
Learning STRIPS Operators from Noisy and Incomplete Observations

Kira Mourão
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
kmourao@inf.ed.ac.uk

Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA98195

lsz@cs.washington.edu

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
rpetrick@inf.ed.ac.uk

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
steedman@inf.ed.ac.uk

Abstract

Agents learning to act autonomously in real-
world domains must acquire a model of the dy-
namics of the domain in which they operate.
Learning domain dynamics can be challenging,
especially where an agent only has partial ac-
cess to the world state, and/or noisy external sen-
sors. Even in standard STRIPS domains, exist-
ing approaches cannot learn from noisy, incom-
plete observations typical of real-world domains.
We propose a method which learns STRIPS ac-
tion models in such domains, by decomposing
the problem into first learning a transition func-
tion between states in the form of a set of clas-
sifiers, and then deriving explicit STRIPS rules
from the classifiers’ parameters. We evaluate
our approach on simulated standard planning do-
mains from the International Planning Competi-
tion, and show that it learns useful domain de-
scriptions from noisy, incomplete observations.

1 INTRODUCTION

Developing agents with the ability to act autonomously in
the world is a major goal of artificial intelligence. One
important aspect of this development is the acquisition of
domain models to support planning and decision-making:
to operate effectively in the world, an agent must be able
to accurately predict when its actions will succeed, and
what effects its actions will have. Only when a reliable
action model is acquired can the agent usefully combine
sequences of actions into plans, in order to achieve wider
goals. However, learning domain dynamics can be a chal-
lenging problem: agents’ observations may be noisy, or in-
complete; actions may be non-deterministic; the world may
be noisy or contain many irrelevant objects and relations.

In this paper we consider the problem of acquiring explicit
domain models from the raw experiences of an agent ex-
ploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.

The domains we consider are relational STRIPS (Fikes and
Nilsson, 1971) domains, although our approach has the po-
tential to be extended to more expressive domains. Given
the autonomous learning setting, we assume only a weak
domain model where the agent knows how to identify ob-
jects, has acquired predicates to describe object attributes
and relations, and knows what types of actions it may per-
form, but not the appropriate contexts for the actions, or
their effects. Experience in the world is then developed
through observing changes to object attributes and relations
when motor-babbling with primitive actions.

Other approaches to learning STRIPS operators do not han-
dle both noisy and incomplete observations (see Section 3).
We develop a two-stage approach to the problem which de-
couples the requirement to tolerate noisy, incomplete ob-
servations from the requirement to learn compact STRIPS
operators. In the first stage we learn action models by con-
structing a set of kernel classifiers which tolerate noise and
partial observability, but whose action models are implicit
in the learnt parameters of the classifiers, similar to the
work of Mourão et al. (2009, 2010). However, we ad-
ditionally use the method to learn preconditions as well
as effects, as suggested but not explored in earlier work.
Also, we evaluate additional kernels for the learning prob-
lem and select a better performing alternative. The initial
action model learnt in this first stage acts as a noise-free,
fully observable source of observations from which to ex-
tract explicit action rules. In the second stage we devise
a novel method to derive explicit STRIPS operators from
the model implicit in the kernel classifiers. In experiments
the resulting rules perform as well as the original classi-
fiers, while providing a compact representation of the ac-
tion models suitable for use in automated planning systems.

2 THE LEARNING PROBLEM

A domain is a tuple D = �O,P,A�, where O is a finite
set of world objects, P is a finite set of predicate (relation)
symbols, and A is a finite set of actions. Each predicate
and action also has an associated arity. A fluent expression

is a statement of the form p(c1, c2, ..., cn), where p ∈ P ,



n is the arity of p, and each ci ∈ O. A state is any set of
fluent expressions, and S is the set of all possible states.
Since state observations may be incomplete we assume an
open world where unobserved fluents are considered to be
unknown. For any state s ∈ S , a fluent expression φ is true
at s iff φ ∈ s. The negation of a fluent expression, ¬φ, is
true at s (also, φ is false at s) iff ¬φ ∈ s. If φ ∈ s then ¬φ /∈
s. Any (legal) fluent expression not in s is unobserved.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. In STRIPS domains Prea
can be any set of fluent expressions and Effa can be any set
of fluent expressions and negated fluent expressions. Ac-
tion preconditions and effects can also be parameterised.
An action with all of its parameters replaced with objects
from O is said to be an action instance. Objects mentioned
in the preconditions or the effects must be listed in the ac-
tion parameters (the STRIPS scope assumption (SSA)).

The task of the learning mechanism is to learn the precon-
ditions and effects Prea and Effa for each a ∈ A, from
data generated by an agent performing a sequence of ran-
domly selected actions in the world and observing the re-
sulting states. The sequence of states and action instances
is denoted by s0, a1, s1, ..., an, sn where si ∈ S and ai
is an instance of some a ∈ A. Our data consists of ob-

servations of the sequence of states and action instances
s�0, a1, s

�
1, ..., an, s�n, where state observations may be noisy

(some φ ∈ si may be observed as ¬φ ∈ s�i) or incomplete
(some φ ∈ si are not in s�i). Action failures are allowed:
the agent may attempt to perform actions whose precondi-
tions are unsatisfied. In these cases the world state does
not change, but the observed state may still be noisy or in-
complete. To make accurate predictions in domains where
action failures are permitted, the learning mechanism must
learn both preconditions and effects of actions.

E.g. in BlocksWorld, where an agent stacks and unstacks
blocks, consider a state with blocks B1 and B2 on the table:

(AND armempty (ontable B1) (ontable B2) (clear B1)

(clear B2) (NOT (on B1 B2)) (NOT (on B2 B1))

(NOT (holding B1)) (NOT (holding B2))).

A corresponding noisy, incomplete observation is:

(AND armempty (ontable B2) (holding B1) (clear B1)

(NOT (on B1 B2)) (NOT (holding B2))).

It is noisy as (holding B1) is incorrect, and incomplete
as (ontable B1),(clear B2) and (NOT(on B2 B1))

are missing. A sequence of noisy, incomplete observations
of states and actions could be as follows:
s�0: (AND armempty (ontable B2) (holding B1)

(clear B1) (NOT (on B1 B2)) (NOT (holding B2)))

a1: (pickup B1)

s�1: (AND (NOT (clear B1)) (holding B1) (NOT (on B1 B2))

(NOT (ontable B2)) (NOT (on B2 B1)))

a2: (stack B1 B2)

s�2: (AND armempty (clear B1) (clear B2)

(ontable B2) (NOT (holding B1)))

a3: (stack B2 B1)

s�3: (AND armempty (clear B1) (NOT (clear B2))

(NOT (on B2 B1)) (NOT (on B2))).

(1)

Taking a sequence of such inputs, we learn action descrip-
tions for each action in the domain. For example, the
stack action, which moves a block from the gripper on
to another block, would be represented as:

(:action stack

:parameters (?ob ?underob)

:precondition (and (clear ?underob) (holding ?ob))

:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)

(not (clear ?underob)) (not (holding ?ob)))).

3 RELATED WORK

Previous work fulfils some but not all of the require-
ments for learning models in the setting we consider. In
autonomous robotics, various techniques exist to learn
preconditions and effects of actions in noisy, partially
observable worlds (Doğar et al., 2007; Metta and Fitz-
patrick, 2003; Modayil and Kuipers, 2008). However,
none of these approaches learn relational models. Con-
versely, much previous work on learning relational ac-
tion models relies on the provision of prior knowl-
edge of the action model. Strategies include seed-
ing initial models with approximate planning opera-
tors (Gil, 1994), using known successful plans (Wang,
1995), excluding action failures (Amir and Chang, 2008),
or the presence of a teacher (Benson, 1996). Such knowl-
edge is unlikely to be available to an autonomous agent
learning the dynamics of its domain. Additionally, only a
few approaches are capable of learning under either partial
observability (Amir and Chang, 2008; Yang et al., 2007;
Zhuo et al., 2010), noise in any form (Pasula et al., 2007;
Rodrigues et al., 2010), or both (Halbritter and Geibel,
2007; Mourão et al., 2010). Approaches which handle both
do so by generating implicit action models which must be
used as a black-box to make predictions of state changes,
and do not generate symbolic action representations.

We extract rules from classifiers based on the intuition that
more discriminative features will contribute more to the
classifier’s objective function. This is similar to the insight
underlying feature selection methods of the type which
rank each feature according to the sensitivity of the classi-
fier’s objective function to the removal of the feature (Ko-
havi and John, 1997; Guyon et al., 2002). Our approach
differs in that features are selected separately for individual
examples, rather than once across the entire training set,
and we define a stopping criterion which identifies when
the set of selected features can no longer form a rule.

Our work also has links with earlier work in version spaces
(Mitchell, 1982) and the associated greedy search, which
underlie many other approaches to rule learning (e.g. Amir
and Chang, 2008; Pasula et al., 2007). Our rule search ben-
efits from extra information to guide the search, in the form
of the weights associated with each hypothesis by the pre-
viously trained statistical classifiers, which can be highly
robust to noise and incomplete observations.



4 LEARNING IMPLICIT MODELS

The basis of our approach is the division of the learning
problem into two parts: initially a classification method
is used to learn to predict effects of actions, then STRIPS
rules are derived from the resulting action representations.
We define the implicit action model to be the model of the
domain implicit in the learnt parameters of the classifiers,
and the explicit action model to be the domain model de-
scribed by STRIPS rules. In learning an implicit action
model, our approach follows earlier work (Croonenborghs
et al., 2007; Halbritter and Geibel, 2007; Mourão et al.,
2009, 2010) which encodes the learning problem in terms
of the inputs and outputs of a set of classifiers. However,
none of these methods generate explicit action models.

Following the approach of Mourão et al. (2009, 2010), we
encode the state descriptions with a fixed dimension vec-
tor representation by only considering objects which are
mentioned in the action parameter list. By the SSA this
is sufficient to learn STRIPS rules. For an action instance
with arguments o1, o2, ..., on we therefore restrict the state
description to all possible fluents whose arguments are in
{o1, o2, ..., on}. Also we schematise descriptions by re-
placing the i-th action parameter with the label argi when-
ever it appears in any fluent. Thus all state descriptions are
now written in terms of the action parameters and not in
terms of specific objects. The SSA fixes a small number
of objects to consider for an action, as well as their roles,
which allows relational state descriptions to be encoded in a
vector, as each possible fluent in a state maps to exactly one
possible fluent in any other state. We encode state descrip-
tions as vectors where each bit in the vector corresponds to
each possible fluent which could exist in the schematised
state description. The value of a bit is 1 if the fluent is true,
−1 if false, and a wildcard value * if unobserved.

In our previous BlocksWorld example (1), the state
descriptions for s�0 and s�1 in the context of the
pickup(B1) action a1 would include only B1, and are
schematised to form prior and successor states sprior =
(AND armempty(holding arg1)(clear arg1)) and
ssucc = (AND (holding arg1) (NOT(clear arg1)))

respectively, to give �sprior, pickup(arg1), ssucc�
as a training example. Conversely, the descriptions
for s�1 and s�2 in the context of the stack(B1 B2)

action a2 contain both B1 and B2 as both are action
parameters, giving sprior = (AND (holding arg1)

(NOT(on arg1 arg2)) (NOT(on arg2 arg1))

(NOT(clear arg1)) (NOT(ontable arg2))) and
ssucc = (AND armempty (clear arg1) (clear arg2)

(ontable arg2) (NOT(holding arg1))).

Encoding the state descriptions as vectors, where the
bits correspond to armempty followed by clear,

ontable, holding and on with first argument arg1,
and then the same predicates with first argument

arg2, we obtain vprior = �1, 1, ∗, 1, ∗, ∗, ∗, ∗, ∗�
and vsucc = �∗,−1, ∗, 1, ∗, ∗, ∗, ∗, ∗� for a1 and
vprior = �∗,−1, ∗, 1,−1, ∗,−1, ∗,−1� and vsucc =
�1, 1, ∗,−1, ∗, 1, 1, ∗, ∗� for a2.

Given the vectorised state descriptions, a changes vector
vdiff is derived for each training example, where the i-th
bit vdiffi is defined as follows:

vdiffi =






0, if vpriori = vsucci and vsucci , vpriori ∈ {−1, 1}

1, if vpriori �= vsucci and vsucci , vpriori ∈ {−1, 1}

∗, otherwise.

A set of classifiers now learns the implicit action model.
Each classifier Ca,i corresponds to a particular action a in
the domain and predicts the i-th bit of the changes vector.
Thus if �sprior, a, ssucc� is a training example for Ca,i then
the input to the classifier is vprior with target value vdiffi .

Voted perceptron classifiers equipped with a kernel func-
tion have previously been applied to the problem of learn-
ing action models (Mourão et al., 2009, 2010) as they
are computationally efficient and known to tolerate noise
(Khardon and Wachman, 2007). We take a similar ap-
proach. Mourão et al. used voted perceptrons combined
with a DNF kernel, K(x, y) = 2same(x,y), where
same(x, y) is the number of bits with equal values in
x and y (Sadohara, 2001; Khardon and Servedio, 2005).
In the same(x, y) calculation, bits with unobserved values
are excluded. The features of the DNF kernel are all possi-
ble conjunctions of fluents, seemingly ideal for learning ac-
tion preconditions which are arbitrary conjunctions of flu-
ents. However, DNF is not PAC-learnable by a perceptron
using the DNF kernel, as examples exist on which it can
make exponentially many mistakes (Khardon et al., 2005).
We therefore consider as an alternative the k-DNF kernel,
whose features are all possible conjunctions of fluents of
length ≤ k for some fixed k: K(x, y) =

�k
l=0

�same(x,y)
l

�

(Khardon and Servedio, 2005). Preconditions with more
than k fluents are still possible since the voted perceptron
supports hypotheses which are conjunctions of features.

5 RULE EXTRACTION

Once the classifiers have been trained, the first step in de-
riving explicit action rules is to extract individual per-effect

rules to predict each fluent in isolation. We will look at how
to combine the rules to extract postconditions in Section 6.

The rule extraction process takes as input a classifier Ca,i

and returns a set of preconditions (as vectors) which pre-
dict that the fluent corresponding to bit i will change if
action a is performed. For example, in the BlocksWorld
domain a set of preconditions extracted from the classifiers
for stack is shown in Figure 2.



for v ∈ SV + do
child := v
while child only covers +ve training examples do

parent := child
for each valued bit in parent do

flip bit to its negation and calculate weight
child := child whose parents have least weight difference

rulev := parent

(a) Rule Extraction Algorithm

-1 -1 1 1 w=-10 1 1 1 1 w=80 1 -1 1 1 w=100 1 -1 -1 1 w=90 1 -1 1 -1 w=-5

∗ -1 1 1 w=-5 1 ∗ 1 1 w=60 1 -1 ∗ 1 w=80 1 -1 1 ∗ w=0

∗ -1 ∗ 1 w=10 1 ∗ ∗ 1 w=40 1 -1 ∗ ∗ w=15

(b) Example of Rule Extraction Process

Figure 1: Each node in (b) contains a vector corresponding to a possible precondition, and the weight w assigned to the
vector by the voted perceptron model. Each level of the lattice contains vectors with one fewer feature than the level
above. Lines join parent and children nodes: solid lines link the candidate parent rule at one level with its children in the
level below, and dashed lines link children to their alternative parent. Shaded nodes are the preconditions selected at each
iteration through the lattice. The positive support vector “seed” is the vector �1 -1 1 1� with weight 100. Following the
rule extraction algorithm in (a), the child whose parents have the least weight difference, the vector �1 -1 * 1�, is chosen as
the next candidate rule. The process ends with the rule �1 * * 1� as both children have a negative counterexample in the
training data (not shown).

(armempty) changes when:
[8] (AND (NOT(armempty)) (NOT(ontable arg1)))

(clear arg1) changes when:
[14] (AND (NOT(clear arg1)) (holding arg1)

(NOT(on arg1 arg2)))

[12] (AND (NOT(clear arg1)) (NOT(ontable arg1))

(NOT(on arg2 arg1)))

[8] (AND (clear arg1) (ontable arg1) (clear arg2)

(NOT(on arg1 arg2)) (NOT(on arg2 arg1)))

(ontable arg1) changes when:
[6] (AND (NOT(ontable arg1)) (NOT(on arg1 arg2)))

[4] (AND (NOT(armempty)) (ontable arg1)

(NOT(clear arg2)))

(holding arg1) changes when:
[15] (AND (holding arg1))

(on arg1 arg2) changes when:
[3] (AND (NOT(on arg1 arg2)))

(clear arg2) changes when:
[12] (AND (clear arg2) (ontable arg2)

(NOT(holding arg2)))

[6] (AND (NOT(armempty)) (NOT(clear arg1)) (clear arg2)

(holding arg1) (NOT(on arg1 arg2)))

[2] (AND (NOT(clear arg1)) (clear arg2)

(NOT(ontable arg2)))

Figure 2: Per-effect rules generated for the BlocksWorld
stack action from 1000 examples in a world with 5%
noise and 25% observability. Weights are shown in square
brackets. Fluents in bold are neither in, nor implied by, the
true action specification. Many of these fluents will later be
excluded by the rule combination process (Section 6).

Rules are extracted from a voted perceptron with kernel
K and support vectors SV = SV + ∪ SV −, where SV +

(SV −) is the set of support vectors whose predicted values
are 1 (−1). The positive support vectors are each instances
of some rule learnt by the perceptron, and so are used to
“seed” the search for rules. The extraction process aims to
identify and remove all irrelevant bits in each support vec-
tor, using the voted perceptron’s prediction calculation to

determine which bits to remove.

The weight of any possible state description vector x is
defined to be the value calculated by the voted percep-
tron’s prediction calculation before thresholding (Freund
and Schapire, 1999):

weighte(x) =
n�

i=1

ci sign
i�

j=1

yjαjK(xj ,x)

where each xi is one of the n support vectors, yi is the
corresponding target value, ci and αi are the parameters
learnt by the classifier, and e is the effect predicted by the
classifier. The predicted value for x is 1 if weighte(x) > 0
and −1 otherwise. A child of vector x is any distinct vector
obtained by replacing a single bit of x with the value *.
Similarly, a parent of x is any vector obtained by replacing
a *-valued bit with the value 1 or −1.

The basic intuition behind the rule extraction process is
that more discriminative features will contribute more to
the weight of an example. Thus the rule extraction pro-
cess operates by taking each positive support vector and
repeatedly deleting the feature which contributes least to
the weight until some stopping criterion is satisfied. This
leaves the most discriminative features underlying the ex-
ample, which can be used to form a precondition. An ex-
ample of the process of extracting rules is shown in Fig-
ure 1(b), and an outline of the algorithm in Figure 1(a), as
follows. Take each positive support vector v in turn, and
aim to find a conjunction rulev which covers v and does
not cover any negative training examples, but where every
child of rulev covers at least one negative example. Con-
struct rulev by a greedy algorithm which first takes v as
a candidate rule and then repeatedly creates a new candi-
date rule by choosing one bit to set to the ∗ value. The
bit is chosen by considering the difference in weights be-
tween the current candidate x = �x1, ..., xi, ..., xn� and



each x¬i = �x1, ...,¬xi, ..., xn�, finding

argmin
xi∈{x1,...,xi,...,xn}

(weighte(x)− weighte(x¬i)).

Removing the resulting xi removes the least discrimina-
tive bit in the current candidate rule. At each step the new
candidate rule is tested against the training examples. If it
classifies a negative training example as positive, then the
rule is too general and rulev is set to the previous candi-
date rule, otherwise the process repeats. The result is a set
of rules for each action, predicting when a particular output
bit changes. There may be many rules, up to one per posi-
tive support vector, each consisting of a set of preconditions
which, if satisfied, predict the output bit will change.

6 RULE COMBINATION

The rule extraction process described above produces a set
of rules for an action, such as for the BlocksWorld stack
action shown in Figure 2. However, in STRIPS we expect
a single rule for each action, consisting of a set of precon-
ditions and a set of effects such as in the definition of the
BlocksWorld stack action given in Section 2.

The rule combination process therefore builds a single
STRIPS-like rule for each action, taking as input the
set of rules produced by the rule extraction process:
{(v1, e1), (v2, e2), . . . , (vr, er)} where vi is the vector rep-
resenting the i-th set of preconditions, and ei is the bit
which changes when vi holds. Rule combination gener-
ates a rule (vrule, erule) where the j-th element of vrule,
vrule,j ⊆

�
i vi,j and erule ⊆

�
i ei. Given the definitions

in Section 4, we can directly convert the single state vec-
tor vrule and the set of effects erule into a precondition and
effect in STRIPS format.1

Without noise or partial observability, the combination
process is a straightforward conjunction of all precondi-
tions and all effects in the set of rules for an action, i.e.,
∀j vrule,j =

�
i vi,j and erule =

�
i ei. However, when

learning from noisy examples, unwanted additional fluents
can be introduced to the per-effect rules via noisy sup-
port vectors. Similarly, incomplete training examples can
mean some necessary fluents are missing from individual
per-effect rules. In this section we describe an approach
to identify and eliminate fluents introduced by noise while
adding in fluents omitted due to partial observability.

To support the process of choosing between different po-
tential rules which may contain noisy fluents, or omit
necessary fluents, we introduce two filtering functions.
AcceptPrecons takes an existing precondition and effects
(vrule, erule) for an action a, and assesses whether a new

1Since the effects in erule are changes it may be necessary to
identify from what value the change is made, by referring to the
rule from which the effect bit originated.

R := {(v1, e1), . . . , (vr, er)}
rule := (v1,∅)
locks = ∅
while R �= ∅ do

next := highest weighted rule in R
R := R \ {next}
vcandidate = CombinePrecons(rule, next, locks)
if vcandidate �= vrule then

vcandidate = SimplifyPrecons(rule, next, vcandidate)
if AcceptPrecons(rule, vcandidate) then

vrule := vcandidate
if AcceptEffect(rule, enext) then

erule := erule ∪ enext

erule = SimplifyEffects(rule)

Figure 3: Outline Rule Combination Algorithm

precondition vnew predicts the effects of a at least as well
as the current precondition. AcceptEffects takes an exist-
ing precondition and effects for an action a, and assesses
whether the precondition predicts a new effect enew of a at
least as well as it predicts the current effects. We describe
AcceptPrecons and AcceptEffects in detail in Section 6.2.

6.1 RULE COMBINATION OVERVIEW

With the filtering functions in place, we now describe how
the rule combination process generates STRIPS rules by
combining and refining the per-effect rules. Figure 3 gives
an outline of the algorithm, described below.

For each action the process derives a rule (vrule, erule)
from the set of rules R = {(v1, e1), . . . , (vr, er)} pro-
duced by rule extraction, ordered so that weightei(vi) ≥

weightej (vj) if i < j. The process first initialises vrule to
the highest weighted precondition in R and sets erule = ∅.
The rule is then refined by combining it with each of the re-
maining per-effect rules in turn, in order of highest weight.

Each time (in CombinePrecons) the process combines the
current precondition vrule with the precondition from the
next per-effect rule vi, which we will name vnext, into a
candidate precondition vcandidate. This includes resolv-
ing any conflicts between vrule and vnext. We now have
a candidate precondition vcandidate which is a merge of
vrule and vnext. The process refines vcandidate further by
testing it against a set of alternatives in SimplifyPrecons
and setting vcandidate to the best result. Now vcandidate is
tested against the original vrule, using AcceptPrecons . If
vcandidate is accepted, vrule is updated to vcandidate. Simi-
larly, enext is tested against the original set of effects erule,
using AcceptEffects . If enext is accepted, erule is updated
to erule ∪ enext. Finally, the process refines erule by test-
ing it against a set of alternatives in SimplifyEffects and
setting erule to the best result. In the next section we de-
scribe each of the subprocedures in detail.



6.2 ALGORITHM DETAILS

CombinePrecons: In attempting to combine (vrule, erule)
with (vnext, enext), the first check is whether enext con-
tradicts any effect in erule. Effects conflict if both rules
predict change to a fluent, but the rules have different val-
ues for the fluent in their preconditions. (For example, the
two per-effect rules for (ontable arg1) in Figure 2 con-
flict.) If there is a conflict, the new rule is rejected, as we
assume only one rule per action, and the higher weighted
baseline rule is more likely to be correct.

Second, CombinePrecons combines the preconditions on
every bit which is not locked (listed in locks) and does not
conflict, i.e., ∀i vrule,i = vnext,i or vrule,i = ∗:

vcandidate,i =






vrule,i, if vrule,i = vnext,i or i ∈ locks

vrule,i, if vnext,i = ∗

vnext,i, if vrule,i = ∗ and i /∈ locks.

For conflicts, where vrule,i �= vnext,i and vrule,i, vnext,i ∈
{1,−1}, CombinePrecons decides which value each con-
flict bit should take in vcandidate, as follows.

For each conflicting fluent, there are three possible values
the fluent could take in the preconditions of the true rule: ∗
(unobserved), 1 (true) or −1 (false). The weight weighte
(for each effect e in erule) of each variant is calculated
(with the values of other conflicting fluents set to ∗). The
preferred variant is where the value is ∗, indicating a non-
discriminative feature, and giving the simplest precondi-
tion. However, a variant is only acceptable if the weight of
the resulting precondition is positive for all effects in erule,
since then the new precondition still predicts the same ef-
fects as the current precondition vrule. If accepted, the
fluent is locked at the ∗ value, to prevent later, possibly
noisy rules, from resetting it. Locked fluents are recorded
in the locks variable (see Figure 3). If the ∗-variant is un-
acceptable, then the (1)-valued or (−1)-valued cases are
considered, provided they have positive weights on all the
effects. If both variants are acceptable, whichever has the
highest average weight over all the effects is selected. If
neither variant is acceptable then the conflict is unresolved
for this fluent. As long as the conflicts on every fluent are
resolved, the rule combination process can continue with
the new candidate precondition. If not, the current rule is
rejected (and CombinePrecons returns vrule).

SimplifyPrecons : Once CombinePrecons has generated a
candidate precondition vcandidate, SimplifyPrecons con-
siders alternative, less specific preconditions. It creates a
set of alternatives vcandidate\i for each bit i in vcandidate
which differs from vrule. vcandidate\i = vcandidate except
at bit i where vcandidate\i = ∗. Whenever the filtering
function AcceptPrecons rates vcandidate as worse than any
vcandidate\i, the associated fluent vcandidate,i is set to ∗.

SimplifyEffects: In light of the new preconditions,
SimplifyEffects tests if any of the effects should be re-

moved from the new vrule . For instance, more specific pre-
conditions may lower the incidence of some effects (as seen
in the training data) to the extent that AcceptEffects rejects
them. Each effect is tested against all the other effects by
AcceptEffects and, if rejected, removed from erule.

AcceptPrecons: In the precondition filtering function, be-
fore even making a comparison between preconditions, the
new precondition vnew must be checked to ensure that it is
consistent with the classifiers and supported by the train-
ing data. For this we require a notion of coverage of the
training set. Coverage is defined to account for partial ob-
servability, so that precondition vnew covers example x at
effect e (denoted coverse(vnew, x)) if none of the fluents in
the example state contradict the fluents in the rule precon-
ditions, and e is in both the example state changes and the
rule effects. Now vnew can form a rule precondition if:

1. vnew is consistent with the classifiers: for each e ∈

erule, vnew should be classified by the classifier Ca,e

as predicting change, that is,
∀e ∈ erule weighte(vnew) > 0; and

2. vnew is supported by the training data: for each
e ∈ erule, vnew should cover at least one training
example where e changed, that is,
∀e ∈ erule |{x : coverse(vnew, x)}| > 0.

Both should be considered, as weight alone may permit
rules which do not cover any training examples, while cov-
erage alone may allow negatively weighted rules.

Additionally, AcceptPrecons uses differences in precision
and recall to identify and reject any new precondition
which performs significantly worse than the existing pre-
condition. It rejects preconditions where either the preci-
sion or recall on the training set drops substantially for any
e ∈ erule. Since precision and recall is a trade-off, the com-
parison is made using the F-score2 for precondition pre at
effect e: Fpre,e . Ideally we want the new precondition to
improve on (or at least not worsen) the F-score, but we must
introduce some tolerance to account for the effects of noise.

For instance, suppose vnew = �1, 1, ∗, ∗� is more general
than vrule = �1, 1, 0, ∗�, and that vnew is in fact the true
rule. The F-score for vrule is calculated on the subset of
training examples which vrule covers, while the F-score
for vnew also includes training examples which �1, 1, 1, ∗�
covers. If the training set happens to have a higher propor-
tion of training examples with a noisy outcome covered by
�1, 1, 1, ∗� than �1, 1, 0, ∗� then the F-score for vnew can be
lower than for vrule. To account for such effects of noise,
we allow the new F-score Fvnew,e to drop to some fraction
�p of the F-score for the existing precondition Fvrule,e, for
any effect e ∈ erule. For new F-scores below this value,
the new precondition is rejected.

2F-score is the harmonic mean of precision and recall (true
positives/predicted changes and true positives/actual changes, re-
spectively) (Van Rijsbergen, 1979).



AcceptEffect : The effects filtering function similarly com-
pares F-scores. Given (vrule, erule) it compares how well
vrule predicts a new effect enew relative to how well it pre-
dicts each e ∈ erule: specifically it compares Fvrule,enew

to Fvrule,e for each e ∈ erule. This identifies effects which
are inconsistent with the other effects in terms of precision
and recall. In particular, effects which occur in far fewer
examples than other effects are identified in this way: these
are likely to be caused by noise, or could be conditional ef-
fects. An effect is rejected by the function if its F-score is
less than some fraction �e times the F-score on any other
effect of the same rule.

In our evaluation, �p and �e were set to 0.95 and 0.5 respec-
tively, and not varied across the domains. The values were
selected empirically via experiments on a holdout dataset
from one experimental domain (ZenoTravel).

6.3 RULE COMBINATION EXAMPLE

We now consider an example of one iteration of the rule
combination process. Working with the BlocksWorld
domain stack action, suppose the current rule is
(�∗,−1,−1, 1,−1, 1, 1, ∗, ∗� , {1, 3, 5}) corresponding
to the precondition (AND (NOT(clear arg1))

(NOT(ontable arg1)) (holding arg1)

(NOT(on arg1 arg2)) (clear arg2) (ontable

arg2)) and effects {(clear arg1) (holding arg1)

(clear arg2)}. We try to combine this with the
new rule (�∗, ∗,−1, ∗,−1, ∗,−1, ∗, 1� , {2}) correspond-
ing to the precondition (AND (NOT(ontable arg1))

(NOT(on arg1 arg2)) (NOT(ontable arg2))

(on arg2 arg1)) and effects {(ontable arg1)}.

CombinePrecons finds no conflicts in the ef-
fects, and generates the candidate precondition
�∗,−1,−1, 1,−1, 1, ?, ∗, 1� where ? denotes a conflict-
ing fluent. To resolve the conflict the weights of the vectors
�∗,−1,−1, 1,−1, 1, ∗, ∗, 1�, �∗,−1,−1, 1,−1, 1, 1, ∗, 1�
and �∗,−1,−1, 1,−1, 1,−1, ∗, 1� are calculated for each
of the Cstack,(clear arg1), Cstack,(holding arg1) and
Cstack,(clear arg2) classifiers. If �∗,−1,−1, 1,−1, 1, ∗, ∗, 1�
is accepted as vcandidate, SimplifyPrecons would consider
the alternative precondition �∗,−1,−1, 1,−1, 1, ∗, ∗, ∗� as
the last bit in vcandidate was different in vrule.

Assuming �∗,−1,−1, 1,−1, 1, ∗, ∗, ∗� is accepted as
vcandidate by SimplifyPrecons , it is compared to the
original vrule (the only difference now is that the bit cor-
responding to (ontable arg2) is unset in vcandidate).
vcandidate has higher weight and so AcceptPrecons
accepts vcandidate and vrule := vcandidate. Conversely the
new effect is rejected by AcceptEffects so erule ={1, 3, 5}
as before. Finally, SimplifyEffects uses AcceptEffects
to test the relative prediction performance of the new
vrule on each effect, with no changes. The new rule is
(�∗,−1,−1, 1,−1, 1, ∗, ∗, ∗� , {1, 3, 5}).

7 EXPERIMENTS

We tested our approach on several simulated domains
taken from the International Planning Competition (IPC) at
http://ipc.icaps-conference.org/. The domains
differ in terms of the number and arity of actions and pred-
icates, and the number and hierarchy of types. The main
domain characteristics are detailed in Table 1.

Sequences of random actions and resulting states were
generated from the PDDL domain descriptions and used
as training and testing data. All data was generated
using the Random Action Generator 0.5 available at
http://magma.cs.uiuc.edu/filter/, modified to
also generate action failures. Table 2 shows the numbers of
objects used in training and testing data for each domain.

Ten different randomly generated training and testing sets
were used. Training and testing sets were sequences of
20,000 and 2,000 actions respectively. Both sequences con-
tained an equal mixture of successful and unsuccessful ac-
tions (where some precondition of the action was not sat-
isfied, and so no change occurred in the world). In some
domains (e.g. Rovers), portions of the state space can only
be traversed once, and in these cases multiple shorter se-
quences of 400 actions were generated from randomly gen-
erated starting states. In line with previous work (Amir and
Chang, 2008), incomplete observations were simulated by
randomly selecting a fraction (10%, 25% or 50%) of fluents
(including negations) from the world to observe after each
action. The remaining fluents were discarded and the re-
duced state vector was generated from the observed fluents.
Sensor noise was simulated similarly by flipping the value
of each bit in the state vector with probability 1% and 5%.

7.1 RESULTS

We first tested the performance of different kernels on
learning the implicit action model, comparing results for
a standard (non-kernelised) perceptron, a voted (non-
kernelised) perceptron, and a voted kernel perceptron. Both
the DNF kernel and k-DNF kernel with k = 2, 3 and 5
were tested. Performance was measured in terms of the
F-score of the predictions on the test sets.

The fully observable, noiseless cases are easily learnt by
any of the perceptrons tested. After 5,000 training exam-
ples, the F-score on the test set is 1, in almost all cases. Per-

Table 1: Domain Characteristics

Domain Actions Predicates
No. Max arity No.(+types) Max arity

BlocksWorld 4 2 5 2
Depots 5 4 6 (+6) 2
ZenoTravel 5 6 8 (+4) 2
DriverLog 6 4 6 (+4) 2
Rovers 9 6 25 (+7) 3



Table 2: Number of Objects in Training and Testing Worlds

Domain Training Testing
BlocksWorld 13 blocks 30 blocks
Depots 1 depot 4 depots

2 distributors 4 distributors
2 trucks 4 trucks
3 pallets 10 pallets
3 hoists 8 hoists
10 crates 8 crates

ZenoTravel 5 cities 10 cities
3 planes 5 planes
7 people 10 people

DriverLog 3 road junctions 20 road junctions
3 drivers 5 drivers
7 packages 25 packages
3 trucks 5 trucks

Rovers 2 rovers 4 rovers
4 waypoints 8 waypoints
3 objectives 4 objectives
3 cameras 4 cameras
3 modes 3 modes
2 stores 4 stores
1 lander 1 lander

formance of the voted perceptron, with or without the var-
ious kernels, is almost identical (results not shown). With
the introduction of unobserved fluents or noise, the voted
perceptron performs better than the standard perceptron.
However, the DNF kernel does not improve performance,
with the unkernelised voted perceptron learning signifi-
cantly more accurate action models. In contrast, the k-DNF
kernels all produce significantly more accurate models than
the DNF kernel or no kernel (p < 0.05, repeated measures
ANOVA with post-hoc Bonferroni t-test). Figure 4 gives
a comparison of the relative performance of each model.
The use of k-DNF kernels therefore represents a significant
improvement on previous work which used only the DNF
kernel. In light of these results, the 3-DNF kernel was se-
lected for the remainder of the experiments.

Next, we extracted explicit rules from the implicit action
models. There was no statistically significant difference
between the F-scores of predictions made by the percep-
tron models and those made by the extracted rules (re-
peated measures ANOVA, p > 0.05). We also com-
pared the resulting models to the original domain descrip-
tions using a measure of error rate (Zhuo et al., 2010).
The error rate for a single action is defined as the num-
ber of extra or missing fluents in the preconditions and
effects (Epre and Eeff respectively) divided by the num-
ber of possible fluents in the preconditions and effects (T ):
Error(a) = 1

2T (Epre + Eeff ). The error rate
of a domain model with a set of actions A is:
Error(A) = 1

|A|
�

a∈A Error(a).

The error rates indicate that the learnt models are close to
the actual STRIPS domain definitions, falling below 0.1 af-
ter around 5,000 examples in all cases (Figure 5). In par-
ticular, for fully observable, noiseless domains the correct
STRIPS model is given by the extracted rules in fewer than

StandardVoted Voted
2-DNF

Voted
3-DNF

Voted
5-DNF

Voted
DNF

0.6

0.7

0.8
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1.0
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Average F-score by model

Figure 4: Comparison of the performance of different per-
ceptrons learning action models from 20,000 random ac-
tions in STRIPS domains, averaged across all domains, lev-
els of noise and partial observability. Error bars are stan-
dard error. Performance is significantly different between
models which use a k-DNF kernel and those which do not.

2,000 training examples, except for the most complex do-
main, Rovers. Comparisons with other approaches in the
literature are difficult due to differences in the learning set-
tings. Nevertheless it is notable that the error rates of the
learnt action models are low in comparison to action mod-
els learnt by (Yang et al., 2007) for the same domains: their
error rates at 90% observability (the highest reported) range
from around 0.04 (ZenoTravel) to 0.1 or above (DriverLog
and Depots) to more than 0.6 (Rovers). An example action
model is shown in Figure 6, demonstrating that the method
derives compact STRIPS-like rules even with high levels of
incompleteness and noise in the observations.

We also calculated the F-scores for predictions made by
the learnt rules on our (noiseless, fully observable) test sets
(Figure 5). The F-scores are above 0.9 for all noise lev-
els at 25% observability and above, for all domains except
Rovers, indicating that in practice the rules correctly pre-
dict most fluents. The Rovers F-scores are somewhat lower,
because there are fewer training examples per action than
for the other domains, and more possible fluents.

Furthermore, our learning is fast. The longest-running ex-
ample in the experiments (Rovers with 20,000 training ex-
amples, 5% noise, fully observable) takes under 1.5 hours
on a single Intel Xeon 5160 processor to train the classi-
fiers, and run rule extraction and combination. The Zeno-
Travel example (Figure 6) runs in under 2 minutes.

8 CONCLUSIONS AND FUTURE WORK

The results demonstrate that our approach successfully
learns STRIPS operators from noisy, incomplete observa-
tions, in contrast to previous work which either generates
explicit operators but cannot tolerate noise and incomplete
examples, or tolerates noise and incomplete examples but
does not generate explicit operators. We also show empir-
ically that the 3-DNF kernel is a more appropriate choice
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Figure 5: Results from learning explicit action rules from 5,000 training examples at varying levels of observability and
noise in simulated planning domains. The error rate measures errors in the learnt domain model relative to the actual
domain model (above). The F-score measures performance of the rules on fully observable, noiseless test domains (below).

than the DNF kernel for learning in this setting.

Our approach depends on decomposing the learning prob-
lem into two stages: learning implicit action models and
then deriving explicit rules from the implicit models. Cru-
cially, the implicit models produce noise-free, complete ob-
servations for the domain model which has been learnt. An
alternative approach to our rule derivation process would
be to apply existing action model learning techniques to
the observations produced by the implicit models. How-
ever such an approach effectively restarts the learning pro-
cess, ignoring information already learnt and available in
the perceptron models, and so is likely to be less efficient.

Our approach also depends on the STRIPS scope assump-
tion (SSA) which essentially identifies the objects which
are relevant to the action and fixes their roles. In real-
world scenarios the SSA may not apply. Without the SSA,
during learning we must also consider state relating to ob-
jects which are not listed in the action parameters. Im-
plicit action models in this setting may be learnt using a
graphical representation of states combined with a suitable
graph kernel (Mourão, 2012). In future work we therefore
plan to extend our rule extraction method to derive rules
from classifiers trained with graphical state representa-
tions. Additional steps will be required to efficiently handle
the complexity introduced by the requirement to perform
comparisons between graphical state descriptions. There
are positive results in PAC-learning existential conjunctive
and k-DNF concepts in noise-free structural domains with
Boolean relations (Haussler, 1989; Valiant, 1985), which
apply to learning from the implicit models, suggesting that
our approach will scale to graphical state representations.

(:action DEBARK

:parameters (?x1 ?x2 ?x3 )

:precondition (AND (in ?x1 ?x2) (at ?x2 ?x3))

:effect (AND (at ?x1 ?x3) (NOT(in ?x1 ?x2))))

(:action BOARD

:parameters (?x1 ?x2 ?x3 )

:precondition (AND (at ?x1 ?x3) (at ?x2 ?x3))

:effect (AND (NOT(at ?x1 ?x3)) (in ?x1 ?x2)))

(:action FLY

:parameters (?x1 ?x2 ?x3 ?x4 ?x5 )

:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x5 ?x4))

:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x5)))

(:action ZOOM

:parameters (?x1 ?x2 ?x3 ?x4 ?x5 ?x6 )

:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x6 ?x5) (next ?x5 ?x4))

:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x6)))

(:action REFUEL

:parameters (?x1 ?x2 ?x3 ?x4 )

:precondition (AND (fuel-level ?x1 ?x3) (next ?x4 ?x3)
(next ?x3 ?x4) (at ?x1 ?x2))

:effect (AND (NOT(fuel-level ?x1 ?x3)) (fuel-level ?x1 ?x4))

Figure 6: Explicit action model output for the ZenoTravel
domain after 5,000 training examples with 10% observabil-
ity and 5% noise. Missing fluents are in bold italic, in-
correct fluents in bold. The error rate of this example is
0.05. Such imperfect rules have quite small effects on per-
formance (F-score 0.85 in this case), but will in future work
be improved by eliminating low reliability classifiers.

Acknowledgements

The authors are grateful to the reviewers of this and previous ver-
sions of this paper for helpful comments. This work was par-
tially funded by the European Commission through the EU Cog-
nitive Systems project Xperience (FP7-ICT-270273) and the UK
EPSRC/MRC through the Neuroinformatics and Computational
Neuroscience Doctoral Training Centre, University of Edinburgh.



References

Amir, E. and Chang, A. (2008). Learning partially observ-
able deterministic action models. JAIR, 33, 349–402.

Benson, S. S. (1996). Learning Action Models for Reactive

Autonomous Agents. Ph.D. thesis, Stanford University.

Croonenborghs, T., Ramon, J., Blockeel, H., and
Bruynooghe, M. (2007). Online learning and exploit-
ing relational models in reinforcement learning. In Proc.

of IJCAI 2007, pages 726–731.
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