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What about connecting?

Show me the cheapest one.

Which of those are nonstop?
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A Supervised Learning Problem

Training Examples: 
sequences of sentences and logical forms

Show me flights from New York to Seattle.
λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA)

List ones from Newark on Friday.
λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI)

Show me the cheapest.
argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),

λy.cost(y))
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λx.flight(x)∧from(x,NYC) 
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA) 
  ∧ from(x,NEW)∧ day(x,FRI)

Show me the cheapest?

argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),
λy.cost(y))

Key Challenges:

•Structured input and output (lambda calculus)

•Hidden variables (only annotate final logical forms)

Goal:  Find a function f 
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Step 1:  Type-shifting operations

the cheapest

NP
argmin(λx.!f(x), λy.cost(y))

A/B : g   =>   A : g(λx.!f(x))
where g is a function with input type <e,t>

NP/N
λg.argmin(g, λy.cost(y))

Second extension:
•Add type-shifting operators for elliptical expressions
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Step 3: Elaboration operations

Show me the latest flight from New York to Seattle.
argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ,

λy.time(y))

on Friday
argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SEA) ∧ day(x,FRI),

λy.time(y))
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Step 3: Elaboration operations
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Possible elaborations:
•Potentially expand any embedded variable
•Can do deletions on elaboration function
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Scoring Derivations
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Scoring Derivations

Weighted linear model:
•Introduce features: f (d )
•Compute scores for derivations: w · f (d )
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Features for Derivations: f (d )

Parsing features: set from Zettlemoyer and Collins (2007)
Context features:
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Inference and Learning

Two computations:
• Best derivation:

• Best derivation with final logical form z :

We use a beam search algorithm.

d∗ = argmax
d

w · f (d)

d′ = arg max
d s.t. L(d)=z

w · f (d)



Inference and Learning

Two computations:
• Best derivation:

• Best derivation with final logical form z :

We use a beam search algorithm.

d∗ = argmax
d

w · f (d)

d′ = arg max
d s.t. L(d)=z

w · f (d)

Learning:
• Hidden variable version of the structured perceptron algorithm 

[Liang et al., 2006] [Zettlemoyer & Collins, 2007]



Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Output: Parameters w.



Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.



Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:  

• If correct: L(d*) == zi,j , go to the Step 3. 



Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.

Step 3: Update context:  Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:  

• If correct: L(d*) == zi,j , go to the Step 3. 



Step 2: Update Parameters  
• Find best correct analysis: 

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.

Step 3: Update context:  Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:  

• If correct: L(d*) == zi,j , go to the Step 3. 



Step 2: Update Parameters  
• Find best correct analysis: 

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.

Step 3: Update context:  Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:  

• If correct: L(d*) == zi,j , go to the Step 3. 



Step 2: Update Parameters  
• Find best correct analysis: 

• Update parameters: w = w + f (d′) ﹣ f (d*)

d′ = arg max
d s.t. L(d)=zi, j

w · f (d)

Inputs:  Training set {Ii | i =1...n} of interactions.  Each interaction 
I ={(wi,j,zi,j) | j =1...ni} is a sequence of sentences and logical forms.   
Initial parameters w.   Number of iterations T.

Computation:  
For t =1...T, i =1...n :  (Iterate interactions)

Set C ={} (Reset Context)
For j =1...ni :  (Iterate training examples)

Output: Parameters w.

Step 3: Update context:  Append zi,j to C

d∗ = argmax
d

w · f (d)
Step 1: Check Correctness

• Find best analysis:  

• If correct: L(d*) == zi,j , go to the Step 3. 



Talk Outline

• Sketch of Approach

• Context-sensitive Derivations

• A Learning Algorithm

• Evaluation



Evaluation

•Domain:  ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)

•Comparison: previous state-of-the-art [Miller et al. 1996]

•requires full annotation of all syntactic, semantic, and 
context-resolution decisions

•decision tree learning



The Miller et al. [1996] Approach

3. The constrained space of candidate pre-discourse 

meanings Ms (received from the semantic interpretation 

model), combined with the full space of possible post- 

discourse meanings Mo, is searched for the single 

candidate that maximizes 

P( M o I H, M s)  P( M s ,T)  P(W I T ) ,  conditioned on the 

current history H. The discourse history is then updated 

and the post-discourse meaning is returned. 

We now proceed to a detailed discussion of each of these 

three stages, beginning with parsing. 

3. P a r s i n g  
Our parse representation is essentially syntactic in form, 

patterned on a simplified head-centered theory of phrase 

structure. In content, however, the parse trees are as much 

semantic as syntactic. Specifically, each parse node indicates 

both a semantic and a syntactic class (excepting a few types 

that serve purely syntactic functions). Figure 2 shows a 

sample parse of a typical ATIS sentence. The 

semantic/syntactic character of this representation offers 

several advantages: 

1. Annotation: Well-founded syntactic principles provide 

a framework for designing an organized and consistent 

annotation schema. 

2. Decoding: Semantic and syntactic constraints are 

simultaneously available during the decoding process; 

the decoder searches for parses that are both 

syntactically and semantically coherent. 

3. Semantic Interpretation: Semantic/syntactic parse trees 

are immediately useful to the semantic interpretation 

process: semantic labels identify the basic units of 

meaning, while syntactic structures help identify 

relationships between those units. 

3.1 Statistical Parsing Model 

The parsing model is a probabilistic recursive transition 

network similar to those described in (Miller et ai. 1994) and 

(Seneff 1992). The probability of a parse tree T given a word 

string Wis rewritten using Bayes role as: 

P(T) P(W I T) 
P(TIW)  = 

P(W) 

Since P(W) is constant for any given word string, candidate 

parses can be ranked by considering only the product P(T) 

P(W I 7"). The probability P(T) is modeled by state transition 

probabilities in the recursive transition network, and P(W I T) 

is modeled by word transition probabilities. 

* State transition probabilities have the form 

P(state n I staten_l, stateup) . For example, 

P(location/pp I arrival/vp-head, arrival/vp) is the 

probability of a location/pp following an arrival/vp- 

head within an arrival/vp constituent. 

• Word transition probabilities have the form 

P(word n I wordn_ l,tag) . For example, 

P("class" I "first", class-of-service/npr) is the probability 

of the word sequence "first class" given the tag 

class-of-service/npr. 

Each parse tree T corresponds directly with a path through 

the recursive transition network. The probability 

P(T) P(W I 1") is simply the product of each transition 

/wh-question 

// 
/ /  // 

/ / 1 / / / / ~v~P a~re 

/ I / 
/wh-head /aux /det /np-head /comp /vp-head /prep /apt 

I I I I I I I I 
When do the flights that leave from Boston 

/vp /vp 

ation 
p 

Q 
arrival location city 
/vp-head /prep /npr 

J J I 
arrive in Atlanta 

Figure 2: A sample parse tree. 
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Step 1: Semantic parsing

probability along the path corresponding to T. 

3.2 Training the Parsing Model 

Transition probabilities are estimated directly by observing 

occurrence and transition frequencies in a training corpus of 

annotated parse trees. These estimates are then smoothed to 

overcome sparse data limitations. The semantic/syntactic 

parse labels, described above, provide a further advantage in 

terms of smoothing: for cases of undertrained probability 

estimates, the model backs off to independent syntactic and 

semantic probabilities as follows: 

Ps(semlsyn n I semlsynn_ 1 ,semlsyn up) = 

~.( semlsyn n I semlsynn_ l ,seral syn up) 

x P(semlsyn n I semlsynn_ 1 ,sem/syn up) 

+ (1 - ,].(semlsyn n I semlsynn_ ! ,semlsyn up) 

X P(sem n I semup) P(syn n I synn_l,synup) 

where Z is estimated as in (Placeway et al. 1993). Backing 

off to independent semantic and syntactic probabilities 

potentially provides more precise estimates than the usual 

strategy of backing off directly form bigram to unigram 

models. 

3.3 Searching the Parsing Model 

In order to explore the space of possible parses efficiently, 

the parsing model is searched using a decoder based on an 

adaptation of the Earley parsing algorithm (Earley 1970). 

This adaptation, related to that of (Stolcke 1995), involves 

reformulating the Earley algorithm to work with probabilistic 

recursive transition networks rather than with deterministic 

production rules. For details of the decoder, see (Miller 

1996). 

4. Semantic Interpretation 
Both pre-discourse and post-discourse meanings in our 

current system are represented using a simple frame 

representation. Figure 3 shows a sample semantic frame 

corresponding to the parse in Figure 2. 

Air-Transportation 

Show: (Arrival-Time) 

Origin: (City "Boston") 

Destination: (City "Atlanta") 

Figure 3: A sample semantic frame. 

Recall that the semantic interpreter is required to compute 

P(Ms ,T )  P ( W I T  ) .  The conditional word probability 

P(WIT)  has already been computed during the parsing 

phase and need not be recomputed. The current problem, 

then, is to compute the prior probability of meaning Ms and 

parse T occurring together. Our strategy is to embed the 

instructions for constructing Ms directly into parse T o 

resulting in an augmented tree structure. For example, the 

instructions needed to create the frame shown in Figure 3 are: 

1. Create an Air-Transportation frame. 

2. Fill the Show slot with Arrival-Time. 

3. Fill the Origin slot with (City "Boston") 

4. Fill the Destination slot with (City "Atlanta") 

These instructions are attached to the parse tree at the points 

indicated by the circled numbers (see 

Figure 2). The probability P ( M s , T  ) is then simply the 

prior probability of producing the augmented tree structure. 

4.1 Statistical Interpretation Model 

Meanings Ms are decomposed into two parts: the frame type 

FT, and the slot fillers S. The frame type is always attached 

to the topmost node in the augmented parse tree, while the 

slot filling instructions are attached to nodes lower down in 

the tree. Except for the topmost node, all parse nodes are 

required to have some slot filling operation. For nodes that 

do not directly trigger any slot fill operation, the special 

operation null is attached. The probability P(Ms, T) is then: 

P( Ms ,T)  = P( FT, S ,T )=  P( FT) P(T  I FT) P(S I FT, T) .  

Obviously, the prior probabilities P(FT) can be obtained 

directly from the training data. To compute P(T I FT), each 

of the state transitions from the previous parsing model are 

simply rescored conditioned on the frame type. The new 

state transition probabilities are: 

P(state n I staten_ t, stateup, FT) . 

To compute P(S I FT, T) , we make the independence 

assumption that slot filling operations depend only on the 

frame type, the slot operations already performed, and on the 

local parse structure around the operation. This local 

neighborhood consists of the parse node itself, its two left 

siblings, its two right siblings, and its four immediate 

ancestors. Further, the syntactic and semantic components of 

these nodes are considered independently. Under these 

assumptions, the probability of a slot fill operation is: 

P(slot n I FT, Sn_l,semn_ 2 ..... sem n ..... semn+2, 

Synn-2 ..... synn ..... Synn+2, 

semupl ..... semup4, Synupl ..... synup4 ) 

and the probability P(S I FT, T) is simply the product of all 

such slot fill operations in the augmented tree. 

4.2 Training the Semantic Interpretation 
Model 

Transition probabilities are estimated from a training corpus 

of augmented trees. Unlike probabilities in the parsing 

model, there obviously is not sufficient training data to 

estimate slot fill probabilities directly. Instead, these 

probabilities are estimated by statistical decision trees similar 
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Step 2: Select frame and 
fill slot values

Step 3: Optionally copy slot values from previous frames
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•Domain:  ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)
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Evaluation

•Domain:  ATIS travel database queries
•399 training interactions (3813 sentences)

•127 test interactions (826 sentences)

•Comparison: previous state-of-the-art [Miller et al. 1996]

•Metric: accuracy recovering fully correct meanings

•Result:  improved accuracy
•78.4% => 83.7%
• less engineering effort: only annotated final meanings



Varying the Length of a Context Window M

Context Length Accuracy

M=0 45.4

M=1 79.8

M=2 81.0

M=3 82.1

M=4 81.6

M=10 81.4

ATIS Development Set: 



Example Learned Feature Weights

Negative weights:

•Distance features: (1,2,3,...)

Positive weights:

•Copy features: flight, from, to
•Deletion features: (from, from ), 

(nonstop, connect ), 
(during-day, time )



Summary

Solution: 

•Analysis: two-stage approach

• Learn: how to incorporate meaning from the context

Key challenges: 

• Structured input and output, hidden structure not annotated

f

λx.flight(x)∧from(x,NYC) 
 ∧to(x,SEA)

λx.flight(x)∧to(x,SEA) 
  ∧ from(x,NEW)∧ day(x,FRI)

Show me the cheapest?

argmax(λx.flight(x) ∧ from(x,NEW) ∧ to(x,SEA) ∧ day(x,FRI),
λy.cost(y))



The End


