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Abstract

This paper presents a joint model for tem-
plate filling, where the goal is to automati-
cally specify the fields of target relations such
as seminar announcements or corporate acqui-
sition events. The approach models mention
detection, unification and field extraction in
a flexible, feature-rich model that allows for
joint modeling of interdependencies at all lev-
els and across fields. Such an approach can,
for example, learn likely event durations and
the fact that start times should come before
end times. While the joint inference space is
large, we demonstrate effective learning with
a Perceptron-style approach that uses simple,
greedy beam decoding. Empirical results in
two benchmark domains demonstrate consis-
tently strong performance on both mention de-
tection and template filling tasks.

1 Introduction

Information extraction (IE) systems recover struc-
tured information from text. Template filling is an IE
task where the goal is to populate the fields of a tar-
get relation, for example to extract the attributes of a
job posting (Califf and Mooney, 2003) or to recover
the details of a corporate acquisition event from a
news story (Freitag and McCallum, 2000).

This task is challenging due to the wide range
of cues from the input documents, as well as non-
textual background knowledge, that must be consid-
ered to find the best joint assignment for the fields
of the extracted relation. For example, Figure 1
shows an extraction from CMU seminar announce-
ment corpus (Freitag and McCallum, 2000). Here,
the goal is to perform mention detection and extrac-
tion, by finding all of the text spans, ormentions,

Date 5/5/1995
Start Time 3:30PM
Location Wean Hall 5409
Speaker Raj Reddy
Title Some Necessary Conditions for a Good User Interface
End Time –

Figure 1: An example email and its template. Field men-
tions are highlighted in the text, grouped by color.

that describe field values, unify these mentions by
grouping them according to target field, and normal-
izing the results within each group to provide the
final extractions. Each of these steps requires sig-
nificant knowledge about the target relation. For ex-
ample, in Figure 1, the mention “3:30” appears three
times and provides the only reference to a time. We
must infer that this is the starting time, that the end
time is never explicitly mentioned, and also that the
event is in the afternoon. Such inferences may not
hold in more general settings, such as extraction for
medical emergencies or related events.

In this paper, we present a joint modeling and
learning approach for the combined tasks of men-
tion detection, unification, and template filling, as
described above. As we will see in Section 2, pre-
vious work has mostly focused on learning tagging



models for mention detection, which can be diffi-
cult to aggregate into a full template extraction, or
directly learning template field value extractors, of-
ten in isolation and with no reasoning across differ-
ent fields in the same relation. We present a simple,
feature-rich, discriminative model that readily incor-
porates a broad range of possible constraints on the
mentions and joint field assignments.

Such an approach allows us to learn, for each tar-
get relation, an integrated model to weight the dif-
ferent extraction options, including for example the
likely lengths for events, or the fact that start times
should come before end times. However, there are
significant computation challenges that come with
this style of joint learning. We demonstrate empiri-
cally that these challenges can be solved with a com-
bination of greedy beam decoding, performed di-
rectly in the joint space of possible mention clusters
and field assignments, and structured Perceptron-
style learning algorithm (Collins, 2002).

We report experimental evaluations on two bench-
mark datasets in different genres, the CMU semi-
nar announcements and corporate acquisitions (Fre-
itag and McCallum, 2000). In each case, we evalu-
ated both template extraction and mention detection
performance. Our joint learning approach provides
consistently strong results across every setting, in-
cluding new state-of-the-art results. We also demon-
strate, through ablation studies on the feature set, the
need for joint modeling and the relative importance
of the different types of joint constraints.

2 Related Work

Research on the task of template filling has focused
on the extraction of field value mentions from the
underlying text. Typically, these values are extracted
based on local evidence, where the most likely entity
is assigned to each slot (Roth and Yih, 2001; Siefkes,
2008). There has been little effort towards a compre-
hensive approach that includes mention unification,
as well as considers the structure of the target rela-
tional schema to create semantically valid outputs.

Recently, Haghighi and Klein (2010) presented
a generative semi-supervised approach for template
filling. In their model, slot-filling entities are first
generated, and entity mentions are then realized in
text. Thus, their approach performs coreference at

slot level. In addition to proper nouns (named en-
tity mentions) that are considered in this work, they
also account for nominal and pronominal noun men-
tions. This work presents a discriminative approach
to this problem. An advantage of a discriminative
framework is that it allows the incorporation of rich
and possibly overlapping features. In addition, we
enforce label consistency and semantic coherence at
record level.

Other related works perform structured relation
discovery for different settings of information ex-
traction. Inopen IE, entities and relations may be in-
ferred jointly (Roth and Yih, 2002; Yao et al., 2011).
In this IE task, the target relation must agree with the
entity types assigned to it; e.g.,born-in relation re-
quires aplaceas its argument. In addition, extracted
relations may be required to be consistent with an
existing ontology (Carlson et al., 2010). Compared
with the extraction of tuples of entity mention pairs,
template filling is associated with a more complex
target relational schema.

Interestingly, several researchers have attempted
to model label consistency and high-level relational
constraints using state-of-the-art sequential models
of named entity recognition (NER). Mainly, pre-
determined word-level dependencies were repre-
sented as links in the underlying graphical model
(Sutton and McCallum, 2004; Finkel et al., 2005).
Finkel et al. (2005) further modelled high-level se-
mantic constraints; for example, using the CMU
seminar announcements dataset, spans labeled as
start timeor end timewere required to be seman-
tically consistent. In the proposed framework we
take a bottom-up approach to identifying entity men-
tions in text, where given a noisy set of candidate
named entities, described using rich semantic and
surface features, discriminative learning is applied
to label these mentions. We will show that this ap-
proach yields better performance on the CMU semi-
nar announcement dataset when evaluated in terms
of NER. Our approach is complimentary to NER
methods, as it can consolidate noisy overlapping
predictions from multiple systems into coherent sets.

3 Problem Setting

In the template filling task, a target relationr is pro-
vided, comprised of attributes (also referred to as



Figure 2: The relational schema for the seminars domain.

Figure 3: A record partially populated from text.

fields, or slots)A(r). Given a documentd, which
is known to describe a tuple of the underlying re-
lation, the goal is to populate the fields with values
based on the text.

The relational schema.In this work, we describe
domain knowledge through an extended relational
database schemaR. In this schema, every field of
the target relation maps to a tuple of another rela-
tion, giving rise to a hierarchical view of template
filling. Figure 2 describes a relational schema for
the seminar announcement domain. As shown, each
field of the seminarrelation maps to another rela-
tion; e.g.,speaker’s values correspond topersontu-
ples. According to the outlined schema, most re-
lations (e.g.,person) consist of a single attribute,
whereas thedateandtimerelations are characterised
with multiple attributes; for example, thetime rela-
tion includes the fields ofhour, minutesandampm.

We will make use of limited domain knowledge,
expressed as relation-level constraints that are typi-
cally realized in a database. Namely, the following
tests are supported for each relation.

Tuple validity.This test reflects data integrity. The
attributes of a relation may be defined asmandatory
or optional. Mandatory attributes are denoted with a
solid boundary in Figure 2 (e.g.,seminar.date), and

optional attributes are denoted with a dashed bound-
ary (e.g.,seminar.title). Similar constraints can be
posed on a set of attributes; e.g., eitherday-of-month
or day-of-weekmust be populated in thedate rela-
tion. Finally, a combination of field values may be
required to be valid, e.g., the values ofday, month,
yearandday-of-weekmust be consistent.

Tuple contradiction. This function checks
whether twovalid tuples v1 and v2 are inconsis-
tent, implying a negation of possible unification of
these tuples. In this work, we considerdateandtime
tuples as contradictory if they contain semantically
different values for some field; tuples oflocation,
personand title are required to have minimal over-
lap in their string values to avoid contradiction.

Template filling. Given documentd, the hierar-
chical schemaR is populated in a bottom-up fash-
ion. Generally, parent-free relations in the hierar-
chy correspond to generic entities, realized as en-
tity mentions in the text. In Figure 2, these relations
are denoted by double-line boundary, includinglo-
cation, person, title, date and time; every tuple of
these relations maps to a named entity mention.1

Figure 3 demonstrates the correct mapping of
named entity mentions to tuples, as well as tuple uni-
fication, for the example shown in Figure 1. For ex-
ample, the mentions “Wean 5409” and “Wean Hall
5409” correspond to tuples of thelocation relation,
where the two tuples are resolved into a unified set.
To complete template filling, the remaining relations
of the schema are populated bottom-up, where each
field links to a unified set of populated tuples. For
example, in Figure 3, theseminar.locationfield is
linked to{“Wean Hall 5409”,“Wean 5409”}.

Value normalization of the unified tuples is an-
other component of template filling. We partially ad-
dress normalization: tuples of semantically detailed
(multi-attribute) relations, e.g.,dateandtime, are re-
solved into their semantic union, while textual tuples
(e.g., location) are normalized to the longest string
in the set. In this work, we assume that each tem-
plate slot contains at most one value. This restriction
can be removed, at the cost of increasing the size of
the decoding search space.

1In the multi-attribute relations ofdate and time, each at-
tribute maps to a text span, where the set of spans at tuple-level
is required to be sequential (up to a small distanced).



4 Structured Learning

Next, we describe how valid candidate extrac-
tions are instantiated (Sec. 4.1) and how learning
is applied to assess the quality of the candidates
(Sec. 4.2), where beam search is used to find the top
scoring candidates efficiently (Sec. 4.3).

4.1 Candidate Generation

Named entity recognition.A set of candidate men-
tionsSd(a) is extracted from documentd per each
attributea of a relationr ∈ L, whereL is the set
of parent-free relations inT . We aim athigh-recall
extractions; i.e.,Sd(a) is expected to contain the cor-
rect mentions with high probability. Various IE tech-
niques, as well as an ensemble of methods, can be
employed for this purpose. For each relationr ∈ L,
valid candidate tuplesEd(r) are constructed from
the candidate mentions that map to its attributes.

Unification. For every relationr ∈ L, we con-
struct candidate sets of unified tuples,{Cd(r) ⊆
Ed(r)}. Naively, the number of candidate sets is
exponential in the size ofEd(t). Importantly, how-
ever, the tuples within a candidate unification set are
required to benon-contradictory. In addition, the
text spans that comprise the mentions within each
set must not overlap. Finally, we do not split tuples
with identical string values between different sets.

Candidate tuples.To construct the space of candi-
date tuples of the target relation, the remaining rela-
tionsr ∈ {T−L} are visited bottom-up, where each
field a ∈ A(r) is mapped in turn to a (possibly uni-
fied) populated tuple of its type. The valid (and non-
overlapping) combinations of field mappings consti-
tute a set of candidate tuples ofr.

The candidate tuples generated using this proce-
dure are structured entities, constructed using typed
named entity recognition, unification, and hierarchi-
cal assignment of field values (Figure 3). We will
derive features that describe local and global prop-
erties of the candidate tuples, encoding both surface
and semantic information.

4.2 Learning

We employ a discriminative learning algorithm, fol-
lowing Collins (2002). Our goal is to find the candi-

Algorithm 1: The beam search procedure
1. Populate every low-level relationr ∈ L from textd:

• Construct a set of candidate valid tuplesEd(r) given
high-recall typed candidate text spansSd(a), a ∈ A(r).

• Group Ed(r) into possibly overlapping unified sets,
{Cd(r) ⊆ Ed(r)}.

2. Iterate bottom-up through relationsr ∈ {T − L}:

• Initialize the set of candidate tuplesEd(r) to an empty
set.

• Iterate through attributesa ∈ A(r):

– Retrieve the set of candidate tuples (or unified tuple
sets)Ed(r

′), wherer′ is the relation that attributea
links to inT . Add an empty tuple to the set.

– For every pair of candidate tuplese ∈ Ed(r) and
e′ ∈ Ed(r

′), modify e by linking attributea(e) to
tuplee′.

– Add the modified tuples, if valid, toEd(r).
– Apply Equation 1 to rank the partially filled candi-

date tuplese ∈ Ed(r). Keep thek top scoring can-
didates inEd(r), and discard the rest.

3. Apply Equation 1 to output a ranked list of extracted records
Ed(r

∗), wherer∗ is the target relation.

date that maximizes:

F (y, ᾱ) =
m∑

j=1

αjfj(y, d, T ) (1)

wherefj(d, y, T ), j = 1, ..,m, are pre-defined fea-
ture functions describing a candidate recordy of the
target relation given documentd and the extended
schemaT . The parameter weightsαj are to be
learned from labeled instances. The training pro-
cedure involves initializing the weights̄α to zero.
Given ᾱ, an inference procedure is applied to find
the candidate that maximizes Equation 1. If the top-
scoring candidate is different from the correct map-
ping known, then: (i)̄α is incremented with the fea-
ture vector of the correct candidate, and (ii) the fea-
ture vector of the top-scoring candidate is subtracted
from ᾱ. This procedure is repeated for a fixed num-
ber of epochs. Following Collins, we employ the av-
eraged Perceptron online algorithm (Collins, 2002;
Freund and Schapire, 1999) for weight learning.

4.3 Beam Search

Unfortunately, optimal local decoding algorithms
(such as the Viterbi algorithm in tagging problems
(Collins, 2002)) can not be applied to our prob-
lem. We therefore propose using beam search to ef-
ficiently find the top scoring candidate. This means



that rather than instantiate the full space of valid can-
didate records (Section 4.1), we are interested in in-
stantiating only those candidates that are likely to be
assigned a high score byF . Algorithm 1 outlines
the proposed beam search procedure. As detailed,
only a set of top scoring tuples of sizek (beam size)
is maintained per relationr ∈ T during candidate
generation. A given relation is populated incremen-
tally, having each of its attributesa ∈ A(r) map in
turn to populated tuples of its type, and using Equa-
tion 1 to find thek highest scoringpartially popu-
lated tuples; this limits the number of candidate tu-
ples evaluated tok2 per attribute, and tonk2 for a
relation withn attributes. While beam search is effi-
cient, performance may be compromised compared
with an unconstrained search. The beam sizek al-
lows controlling the trade-off between performance
and cost. An advantage of the proposed approach is
that rather than output a single prediction, a list of
coherent candidate tuples may be generated, ranked
according to Equation 1.

5 Seminar Extraction Task

Dataset The CMU seminar announcement dataset
(Freitag and McCallum, 2000) includes 485 emails
containing seminar announcements. The dataset has
been originally annotated with text spans referring to
four slots: speaker, location, stime, andetime. We
have annotated this dataset with two additional at-
tributes:dateandtitle.2 We consider this corpus as
an example of semi-structured text, where some of
the field values appear in the email header, in a tabu-
lar structure, or using special formatting (Califf and
Mooney, 1999; Minkov et al., 2005).3

We used a set of rules to extract candidate named
entities per the types specified in Figure 2.4 The
rules encode information typically used in NER, in-
cluding content and contextual patterns, as well as
lookups in available dictionaries (Finkel et al., 2005;
Minkov et al., 2005). The extracted candidates are
high-recall and overlapping. In order to increase
recall further, additional candidates were extracted
based on document structure (Siefkes, 2008). The

2A modified dataset is available on the author’s homepage.
3Such structure varies across messages. Otherwise, the

problem would reduce to wrapper learning (Zhu et al., 2006).
4The rule language used is based on cascaded finite state

machines (Minorthird, 2008).

recall for the named entities of typedateandtime is
near perfect, and is estimated at 96%, 91% and 90%
for location, speakerandtitle, respectively.

Features The categories of the features used are
described below. All features are binary and typed.5

Lexical. These features indicate the value and
pattern of words within the text spans correspond-
ing to each field. For example, lexical features per
Figure 1 includelocation.content.word.wean, loca-
tion.pattern.capitalized. Similar features are derived
for a window of three words to the right and to the
left of the included spans. In addition, we observe
whether the words that comprise the text spans ap-
pear in relevant dictionaries: e.g., whether the spans
assigned to the location field include words typi-
cal of location, such as “room” or “hall”. Lex-
ical features of this form are commonly used in
NER (Finkel et al., 2005; Minkov et al., 2005).

Structural. It has been previously shown that
the structure available in semi-structured documents
such as email messages is useful for information ex-
traction (Minkov et al., 2005; Siefkes, 2008). As
shown in Figure 1, an email message includes a
header, specifying textual fields such astopic, dates
andtime. In addition, space lines and line breaks are
used to emphasize blocks of important information.
We propose a set of features that model correspon-
dence between the text spans assigned to each field
and document structure. Specifically, these features
model whether at least one of the spans mapped to
each field appears in the email header; captures a
full line in the document; is indent; appears within
space lines; or in a tabular format. In Figure 1, struc-
tural active features includelocation.inHeader, lo-
cation.fullLine, title.withinSpaceLines, etc.

Semantic. These features refer to the semantic
interpretation of field values. According to the re-
lational schema (Figure 2),date and time include
detailed attributes, whereas other relations are rep-
resented as strings. The semantic features encoded
therefore refer todateand time only. Specifically,
these features indicate whether a unified set of tu-
ples defines a value for all attributes; for example,
in Figure 1, the union of entities that map to the
datefield specify all of the attribute values of this
relation, includingday-of-month, month, year, and

5Real-value features were discretized into segments.



Date Stime Etime Location Speaker Title
Full model 96.1 99.3 98.7 96.4 87.5 69.5
No structural features 94.9 99.1 98.0 96.1 83.8 65.1
No semantic features 96.1 98.7 95.4 96.4 87.5 69.5
No unification 87.2 97.0 95.1 94.5 76.0 62.7
Individual fields 96.5 97.2 - 96.4 86.8 64.5

Table 1: Seminar extraction results (5-fold CV): Field-level F1

Date Stime Etime Location Speaker Title
SNOW (Roth and Yih, 2001) - 99.6 96.3 75.2 73.8 -
BIEN (Peshkin and Pfeffer, 2003) - 96.0 98.8 87.1 76.9 -
Elie (Finn, 2006) - 98.5 96.4 86.5 88.5 -
TIE (Siefkes, 2008) - 99.3 97.1 81.7 85.4 -
Full model 96.3 99.1 98.0 96.9 85.8 67.7

Table 2: Seminar extraction results (5-fold CV, trained on 50% of corpus): Field-level F1

day-of-week. Another feature encodes the size of the
most semantically detailed named entity that maps
to a field; for example, the most detailed entity men-
tion of type stime in Figure 1 is “3:30”, compris-
ing of two attribute values, namelyhour and min-
utes. Similarly, the total number of semantic units
included in a unified set is represented as a feature.
These features were designed to favor semantically
detailed mentions and unified sets. Finally, domain-
specific semantic knowledge is encoded as features,
including thedurationof the seminar, and whether a
timevalue is round (minutes divide by 5).

In addition to the features described, one may
be interested in modeling cross-field information.
We have experimented with features that encode
the shortest distance between named entity mentions
mapping to different fields (measured in terms of
separating lines or sentences), based on the hypoth-
esis that field values typically co-appear in the same
segments of the document. These features were not
included in the final model since their contribution
was marginal. We leave further exploration of cross-
field features in this domain to future work.

Experiments We conducted 5-fold cross vali-
dation experiments using the seminar extraction
dataset. As discussed earlier, we assume that a sin-
gle record is described in each document, and that
each field corresponds to a single value. These
assumptions are violated in a minority of cases.
In evaluating the template filling task, only exact
matches are accepted as true positives, where partial
matches are counted as errors (Siefkes, 2008). No-
tably, the annotated labels as well as corpus itself are
not error-free; for example, in some announcements
the date and day-of-week specified are inconsistent.

Our evaluation is strict, where non-empty predicted
values are counted as errors in such cases.

Table 1 shows the results of our full model us-
ing beam sizek = 10, as well as model variants.
In order to evaluate the contribution of the proposed
features, we eliminated every feature group in turn.
As shown in the table, removing the structural fea-
tures hurt performance consistently across fields. In
particular, structure is informative for thetitle field,
which is otherwise characterised with low content
and contextual regularity. Removal of the semantic
features affected performance on thestimeandetime
fields, modeled by these features. In particular, the
optionaletimefield, which has fewer occurrences in
the dataset, benefits from modeling semantics.

An important question to be addressed in evalu-
ation is to what extent the joint modeling approach
contributes to performance. In another experiment
we therefore mimic the typical scenario of template
filling, in which the value of the highest scoring
named entity is assigned to each field. In our frame-
work, this corresponds to a setting in which a unified
set includes no more than a single entity. The results
are shown in Table 1 (‘no unification’). Due to re-
duced evidence given a single entity versus a a coref-
erent set of entities, this results in significantly de-
graded performance. Finally, we experimented with
populating every field of the target schema indepen-
dently of the other fields. While results are overall
comparable on most fields, this had negative impact
on thetitle field. This is largely due to erroneous as-
signments of named entities of other types (mainly,
person) as titles; such errors are avoided in the full
joint model, where tuple validity is enforced.

Table 2 provides a comparison of the full model



Date Stime Etime Location Speaker Title
(Sutton and McCallum, 2004) - 96.7 97.2 88.1 80.4 -
(Finkel et al., 2005) - 97.1 97.9 90.0 84.2 -
Full model 95.4 97.1 97.9 97.0 86.5 75.5

Table 3: Seminar extraction results: Token-level F1

against previous state-of-the-art results. These re-
sults were all obtained using half of the corpus for
training, and its remaining half for evaluation; the
reported figures were averaged over five random
splits. For comparison, we used 5-fold cross vali-
dation, where only a subset of each train fold that
corresponds to 50% of the corpus was used for train-
ing. Due to the reduced training data, the results are
slightly lower than in Table 1. (Note that we used the
same test examples in both cases.) The best results
per field are marked in boldface. The proposed ap-
proach yields the best or second-best performance
on all target fields, and gives the best performance
overall. While a variety of methods have been ap-
plied in previous works, none has modeled template
filling in a joint fashion. As argued before, joint
modeling is especially important for irregular fields,
such astitle; we provide first results on this field.

Previously, Sutton and McCallum (2004) and
later Finkelet-al. (2005), applied sequential models
to perform NER on this dataset, identifying named
entities that pertain to the template slots. Both of
these works incorporated coreference and high-level
semantic information to a limited extent. We com-
pare our approach to their work, having obtained and
used the same 5-fold cross validation splits as both
works. Table 3 shows results in terms of token F1.
Our results evaluated on the named mention recogni-
tion task are superior overall, giving comparable or
best performance on all fields. We believe that these
results demonstrate the benefit of performing men-
tion recognition as part of a joint model that takes
into account detailed semantics of the underlying re-
lational schema, when available.

Finally, we evaluate theglobal quality of the ex-
tracted records. Rather than assess performance at
field-level, this stricter evaluation mode considers a
whole tuple, requiring the values assigned to all of
its fields to be correct. Overall, our full model (Table
1) extracts globally correct records for 52.6% of the
examples. To our knowledge, this is the first work
that provides this type of evaluation on this dataset.
Importantly, an advantage of the proposed approach

Figure 4: The relational schema for acquisitions.

is that it readily outputs a ranked list of coherent pre-
dictions. While the performance at the top of the
output lists was roughly comparable, increasingk

gives higher oracle recall: the correct record was
included in the outputk-top list 69.7%, 76.1% and
80.4% of the time, fork = 5, 10, 20 respectively.

6 Corporate Acquisitions

Dataset The corporate acquisitions corpus con-
tains 600 newswire articles, describing factual or po-
tential corporate acquisition events. The corpus has
been annotated with the official names of the parties
to an acquisition:acquired, purchaserandseller, as
well as their corresponding abbreviated names and
company codes.6 We describe the target schema us-
ing the relational structure depicted in Figure 4. The
schema includes two relations: thecorp relation de-
scribes a corporate entity, including its full name,
abbreviated name and code as attributes; the target
acquisitionrelation includes three role-designating
attributes, each linked to acorp tuple.

Candidate name mentions in this strictly gram-
matical genre correspond tonoun phrases. Docu-
ments were pre-processed to extract noun phrases,
similarly to Haghighi and Klein (2010).

Features We modelsyntacticfeatures, following
Haghighi and Klein (2010). In order to compen-
sate for parsing errors, shallow syntactic features
were added, representing the values of neighboring
verbs and prepositions (Cohen et al., 2005). While
newswire documents are mostly unstructured,struc-
tural features are used to indicate whether any of the
purchaser, acquiredandseller text spans appears in

6In this work, we ignore other fields annotated, as they are
inconsistently defined, have low number of occurrences in the
corpus, and are loosely inter-related semantically.



purname purabr purcode acqname acqabr acqcode sellname sellabr sellcode
TIE (batch) 55.7 58.1 - 53.5 55.0 - 31.8 25.8 -
TIE (inc) 51.6 55.3 - 49.2 51.7 - 26.0 24.0 -
Full model 48.9 55.0 70.2 50.7 55.2 67.2 33.2 36.8 55.4
Model variants:
No inter-type and struct. ftrs 45.1 50.5 66.8 49.8 53.9 66.4 34.9 42.2 56.0
No semantic features 42.6 38.4 58.1 40.5 36.5 44.8 32.2 26.6 46.6
Individual roles 43.9 48.7 62.5 45.0 47.2 52.7 34.1 40.3 47.8

Table 4: Corp. acquisition extraction results: Field-level F1

purname purabr purcode acqname acqabr acqcode sellname sellabr sellcode
TIE (batch) 52.6 40.5 - 49.2 43.7 28.7 16.4 -
TIE (inc) 48.4 38.6 - 44.7 42.7 - 23.6 14.5 -
Full model 45.0 48.3 69.8 46.4 59.5 66.9 31.6 33.0 55.0

Table 5: Corp. acquisition extraction results: Entity-level F1

the article’s header.Semanticfeatures are applied
to corp tuples: we model whether the abbreviated
name is a subset of the full name; whether the cor-
porate code forms exact initials of the full or abbre-
viated names; or whether it has high string similarity
to any of these values. Finally,cross-type features
encode the shortest string between spans mapping
to different roles in theacquisitionrelation.

Experiments We applied beam search, where
corp tuples are extracted first, andacquisitiontuples
are constructed using the top scoringcorp entities.
We used a default beam sizek = 10. The dataset is
split into a 300/300 train/test subsets.

Table 4 shows results of our full model in terms of
field-level F1, compared against TIE, a state-of-the-
art discriminative system (Siefkes, 2008). Unfortu-
nately, we can not directly compare against a gener-
ative joint model evaluated on this dataset (Haghighi
and Klein, 2010).7 The best results per attribute are
shown in boldface. Our full model performs bet-
ter overall than TIE trained incrementally (similarly
to our system), and is competitive with TIE using
batch learning. Interestingly, the performance of our
model on thecode fields is high; these fields do
not involve boundary prediction, and thus reflect the
quality of role assignment.

Table 4 also shows the results of model vari-
ants. Removing theinter typeand structural fea-
tures mildly hurt performance, on average. In con-
trast, thesemanticfeatures, which account for the
semantic cohesiveness of the populatedcorp tuples,
are shown to be necessary. In particular, remov-

7They report average performance on a different set of
fields; in addition, their results include modeling of pronouns
and nominal mentions, which are not considered here.

ing them degrades the extraction of the abbreviated
names; these features allow prediction of abbrevi-
ated names jointly with the full corporate names,
which are more regular (e.g., include a distinctive
suffix). Finally, we show results of predicting each
role filler individually. Inferring the roles jointly
(‘full model’) significantly improves performance.

Table 5 further shows results on NER, the task of
recovering the sets of named entity mentions per-
taining to each target field. As shown, the proposed
joint approach performs overall significantly better
than previous results reported. These results are con-
sistent with the case study of seminar extraction.

7 Summary and Future Work

We presented a joint approach for template filling
that models mention detection, unification, and field
extraction in a flexible, feature-rich model. This ap-
proach allows for joint modeling of interdependen-
cies at all levels and across fields. Despite the com-
putational challenges of this joint inference space,
we obtained effective learning with a Perceptron-
style approach and simple beam decoding.

An interesting direction of future research is
to apply reranking to the output list of candidate
records using additional evidence, such as support-
ing evidence on the Web (Banko et al., 2008). Also,
modeling additional features or feature combina-
tions in this framework as well as effective feature
selection or improved parameter estimation (Cram-
mer et al., 2009) may boost performance. Finally,
it is worth exploring scaling the approach to unre-
stricted event extraction, and jointly model extract-
ing more than one relation per document.
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