency cepstral coefficients features, which
are transformed using several linear operations to adapt to speak-
ers and environments. To speed up ASR decoding we used stan-
dard Gaussian selection shortlists. The ASR decoding graph is cre-
ated using a unigram language model (LM) using highly optimized
weighted finite state transducer composition and expanded using a
modified on-the-fly LM rescoring approach with a 4-gram, Kneser-
Ney smoothed LM. Detailed information about our ASR system can
be found in [17].

4.2. Error Detection Module

The error detection module consists of three components: an OOV
detector, an ASR confidence predictor and an ASR error detector.
We describe each component next.

4.2.1. OOV Detection

The OOV detection component detects regions in the output of an
ASR system that correspond to an OOV word in the utterance (see
Figure 3 for an illustration). Since ASR systems operate with a fixed
vocabulary, they inevitably run into problems when they encounter
an OOV word and hypothesizes words or sequences of words that
have similar phonetic content but that are often syntactically and/or
semantically anomalous.

The OOV detection component takes as input a word confusion
network (WCN), which is a flattened lattice, consisting of a sequence
of slots with each slot comprising a list of words and their confi-
dences. The output is a WCN annotated with OOVs. The OOV
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Ref:    we must reframe the structure 
Hyp1: we must fame  the structure 
Hyp2: we must <oov> the structure 

Fig. 3. OOV detection: Example best parse of a WCN for the ut-
terance “We must reframe the structure”, where the word “reframe”
is OOV. Note that “reframe” has been mapped, by the ASR system,
onto two slots in the WCN. These are modeled by the parser as an
OOV region with category VB (verb), allowing the same syntactic
parse that would result if the word “reframe” had been recognized.

classification is performed in three stages: (1) Predict the slot-level
posterior OOV probability using maximum entropy (MaxEnt) clas-
sifiers, and renormalize other word posteriors; (2) Choose the best
path through the WCN allowing OOV spans, using a probabilistic
context free grammar (PCFG) parser modified to incorporate dele-
tions (DEL) and multiple OOV tokens; and (3) Refine OOV region
prediction with a second MaxEnt classifier with syntactic/semantic
features, leveraging the output of the previous stages.

A system with stage 1 alone corresponds to the standard ap-
proach used in previous work. For a task with a relatively high
OOV rate, using just stage 1 reduces word error rate (WER) from
14.1% to 12.9%, and adding the subsequent stages further reduces
the WER to 11.7%1. The additional stages improve OOV detection
to 68.7 F-score over the baseline performance of 58.2 F-score. An-
alyzing performance over a range of detection thresholds, we find
that the multi-stage system combines the strengths of the different
approaches in different regions of the precision-recall curve. Further
details of this component are described in [18].

4.2.2. ASR Confidence Prediction

We developed a set of features that capture information for pre-
dicting confidence in the correctness of each word in the ASR hy-
potheses [19]. These features included prosodic information (min,
max, mean, and stddev of F0 and energy, proportion of voiced seg-
ments, duration, and measures of speaking rate) as well as lexical
and syntactic information (part-of-speech tag (POS) ngrams, parse
and OOV hypothesis confidence scores), together with confusion
network-based posterior probability scores on the 1-best hypothe-
sis produced by the decoder. Using classifiers trained on acoustic
data collected between 2005 and 2009 under DARPA’s TRANSTAC
program and ASR hypotheses from SRI’s IraqComm system [20],
we predict if an an utterance and its constituent words has been mis-
recognized. Our method improved the F-measure for predicting mis-
recognized utterances by 13.3% when compared to using ASR pos-
teriors alone, and prediction of misrecognized F-measure by 40%.

1The reduction in WER is due to replacing OOV words in the references
of the held-out development set and the OOV predictions in the ASR hy-
potheses with a unique token in both sets.

4.2.3. ASR Error Detection

Lastly, the ASR error segment detection component hypothesizes
error segments with associated confidence scores and sends them to
the dialog manager to generate the next clarification question. The
labels attached to each error segment contain the type of word ex-
pected to correct the erroneous segments (noun, verb, named-entity)
and a dependency link to another word in the utterance. The first
step in the process is to label each word of the ASR 1-best transcrip-
tion as error/non-error, using a CRF tagger that uses a set of confi-
dence measures as well as lexical and syntactic features considering
not only OOV errors but also ASR insertions or substitutions error.
The tagger produces a lattice of sequences of error/non-error labels.
Since the clarification strategy can deal with only one error at a time,
we filter the lattice by keeping paths that contain only one error seg-
ment and imposing a minimum length for a segment to be retained.
A n-best list of error segment hypotheses is then produced by enu-
merating the n-best paths in the filtered lattice. Each error segment
in each hypothesis in the n-best list is replaced by the symbol “X” in
the ASR 1-best transcription.

The second step consists of applying a statistical dependency
parser similar to the MATE [21] parser to each “X” hypothesis. The
dependency parser is trained on a corpus that contained “X” sym-
bols for very low-frequency words and hypothesizes the most likely
POS category, dependency link and type according to the context of
“X” in the sentence. The last step re-ranks the n-best lists of error
segments using the estimated POS labels and dependency informa-
tion from the parser and a classifier that is trained on a large set of
confidence scores and linguistic features. The re-ranking process
is biased toward precision rather than recall to limit the number of
false alarms in a clarification dialog. For instance, we can increase
the error detection precision by 20% (from 60 to 80%) while losing
only 10% of recall compared to the use of word posterior confidence
measures only. For each error segment detected, the correct POS
tag and syntactic link are predicted in 42% and 60% of the cases,
respectively.

4.3. Answer Extraction and Merging

The answer extraction and merging module is responsible for cre-
ating a corrected utterance given the initial user utterance and the
answer to a clarification question. This task can get complicated,
depending on the complexity of the user responses to clarification
questions, with several possibilities: (1) answer exactly fits the error
segment; (2) answer is anchored to original words; (3) some original
words are rephrased in answer; (4) answer has filler phrases and (5)
answer may have ASR errors.

We adopt a finite-state transducer approach to align the answer
with the original words, which directly leads to the corrected utter-
ance as shown in Figure 4. Let O and A be acceptors that respec-
tively represent the original and answer utterances, and <error> and
<ins> are special symbols that match respectively the error segment
or an insertion. Using these special symbols, we augment O and A
with paths that optionally map any word in ASR hypotheses to part
of a multi-word spanning error segment or alternatively allow them
to be matched before or after an error segment. The corrected utter-
ance is the shortest path in the transducer produced by the compo-
sition of O and A (O ◦ A). To address the above possibilities, this
framework is enriched with paraphrase paths in the original [22], al-
ternate error segment boundaries, and matching costs for <error>
and <ins> symbols. ASR errors can be accounted for by using word
lattices for O and A.
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Fig. 4. Example of transducers used for merging. The error segment
covers the misrecognized word “hyperbaric” and the resulting edited
utterance is “where is the high pressure chamber.”

4.4. Dialog Manager

Our dialog manager is rule-based, employing templates for differ-
ent types of errors detected in the user input and/or translation. It
accepts multiple templates for each error type, and automatically
choose one during run-time. The templates might include references
to user speech for playback purposes, and specification of prosodic
information on any word. There are five primary types of clarifi-
cation question templates: (1) Ask for a spelling of a word (named
entity OOVs); (2) Ask for another word or phrase (non-named-entity
OOVs and MT OOVs); (3) Provide alternatives and ask for disam-
biguation (homophones and word senses); (4) Substitute erroneous
words/phrases with “what,” “who,” “where,” “which,” or “what kind
of,” depending on the POS tag and dependency information attached
to erroneous words (mispronunciations, non-OOV errors); and (5)
Confirm a name, a spelling, or an entire sentence. Figure 5 presents
examples of clarification questions for different templates.

User:	  Hello,	  my	  name	  is	  Captain	  Hill.	  

System:	  I	  think	  I	  heard	  a	  name	  when	  you	  said	  [play-‐user-‐speech:Hill].	  
Could	  you	  please	  spell	  that	  name?	  

User:	  We	  recently	  got	  a	  large	  philanthropic	  dona@on.	  

System:	  Can	  you	  please	  tell	  me	  another	  word	  or	  phrase	  for	  this:	  
[PLAY-‐USER-‐SPEECH:philanthropic]	  

User:	  We	  need	  to	  collect	  some	  demographees	  about	  your	  family.	  

System:	  collect	  some	  what?	  

User:	  We	  need	  some	  pa6ents	  to	  use	  this	  medica@on.	  

System:	  Did	  you	  mean	  pa,ence	  as	  in	  “tolerance	  of	  delay”	  or	  pa,ents	  
as	  in	  “people	  who	  require	  medical	  care?”	  Please	  say	  one	  or	  two.	  	  

User:	  We	  should	  not	  have	  any	  unforeseen	  difficul@es.	  

System:	  I	  do	  not	  know	  how	  to	  translate	  the	  word	  “unforeseen”.	  Can	  
you	  give	  me	  another	  word	  for	  it?	  

Fig. 5. Sample questions generated by the dialog manager based
on the types of detected errors: named-entity and non-named entity
ASR OOV, mispronunciation, homophone, and MT OOV.

4.5. Statistical MT and Name Transliteration

Our machine translation systems from English to Iraqi-Arabic em-
ploy phrase-based models [23] for name transliteration, and hierar-
chical phrase-based models [24] for final translation.

The translation models are log-linear models that combine sev-
eral features, including a language model score, conditional phrase
probabilities in both directions, lexical phrase probabilities in both
directions, word penalty, and phrase/rule penalty scores. For the fi-
nal translation system, we generated a 6-gram language model us-
ing the SRILM toolkit [25], on the target-language side of the MT
training data. For name transliteration system, we used a 10-gram
character-based language model trained on nearly 10K names col-
lected from the MT training data. The word alignments were gener-
ated using GIZA++ [26] on the entire training data in both directions,
and merging those uni-directional alignments using heuristic-based
methods [23]. During phrase extraction, we limited the maximum
phrase length to ten words (or characters for name transliteration)
on either side. Both MT systems were optimized using an in-house
implementation of the minimum-error-rate trainer [27] to maximize
BLEU score [28] on the tuning set. The training data consisted of
760K sentences (6.8M tokens) for translation and 6.6K names for
transliteration. The translation and transliteration systems were op-
timized and tested on nearly 3500 sentences and 1700 names respec-
tively.

5. RESULTS

Our English ASR and English-to-Iraqi-Arabic SMT systems were
trained on data released under DARPA’s TRANSTAC program. The
ASR word error rate was in the range of 4.4-10.5% on four “on-
line” test sets, and between 13.5-20.8% on three “offline” test sets
collected under TRANSTAC. The SMT BLEU scores on tuning and
test sets, with one reference translation, were 17%.

Clarification Translation Number of
Success Success Sentences
Unsuccessful Incorrect 33

Incorrect 11
Successful Partially correct 23

Correct 54
Table 1. Number of sentences with unsuccessful and successful clar-
ification and translation for the targeted error regions.

As part of evaluation of our system under DARPA’s BOLT pro-
gram, we measured the utility of clarification dialog in the English-
to-Iraqi-Arabic direction only by analyzing performance on 121 En-
glish sentences collected by NIST, which “targeted” one error region
drawn from the error categories listed in Section 1. Table 1 shows
the distribution of number of sentences where the system clarified
and translated the targeted error region successfully or failed to do
so. On 33 out of 121 sentences the system did not detect an error or
the clarification attempt failed, resulting in an incorrect translation
for the error region. For the remaining 88 sentences, the system was
successful at clarifying the error region and produced a transcription
for that region with a meaning equivalent to the original utterance.
Among those 88 sentences the system produced correct translation
on 54, partially correct translation on 23, and incorrect translation on
11 sentences. Overall, our system was able to get the correct tran-
scription in 73% (88/121) of the test sentences through a successful
clarification attempt. In 88% (77/88) of the cases where clarifica-
tion was successful, the system was able to generate the correct (or
partially correct) translation.

Acknowledgments: This work is supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract number
HR0011-12-C-0016. Approved for Public Release, Distribution Un-
limited.
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