
Learning Context-dependent Mappings
from Sentences to Logical Form

Luke Zettlemoyer and Michael Collins

MIT Computer Science and Artificial Intelligence Lab

Context-dependent Analysis

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

Context-dependent Analysis

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

Context-dependent Analysis

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x)

Context-dependent Analysis

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x)

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x),
λy.cost(y))

Context-dependent Analysis

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x)

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x),
λy.cost(y))

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ connect(x),
λy.cost(y))

A Supervised Learning Problem

Training Examples:
sequences of sentences and logical forms

Show me flights from New York to Seattle.
λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA)

List ones from Newark on Friday.
λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI)

Show me the cheapest.
argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),

λy.cost(y))

A Supervised Learning Problem

f

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

Show me the cheapest?

argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),
λy.cost(y))

Goal: Find a function f

A Supervised Learning Problem

f

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

Show me the cheapest?

argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),
λy.cost(y))

Key Challenges:

•Structured input and output (lambda calculus)

•Hidden variables (only annotate final logical forms)

Goal: Find a function f

Talk Outline

• Sketch of the Approach

• Context-sensitive Derivations

• A Learning Algorithm

• Evaluation

An Example Analysis

Show me flights from New York to Seattle.
λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA)

List ones from Newark on Friday.

An Example Analysis

Context:

List ones from Newark on Friday.

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

An Example Analysis

Context:

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

Step 2: Resolve reference

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

Step 2: Resolve reference

λx.flight(x)∧to(x,SEA)

An Example Analysis

Context:

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Context-independent parse

Current sentence:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

Step 2: Resolve reference

λx.flight(x)∧to(x,SEA)

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW) ∧ day(x,FRI)

Talk Outline

• Sketch of Approach

• Context-sensitive Derivations

• A Learning Algorithm

• Evaluation

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Step 1: CCG Parsing

(N\N)/NP
λy.λf.λx.f(x) ∧to(x,y)

to SingaporeList

NP

sin

N\N
λf.λx.f(x) ∧ to(x,sin)

flights

N
λx.flight(x)

S/N
λf.f(x)

S
λx.flight(x) ∧ to(x,sin)

N
λx.flight(x) ∧ to(x,sin)

Step 1: CCG Parsing

(N\N)/NP
λy.λf.λx.f(x) ∧to(x,y)

to SingaporeList

NP

sin

N\N
λf.λx.f(x) ∧ to(x,sin)

flights

N
λx.flight(x)

S/N
λf.f(x)

S
λx.flight(x) ∧ to(x,sin)

N
λx.flight(x) ∧ to(x,sin)

Step 1: CCG Parsing

(N\N)/NP
λy.λf.λx.f(x) ∧to(x,y)

to SingaporeList

NP

sin

N\N
λf.λx.f(x) ∧ to(x,sin)

flights

N
λx.flight(x)

S/N
λf.f(x)

S
λx.flight(x) ∧ to(x,sin)

N
λx.flight(x) ∧ to(x,sin)

Step 1: CCG Parsing

(N\N)/NP
λy.λf.λx.f(x) ∧to(x,y)

to SingaporeList

NP

sin

N\N
λf.λx.f(x) ∧ to(x,sin)

flights

N
λx.flight(x)

S/N
λf.f(x)

S
λx.flight(x) ∧ to(x,sin)

N
λx.flight(x) ∧ to(x,sin)

Step 1: CCG Parsing

(N\N)/NP
λy.λf.λx.f(x) ∧to(x,y)

to SingaporeList

NP

sin

N\N
λf.λx.f(x) ∧ to(x,sin)

flights

N
λx.flight(x)

S/N
λf.f(x)

S
λx.flight(x) ∧ to(x,sin)

N
λx.flight(x) ∧ to(x,sin)

Step 1: Referential lexical items

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

Step 1: Referential lexical items

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

First extension:
•Add referential lexical items

ones N λx.!f(x)

it NP !e...

Step 1: Type-shifting operations

the cheapest

Second extension:
•Add type-shifting operators for elliptical expressions

Step 1: Type-shifting operations

the cheapest

NP/N
λg.argmin(g, λy.cost(y))

Second extension:
•Add type-shifting operators for elliptical expressions

Step 1: Type-shifting operations

the cheapest

NP
argmin(λx.!f(x), λy.cost(y))

NP/N
λg.argmin(g, λy.cost(y))

Second extension:
•Add type-shifting operators for elliptical expressions

Step 1: Type-shifting operations

the cheapest

NP
argmin(λx.!f(x), λy.cost(y))

A/B : g => A : g(λx.!f(x))
where g is a function with input type <e,t>

NP/N
λg.argmin(g, λy.cost(y))

Second extension:
•Add type-shifting operators for elliptical expressions

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Step 2: Resolving References

For each reference:
• Select an expression from the context
• Substitute into current analysis

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

SEA

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

SEA

NYC

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

SEA

NYC

λx.flight(x)∧from(x,NYC)∧to(x,SEA)

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

SEA

λx.from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)
 ∧to(x,SEA)

λx.flight(x)
 ∧from(x,NYC)

NYC

λx.flight(x)∧from(x,NYC)∧to(x,SEA)

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Selecting from Context

Context:
λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

argmax(λx.flight(x)∧to(x,SEA)
∧ from(x,BOS),

 λy.depart(y))

SEA

λx.from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)
 ∧to(x,SEA)

λx.flight(x)
 ∧from(x,NYC)

λx.flight(x)λx.from(x,NYC)λx.to(x,SEA)

NYC

λx.flight(x)∧from(x,NYC)∧to(x,SEA)

For each logical form in context,
enumerate e and <e,t> type subexpressions:

Step 2: Resolving References

For each reference:
• Select an expression from the context
• Substitute into current analysis

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Step 3: Elaboration operations

Show me the latest flight from New York to Seattle.
argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ,

λy.time(y))

on Friday
argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ∧ day(x,FRI),

λy.time(y))

Step 3: Elaboration operations

argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC),

 λy.time(y))

on Friday

λx.day(x,FRI)

Step 3: Elaboration operations

argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC),

 λy.time(y))

on Friday

λx.day(x,FRI)

λf.argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC) ∧ f(x),

 λy.time(y))

Step 3: Elaboration operations

argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC),

 λy.time(y))

on Friday

λx.day(x,FRI)

λf.argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC) ∧ f(x),

 λy.time(y))

Step 3: Elaboration operations

argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC),

 λy.time(y))

on Friday

λx.day(x,FRI)

λf.argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC) ∧ f(x),

 λy.time(y))

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ∧ day(x,FRI),
λy.time(y))

Step 3: Elaboration operations

argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC),

 λy.time(y))

on Friday

λx.day(x,FRI)

λf.argmax(λx.flight(x)∧to(x,SEA) ∧
from(x,NYC) ∧ f(x),

 λy.time(y))

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ∧ day(x,FRI),
λy.time(y))

Possible elaborations:
•Potentially expand any embedded variable
•Can do deletions on elaboration function

Derivations

Three step process:
•Step 1: Context-independent parsing
•Step 2: Resolve all references
•Step 3: Optionally, perform an elaboration

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Talk Outline

• Sketch of Approach

• Context-sensitive Derivations

• A Learning Algorithm

• Evaluation

Scoring Derivations

d

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Scoring Derivations

Weighted linear model:
•Introduce features: f (d)
•Compute scores for derivations: w · f (d)

d

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Features for Derivations: f (d)

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:

•Distance indicators, for integers (0,1,2,...)

•Copy indicators, for all predicates {flight, from, to, ...}

•Deletion indicators, for all pairs of predicates
{(from, flight), (from, from), (from, to), ...}

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)

λx.!f(x) ∧ from(x,NEW)∧ day(x,FRI)

List ones from Newark on Friday.

λx.flight(x)∧to(x,SEA) ∧ from(x,NEW)∧ day(x,FRI)

Inference and Learning

Two computations:
• Best derivation:

• Best derivation with final logical form z :

We use a beam search algorithm.

d∗ = argmax
d

w · f (d)

d′ = arg max
d s.t. L(d)=z

w · f (d)

Inference and Learning

Two computations:
• Best derivation:

• Best derivation with final logical form z :

We use a beam search algorithm.

d∗ = argmax
d

w · f (d)

d′ = arg max
d s.t. L(d)=z

w · f (d)

Learning:
• Hidden variable version of the structured perceptron algorithm

[Liang et al., 2006] [Zettlemoyer & Collins, 2007]

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Output: Parameters w.

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:

• If correct: L(d*) == zi,j , go to the Step 3.

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

Step 3: Update context: Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:

• If correct: L(d*) == zi,j , go to the Step 3.

Step 2: Update Parameters
• Find best correct analysis:

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

Step 3: Update context: Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:

• If correct: L(d*) == zi,j , go to the Step 3.

Step 2: Update Parameters
• Find best correct analysis:

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

Step 3: Update context: Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:

• If correct: L(d*) == zi,j , go to the Step 3.

Step 2: Update Parameters
• Find best correct analysis:

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs: Training set {Ii | i =1...n} of interactions. Each interaction
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:
For t =1...T, i =1...n : (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni : (Iterate training examples)

Output: Parameters w.

Step 3: Update context: Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:

• If correct: L(d*) == zi,j , go to the Step 3.

Talk Outline

• Sketch of Approach

• Context-sensitive Derivations

• A Learning Algorithm

• Evaluation

Evaluation

•Domain: ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)

•Comparison: previous state-of-the-art [Miller et al. 1996]

•requires full annotation of all syntactic, semantic, and
context-resolution decisions

•decision tree learning

The Miller et al. [1996] Approach

3. The constrained space of candidate pre-discourse

meanings Ms (received from the semantic interpretation

model), combined with the full space of possible post-

discourse meanings Mo, is searched for the single

candidate that maximizes

P(M o I H, M s) P(M s ,T) P(W I T) , conditioned on the

current history H. The discourse history is then updated

and the post-discourse meaning is returned.

We now proceed to a detailed discussion of each of these

three stages, beginning with parsing.

3. P a r s i n g
Our parse representation is essentially syntactic in form,

patterned on a simplified head-centered theory of phrase

structure. In content, however, the parse trees are as much

semantic as syntactic. Specifically, each parse node indicates

both a semantic and a syntactic class (excepting a few types

that serve purely syntactic functions). Figure 2 shows a

sample parse of a typical ATIS sentence. The

semantic/syntactic character of this representation offers

several advantages:

1. Annotation: Well-founded syntactic principles provide

a framework for designing an organized and consistent

annotation schema.

2. Decoding: Semantic and syntactic constraints are

simultaneously available during the decoding process;

the decoder searches for parses that are both

syntactically and semantically coherent.

3. Semantic Interpretation: Semantic/syntactic parse trees

are immediately useful to the semantic interpretation

process: semantic labels identify the basic units of

meaning, while syntactic structures help identify

relationships between those units.

3.1 Statistical Parsing Model

The parsing model is a probabilistic recursive transition

network similar to those described in (Miller et ai. 1994) and

(Seneff 1992). The probability of a parse tree T given a word

string Wis rewritten using Bayes role as:

P(T) P(W I T)
P(TIW) =

P(W)

Since P(W) is constant for any given word string, candidate

parses can be ranked by considering only the product P(T)

P(W I 7"). The probability P(T) is modeled by state transition

probabilities in the recursive transition network, and P(W I T)

is modeled by word transition probabilities.

* State transition probabilities have the form

P(state n I staten_l, stateup) . For example,

P(location/pp I arrival/vp-head, arrival/vp) is the

probability of a location/pp following an arrival/vp-

head within an arrival/vp constituent.

• Word transition probabilities have the form

P(word n I wordn_ l,tag) . For example,

P("class" I "first", class-of-service/npr) is the probability

of the word sequence "first class" given the tag

class-of-service/npr.

Each parse tree T corresponds directly with a path through

the recursive transition network. The probability

P(T) P(W I 1") is simply the product of each transition

/wh-question

//
/ / //

/ / 1 / / / / ~v~P a~re

/ I /
/wh-head /aux /det /np-head /comp /vp-head /prep /apt

I I I I I I I I
When do the flights that leave from Boston

/vp /vp

ation
p

Q
arrival location city
/vp-head /prep /npr

J J I
arrive in Atlanta

Figure 2: A sample parse tree.

57

Step 1: Semantic parsing

probability along the path corresponding to T.

3.2 Training the Parsing Model

Transition probabilities are estimated directly by observing

occurrence and transition frequencies in a training corpus of

annotated parse trees. These estimates are then smoothed to

overcome sparse data limitations. The semantic/syntactic

parse labels, described above, provide a further advantage in

terms of smoothing: for cases of undertrained probability

estimates, the model backs off to independent syntactic and

semantic probabilities as follows:

Ps(semlsyn n I semlsynn_ 1 ,semlsyn up) =

~.(semlsyn n I semlsynn_ l ,seral syn up)

x P(semlsyn n I semlsynn_ 1 ,sem/syn up)

+ (1 - ,].(semlsyn n I semlsynn_ ! ,semlsyn up)

X P(sem n I semup) P(syn n I synn_l,synup)

where Z is estimated as in (Placeway et al. 1993). Backing

off to independent semantic and syntactic probabilities

potentially provides more precise estimates than the usual

strategy of backing off directly form bigram to unigram

models.

3.3 Searching the Parsing Model

In order to explore the space of possible parses efficiently,

the parsing model is searched using a decoder based on an

adaptation of the Earley parsing algorithm (Earley 1970).

This adaptation, related to that of (Stolcke 1995), involves

reformulating the Earley algorithm to work with probabilistic

recursive transition networks rather than with deterministic

production rules. For details of the decoder, see (Miller

1996).

4. Semantic Interpretation
Both pre-discourse and post-discourse meanings in our

current system are represented using a simple frame

representation. Figure 3 shows a sample semantic frame

corresponding to the parse in Figure 2.

Air-Transportation

Show: (Arrival-Time)

Origin: (City "Boston")

Destination: (City "Atlanta")

Figure 3: A sample semantic frame.

Recall that the semantic interpreter is required to compute

P(Ms ,T) P (W I T) . The conditional word probability

P(WIT) has already been computed during the parsing

phase and need not be recomputed. The current problem,

then, is to compute the prior probability of meaning Ms and

parse T occurring together. Our strategy is to embed the

instructions for constructing Ms directly into parse T o

resulting in an augmented tree structure. For example, the

instructions needed to create the frame shown in Figure 3 are:

1. Create an Air-Transportation frame.

2. Fill the Show slot with Arrival-Time.

3. Fill the Origin slot with (City "Boston")

4. Fill the Destination slot with (City "Atlanta")

These instructions are attached to the parse tree at the points

indicated by the circled numbers (see

Figure 2). The probability P (M s , T) is then simply the

prior probability of producing the augmented tree structure.

4.1 Statistical Interpretation Model

Meanings Ms are decomposed into two parts: the frame type

FT, and the slot fillers S. The frame type is always attached

to the topmost node in the augmented parse tree, while the

slot filling instructions are attached to nodes lower down in

the tree. Except for the topmost node, all parse nodes are

required to have some slot filling operation. For nodes that

do not directly trigger any slot fill operation, the special

operation null is attached. The probability P(Ms, T) is then:

P(Ms ,T) = P(FT, S ,T)= P(FT) P(T I FT) P(S I FT, T) .

Obviously, the prior probabilities P(FT) can be obtained

directly from the training data. To compute P(T I FT), each

of the state transitions from the previous parsing model are

simply rescored conditioned on the frame type. The new

state transition probabilities are:

P(state n I staten_ t, stateup, FT) .

To compute P(S I FT, T) , we make the independence

assumption that slot filling operations depend only on the

frame type, the slot operations already performed, and on the

local parse structure around the operation. This local

neighborhood consists of the parse node itself, its two left

siblings, its two right siblings, and its four immediate

ancestors. Further, the syntactic and semantic components of

these nodes are considered independently. Under these

assumptions, the probability of a slot fill operation is:

P(slot n I FT, Sn_l,semn_ 2 sem n semn+2,

Synn-2 synn Synn+2,

semupl semup4, Synupl synup4)

and the probability P(S I FT, T) is simply the product of all

such slot fill operations in the augmented tree.

4.2 Training the Semantic Interpretation
Model

Transition probabilities are estimated from a training corpus

of augmented trees. Unlike probabilities in the parsing

model, there obviously is not sufficient training data to

estimate slot fill probabilities directly. Instead, these

probabilities are estimated by statistical decision trees similar

58

Step 2: Select frame and
fill slot values

Step 3: Optionally copy slot values from previous frames

Evaluation

•Domain: ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)

•Comparison: previous state-of-the-art [Miller et al. 1996]

•Metric: accuracy recovering fully correct meanings

Evaluation

•Domain: ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)

•Comparison: previous state-of-the-art [Miller et al. 1996]

•Metric: accuracy recovering fully correct meanings

•Result: improved accuracy
•78.4% => 83.7%
• less engineering effort: only annotated final meanings

Varying the Length of a Context Window M

Context Length Accuracy

M=0 45.4

M=1 79.8

M=2 81.0

M=3 82.1

M=4 81.6

M=10 81.4

ATIS Development Set:

Example Learned Feature Weights

Negative weights:

•Distance features: (1,2,3,...)

Positive weights:

•Copy features: flight, from, to
•Deletion features: (from, from),

(nonstop, connect),
(during-day, time)

Summary

Solution:

•Analysis: two-stage approach

• Learn: how to incorporate meaning from the context

Key challenges:

• Structured input and output, hidden structure not annotated

f

λx.flight(x)∧from(x,NYC)
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA)
 ∧ from(x,NEW)∧ day(x,FRI)

Show me the cheapest?

argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),
λy.cost(y))

The End

