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ABSTRACT

This paper addresses the problem of detecting words that are
out-of-vocabulary (OOV) for a speech recognition system to
improve automatic speech translation. The detection system
leverages confidence prediction techniques given a confusion
network representation and parsing with OOV word tokens to
identify spans associated with true OOV words. Working in
a resource-constrained domain, we achieve OOV detection F-
scores of 60-66 and reduce word error rate by 12% relative to
the case where OOV words are not detected.
Index Terms— OOV detection, speech recognition, parsing

1. INTRODUCTION

Automatic speech recognition (ASR) systems operate with
a fixed vocabulary, so systems inevitably run into problems
when an out-of-vocabulary (OOV) word is encountered. In
such cases, the system will recognize words or sequences of
words that have similar phonetic content, as in the following
examples with OOV terms underlined in the reference (Ref)
and errors in boldface in the hypothesis (Hyp).

REF: what can we get at Litanfeeth
HYP: what can we get it leaks on feet
REF: do you know how to properly handle asbestos
HYP: do you know how to properly and best those pistols

As these examples illustrate, the errors often introduce
strange grammatical constructions, which can sometimes
result in errors on neighboring words because of the impor-
tance of the language model in the recognition search.

Handling OOV regions is important for a variety of appli-
cations, but the constraints of the applications can impact the
approach. In audio indexing or spoken term detection, for ex-
ample, a search term that was not in the original ASR system
vocabulary can be handled by indexing a lattice expanded into
subword units [1], though retrieval rates may not be as high
as for in-vocabulary search terms. In human-computer inter-
action and speech translation, on the other hand, OOV errors
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often lead to failure of the interaction. If the presence of an
OOV can be detected, the computer can ask the speaker to
rephrase or try to learn the new word (e.g. through an inter-
active dialog with the speaker or a sound-to-letter mapping).
In this work, we are interested in computer-mediated speech
translation applications, but we focus only on the OOV region
detection problem.

Early work in OOV detection used generic acoustic mod-
els with OOV word classes in the language model [2, 3, 4, 5].
Such an approach can be effective in a constrained-domain
application, but it tends to have a high false detection rate in
open-domain or large vocabulary systems. Better results can
be obtained by using multiple sub-word fragments as “words”
rather than a generic OOV word model, as explored in [6, 7].
Including sub-word fragments is particularly useful for highly
inflected languages and for spoken term detection applica-
tions. Another approach is to build on word confidence esti-
mation techniques, leveraging speech recognition word poste-
rior probabilities with contextual features (such as local word
lattice topology, 1-best neighboring words, language model
features, and semantic context) and predicting OOVs instead
of or in addition to errors [8, 9, 10, 11, 12].

The work proposed here extends the confidence modeling
approach to explicitly leverage parsing, building on the ob-
servation that parse structure tends to be anomalous in OOV
regions. Working with confusion networks provided by the
ASR system, we first estimate the posterior probability (con-
fidence) that a slot in the confusion network aligns with an
OOV word in the reference transcription, then add the OOV
arc to the network and choose the best path through the net-
work using a parser that incorporates OOV tokens as words.
The final confidence of the resulting OOV region can be de-
termined using the first stage OOV confidences, the parser
confidence, or a combination of these in a subsequent confi-
dence prediction stage.

Parsers have previously been used to improve the output
of the speech recognition system, most often in an n-best or
lattice rescoring framework [13, 14, 15, 16]. While the hope
is that the parser will improve the recognized word sequence,
the goal of this work is primarily to identify OOV regions.

An important consideration in the approach described
here is that both computational and data resources are lim-
ited. The recognition output is used in a speech-to-speech
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translation scenario, with dialog-based computer mediation
to resolve unknown words. The recognition, parser and OOV
detection together must operate in real-time on a portable
platform. As a result, there is a substantial amount of pruning
in both the ASR and parser hypothesis spaces. In addition,
there are no in-domain hand-annotated parses and only a few
hundred sentences with known OOV words. Thus, domain
adaptation is used in training the parser.

2. SYSTEM DESCRIPTION

Our system takes as input a word confusion network (WCN),
which is a sequence of slots with each slot comprising a list
of words and their confidences. The output is a WCN anno-
tated for OOVs. The OOV classification is performed in three
stages, as illustrated in Figure 1.

WCN + 

OOV edges
Slot level 

OOV classifer

Parser OOV 

span prediction

ASR

Sentence level 

OOV classifier

WCN

WCN +

OOV span

Input: Audio, Limited ASR vocabulary 

Output: WCN + OOV span + OOV confidence

Fig. 1. System diagram

In the first stage an OOV arc is added to each slot in
the confusion network. These arcs are assigned a probabil-
ity according to a maximum entropy classifier designed to
recognize the slot level ASR response to out of vocabulary
input. The second stage of OOV classification uses a statis-
tical parser to recognize anomalous linguistic structures that
are typical of the ASR system’s response to an OOV word.
The parser can propose OOV parse sub-trees in place of these
structures as described in Section 3. The final stage of the
classification process uses global features from the parser out-
put to generate a final sentence level prediction of whether an
out-of-vocabulary word was present.

2.1. Initial Slot-level Classification

The first-stage classifier predicts, for each slot in the WCN,
whether that slot aligns with an OOV word. This stage adds
an OOV arc w̄ to each WCN slot, generates OOV confidence
pi(w̄|Msl) for slot i using model Msl, and renormalizes all
other word confidences are renormalized so that the set of
posteriors sums to one.

Msl is a maximum entropy (MaxEnt) slot-level classifier
based on the MALLET package [17], using features that de-
scribe the distribution of arcs in the confusion network slots,
summarized in Table 1. Several features are motivated by the

observation that the confusion network slots with more arcs
tend to correspond to erroneous regions. The del feature sig-
nals a slot where the ASR system assigns the highest proba-
bility to a DEL arc (i.e. a skip). The highPost feature is the
highest confidence ASR prediction. The del and highPost fea-
tures are extracted from the current slot and the previous and
subsequent two slots.

Feature Description
sentLength length of sentence (in words)

sentPos position of slot in sentence
mean mean of slot arc posteriors
stdev standard deviation of slot arc posteriors

highPost highest posterior in slot
highLength length of highest posterior word in slot

del 1 if highest posterior arc is DEL

Table 1. Confusion network features

In addition to the confusion network structural features,
we also employ a set of features motivated by the observa-
tion that a single OOV word is often replaced by a sequence
of shorter, common words. We use a set of binary features
obtained by mapping the highest posterior word in the slot to
a set of word classes learned from target domain data using
Brown clustering [18]. The most common words in the data
set are specified as their own class, under the assumption that
common words may have more predictive power when used
as individual features instead of within word classes. Finally,
as an alternative to the parser stage, we use a set of bigram
part-of-speech (POS) features, where the POS of a slot is de-
fined as the POS of the highest confidence word in the slot.

Feature selection is performed using the criterion of mu-
tual information with the class variable. The decision thresh-
old and the optimal number of features are selected to opti-
mize the slot-level F-score on a development set.

2.2. Parser-Driven Classification

We parse the confusion network output by the slot level classi-
fier using a probabilistic context free grammarG. This gener-
ates the single most probable parse y′ of a sequence of edges
w = [w0, . . . , w|w|−1] representing a path through the con-
fusion network. Each parse y is scored according to G, as
described in Section 3, and the first stage arc posteriors.

y∗ = arg{y,w∈WCN}max p(y|w, G)
|w|−1∏
i=0

p(wi|Msl)

The one-best parse y∗ of the WCN is used as an OOV clas-
sifier by allowing a path that assigns OOV arcs as terminals
in w. An example parse is shown in Figure 2. This parse
has correctly classified slots 2 and 3 as representing an OOV
region in the original string and assigned the verbal syntac-
tic category VB, allowing a parse that is consistent with the
grammar G.
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Fig. 2. Example best parse of a WCN for the utterance “We
must reframe the structure”, where word “reframe” is OOV.

2.3. Sentence-level Classification

One limitation of the parser-driven classification is that long-
distance relationships within the utterance cannot be captured
efficiently. The parser cannot therefore assign scores to global
parse restructuring resulting from the inclusion of OOV sub-
trees. Since the parser is allowed to hypothesize any cate-
gory for any sequence of non-zero probability OOV arcs in
the WCN, it may overpredict OOV regions in place of low
probability but correct ASR output.

We explore scoring global parse structure with a classifier
that observes differences between the best parse of the WCN
with and without OOV arcs. These differences are signaled
using features that correspond to the difference in number
of constituents of a particular type (e.g. NP) of a particular
length between the two parses, aggregated over all lengths.
With preliminary analysis suggesting that many of the differ-
ences manifest themselves in noun and verb phrases, we focus
on specific syntactic categories: noun phrases, verb phrases,
sentence (S and SBAR nodes) and the overall difference be-
tween the trees. We also look at the number of OOV non-
terminals present in the OOV-aware parse tree.

Using these features, together with the region-level con-
fidence scores obtained from the initial-stage MaxEnt classi-
fication and the parser, we perform utterance-level classifica-
tion using the same maximum entropy classifier package as
in the initial-stage. We use low sentence-level scores to fil-
ter out OOV regions predicted by the parser or by the initial
stage MaxEnt classifier, with the intention of boosting preci-
sion while not harming recall.

3. PARSING CONFUSION NETWORKS WITH OOVS

There has been significant previous work on parsing ASR lat-
tices [13, 14] in which each path represents a sequence of rec-
ognized words. However, to integrate with a WCN slot based
OOV classifier, our parser needs to account for DEL markers
used to represent ASR insertions. It must also be able to deal

with spans of OOV arcs. Below we describe first modifica-
tions to an existing PCFG that supports both of these. Then
we describe how these modifications are modeled probabilis-
tically, using a model trained on in-domain data.

3.1. Parser grammar

The PCFGG has as its basis a set of unary and binary context
free rewrite rules extracted from the Switchboard corpus [20].
To these we add a pair of binary grammar rules: X → X DEL
and X → DEL X that collapse DEL arcs in syntactic parses.
In these rules, X may match any non-terminal in G. The first
of these rewrites has been used once in Figure 2.

OOV markers on confusion network arcs are treated
as a new word ‘oov’. These are generated from the syn-
tactic non-terminal OOV via a Markov process integrated
into the PCFG parser using the two rules OOV → oov and
OOV → OOV oov. The OOV non-terminal can be gener-

ated from any other non-terminal in G. This allows the parser
to model large spans in the input WCN as relating to an out-
of-vocabulary word of any syntactic category. For example
in Figure 2 the out-of-vocabulary word ‘reframe’ has been
mapped, by the ASR system, onto two slots in the WCN.
These are modeled by the parser as an OOV region with cate-
gory VB , allowing the same syntactic parse that would have
been built if the word ‘reframe’ had been recognized.

3.2. Parser model

The parser scores each parse using a combination of a gener-
ative parsing model trained on the Switchboard corpus and a
discriminative CRF used to score OOV segments. We use the
Stanford parser [19], modified to as described above, to learn
a generative parsing model from counts of rules in Switch-
board. We assign the non-Switchboard binary rules proba-
bility 0.1, the unary rule OOV → oov probability 1, and the
unary rules X → OOV probability 0.1. We renormalize all the
rule probabilities to give a generative probabilistic context-
free grammar, GS .

The Markov process used to generate OOV segments in
the parse y and the rules used to collapse DEL are modeled
discriminatively. These rules fire features φ(y) on the parent
and child categories. The features have weights θoov . We
calculate the probability of a full parse as:

p(y|WCN,G) = p(y|w, GS)p(y|θoov) (1)

=
∏

a→b∈y

p(b|a,GS)
exp(φ(y) · θoov)∑
y′ exp(φ(y′) · θoov)

Where both y and y′ must have yield in the word confusion
network WCN. As we only use local features, this can be cal-
culated efficiently using the inside-outside algorithm.

Domain specific parse parameters θoov are estimated us-
ing an averaged online perceptron learning algorithm [21]
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from in-domain training data. This allows us to adapt the
model trained on the larger Switchboard corpus.

4. EXPERIMENTAL SETUP

4.1. Dataset And Recognizer Setup

We use the SRI Dynaspeak [22] speaker-independent speech
recognition system. The system uses a four-gram language
model trained on a mixture of in-domain TRANSTAC data
and out-of-domain sources such as newswire and broadcast
news corpora. The language model is trained with a 30,000
word vocabulary. Word class features are learned on the
in-domain training data portion of the recognizer language
model. A set of 1000 classes are obtained, augmented with
the 50 most common words in the data set. The recognizer
lattices are converted to confusion networks using the SRILM
toolkit [23]. Confusion network statistics for the development
set are included in Table 2.

For training, the reference transcripts are aligned to confu-
sion network slots using a dynamic programming alignment
algorithm implemented in SRILM. Each confusion network
slot mapped to a reference word not found in the recognizer
vocabulary is labeled as matching an OOV. Confusion net-
work slots corresponding to insertions take the positive label
of an adjacent OOV slot, if one exists.

Ave # slots 15.7
Ave # arcs per slot 2.4

One-Best WER 14.1
Oracle WER 7.5

Table 2. Dev set confusion network statistics

We focus on a dataset drawn from two sources contain-
ing relatively short utterances with a low formality level. Ut-
terances drawn from TRANSTAC data contain few OOVs.
Additional utterances with OOVs were recorded by SRI to
match the topic and style of the TRANSTAC utterances. De-
velopment set statistics are included in Table 3. The “format”
OOVs include words that are represented in the vocabulary
with a different orthography, e.g. “traveling” vs. “travelling,”
which are not actually OOV for practical purposes.

Statistic TRANSTAC SRI
# Utterances 166 164

# Name OOVs 0 47
# Other OOVs 2 63

# Format OOVs 2 6
Ave utterance length 12.8 9.4

Table 3. Dev set OOV statistics

4.2. Evaluation metrics

We report word error rate (WER) along with precision and
recall of out-of-vocabulary predictions. Both of these metrics
are evaluated on forced alignments between the Hyp and Ref
strings created using the SCLITE toolkit.1 A hypothesized
OOV is considered correct if it is aligned with an OOV tag in
the reference. For example, the hypothesis below contains a
single correct OOV.

REF: we must OOV the structure
HYP: we OOV the structure

In this example, the predicted OOV region swallows one
slot too many in the confusion network, resulting in a Hyp
with fewer words than the reference and a word error rate
of 20%. As the precision of OOV predictions calculated on
the aligned strings only accounts for the position and not the
length of the OOV span, it is important to consider also the
WER that accounts for both.

5. EXPERIMENTS

We conducted a series of experiments to assess the contribu-
tions of the different stages, as well as contrasting conditions
that omit the MaxEnt classifier or the parser. Since the parser
is constrained to provide only one OOV region, we constrain
the first stage MaxEnt classifier in this comparison to output
only the region with the highest level score, where the region-
level score is based on the highest OOV confidence slot in
the region. The first-stage MaxEnt classifier is most similar
to past work using acoustic and language model score-based
features, and thus serves as our baseline.

5.1. Classification Results

Table 4 contains word error rate, precision, recall, and F-score
of OOV prediction results for the various contrasting condi-
tions for each different stage. Results for the three stages on
the eval set are given in Table 5. The operating point in each
condition is tuned for slot-level F-score on the dev set. When
the parser uses a constant prior for OOV words in all slots,
word error rate degrades. All other OOV classifier conditions
yield a solution with a lower word error rate than the initial
ASR prediction. Although the parser hurts performance given
a constant OOV prior, it improves WER when seeded with
the MaxEnt priors. The full three-stage system achieves an
F-score of 66.2% on the development set and 59.6% on the
evaluation set. 2

The initial slot-based MaxEnt classifier recovers 70.6% of
OOV regions and achieves a WER 12% better than the orig-
inal ASR result. Adding the POS bigrams as features does

1ftp://jaguar.ncsl.nist.gov/pub/sctk-2.4.0-20091110-0958.tar.bz2
2These scores include the “format” OOV contribution; minor F-score dif-

ferences are observed when these OOVs are removed.
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Condition WER Precision Recall F-score
No OOVs 14.1 n/a n/a n/a
MaxEnt 12.8 50.3 70.6 58.8

MaxEnt + POS 16.7 30.6 64.7 41.5
Parser, const priors 17.0 40.8 75.0 52.9
Parser, ME priors 12.4 55.6 80.2 65.7
MaxEnt + Sent 12.5 55.8 65.5 60.3
Parser + Sent 12.4 56.7 79.3 66.2

Table 4. Results, dev set

Condition WER Precision Recall F-score
No OOVs 15.5 n/a n/a n/a
MaxEnt 14.2 47.6 66.9 55.6

Parser, ME priors 13.6 53.2 67.8 59.6
Parser + Sent 13.6 53.6 66.9 59.6

Table 5. Results, eval set

not help, due to data sparsity. The parser stage improves upon
both the precision and recall of the MaxEnt classifier, more
accurately identifying OOV regions in which the ASR pre-
dictions are not grammatically likely. The gains from the
sentence-level filtering are less strong; we find that the fil-
tering helps improve the first stage results, but the precision
improvements over the raw parser decisions are minimal, with
no F-score improvement on the evaluation set.

The precision-recall trade-off of the three classification
stages is illustrated in Figure 3. The MaxEnt slot-level and
sentence-level classifiers yield a range of precision-recall
pairs at different classification probability thresholds. The
parser-based classifier must contain an OOV subtree in the
single best parse in order to predict an OOV region in the
WCN. Each of these OOV subtrees has an associated like-
lihood under the distribution in Equation 1. We iterate over
a range of thresholds on this likelihood to generate the set
of precision-recall pairs in Figure 3 with the actual, zero
threshold, prediction at the rightmost extremity.

Both the slot-level and sentence-level MaxEnt classifiers
yield an obvious precision-recall trade-off with precision
reaching 70% at low recall. The slot-level classifier, however,
cannot attain high recall without a steep drop off in precision.
Adding the parser stage allows the system to maintain levels
of precision while correctly classifying up to 80% of OOV
words in the reference-aligned strings. The parse classifier
precision-recall curve shows very little variation in precision.
This may be due to the ad-hoc nature in which the data points
were generated by combining continuous confidences with a
non-continuous binary classification. The final stage sentence
classifier regains the precision recall trade-off that we expect
to see while also improving precision in high recall regions,
but a similar gain can be achieved simply by using the highest
first stage confidence in the region predicted by the parser.
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Fig. 3. Precision-recall trade-off of classifiers.

5.2. Confidence Prediction Results

While the region-level metrics allow us to determine whether
the predicted OOVs are located in regions of confusion net-
works which align with true OOVs, they do not measure the
length of predicted OOV regions. In particular, too large OOV
regions will swallow words which had been recognized cor-
rectly; this phenomenon may have a large impact on down-
stream applications, such as machine translation.

To evaluate the extent of OOV regions, we present a word-
level confidence bias plot for the first-stage classifier OOV
predictions on the development set. A confidence bias plot
measures how the prediction confidences (in this case, OOV
posteriors) match the true distribution (in this case, the dis-
tribution of OOVs) for each particular posterior value. A
perfectly straight y = x line would indicate that the poste-
riors match the true distribution perfectly; the plot in Figure
4 shows that our predictions are overconfident, in particular
in the higher posterior regions. For example, only about 20%
of the words with OOV prediction posterior of 0.4 are true
OOVs. The sharp drop at the highest point along the graph
corresponds to a very small number of samples with high pos-
terior value; we hypothesize that these are alignment errors.

6. DISCUSSION

In this paper, we have introduced a multi-stage system for de-
tecting OOVs in the confusion network output of a speech rec-
ognizer, with the initial slot-level confidence prediction stage
being used as a prior by a parser stage, whose output is fur-
ther filtered by a sentence-level prediction with the goal of
improving precision. Our results show improvement of each
stage over the previous. We observed a performance tradeoff,
where the MaxEnt classifier performs better in the low recall
region and the parser is best at higher recall levels. Adding
the sentence-level filtering is able to match, or slightly out-

163



0

0.05

0.1

0.15

0.2

0.25

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
O

V 
Pr

op
or

tio
n 

OOV Prediction Confidence 

Fig. 4. Word-level confidence bias, dev set.

perform, the top performer in both cases.
We find that the features that help the sentence-level clas-

sifier the most are the first-stage MaxEnt predictions and
parser predictions, as well as the aggregate NP difference and
the overall difference between the OOV-enabled and non-
OOV parse trees. This matches our intuition. However, the
relatively low weight given to the aggregate features com-
pared to the posterior-based features suggests that significant
work is required to make better use of parse information in a
post-processing setting.

One potential area for improving the contribution of the
parser stage is the availability of additional target domain
data. This would allow us to improve the parser by adding
more features and lexicalization.

The computational resource constraints also impact the
findings of this work. For example, the heavy pruning in the
parser makes the parse confidence scores less useful. Given
more resources, it would be of interest to investigate richer
word lattices, parsing alternatives, and global parse features.
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