Learning Context-dependent Mappings
from Sentences to Logical Form

Luke Zettlemoyer and Michael Collins

MIT Computer Science and Artificial Intelligence Lab

b

Context-dependent Analysis

Show me flights from New York to Singapore.

Which of those are nonstop?

Show me the cheapest one.

What about connecting?

Context-dependent Analysis

Show me flights from New York to Singapore.
Ax.flight(x) A from(x,NYC) A to(x,SIN)

Which of those are nonstop?

Show me the cheapest one.

What about connecting?

Context-dependent Analysis

Show me flights from New York to Singapore.
Ax.flight(x) A from(x,NYC) A to(x,SIN)

Which of those are nonstop?
Ax.flight(x) A from(x,NYC) A to(x,SIN) A nonstop (x)

Show me the cheapest one.

What about connecting?

Context-dependent Analysis

Show me flights from New York to Singapore.
Ax.flight(x) A from(x,NYC) A to(x,SIN)

Which of those are nonstop?
Ax.flight(x) A from(x,NYC) A to(x,SIN) A nonstop (x)

Show me the cheapest one.
argmax (Ax.flight(x) A from(x,NYC) A to(x,SIN) A nonstop(x),
ANy.cost (y))

What about connecting?

Context-dependent Analysis

Show me flights from New York to Singapore.
Ax.flight(x) A from(x,NYC) A to(x,SIN)

Which of those are nonstop?
Ax.flight(x) A from(x,NYC) A to(x,SIN) A nonstop (x)

Show me the cheapest one.
argmax (Ax.flight(x) A from(x,NYC) A to(x,SIN) A nonstop(x),
ANy.cost (y))

What about connecting?

argmax (Ax.flight(x) A from(x,NYC) A to(x,SIN) A connect (x),
ANy.cost(y))

A Supervised Learning Problem

Training Examples:
sequences of sentences and logical forms

4 —

-
Show me flights from New York to Seattle.

Ax.flight(x) A from(x,NYC) A to(x,SEA)

List ones from Newark on Friday.
Ax.flight(x) A from(x,NEW) A to(x,SEA) A day(x,FRI)

Show me the cheapest.

argmax (hx.flight (x) A from(x,NEW) A to(x,SEA) A day(x,FRI),
ANy.cost (y))

A Supervised Learning Problem

Goal: Find a function f

4)
Ax.flight(x)Afrom(x,NYC)

Atolx,SEA) Show me the cheapest?

Ax.flight(x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

\- J

f

argmax (Ax.flight(x) A from(x,NEW) A to(x,SEA) A day(x,FRI),
ANy.cost(y))

A Supervised Learning Problem

Goal: Find a function f

4 ™
Ax.flight (x)Afrom(x,NYC)

Atolx,SEA) Show me the cheapest?

Ax.flight(x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

\- J

f

argmax (Ax.flight(x) A from(x,NEW) A to(x,SEA) A day(x,FRI),
ANy.cost(y))

Key Challenges:
* Structured input and output (lambda calculus)
* Hidden variables (only annotate final logical forms)

Talk Outline

e Sketch of the Approach
e Context-sensitive Derivations
* A Learning Algorithm

e Evaluation

An Example Analysis

Show me flights from New York to Seattle.
Ax.flight(x) A from(x,NYC) A to(x,SEA)

List ones from Newark on Friday.

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List ones from Newark on Friday.

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List ones from Newark on Friday.

Step |: Context-independent parse

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List ones from Newark on Friday.

N

Ax.!f(x) A from(x,NEW) A day (x,FRI)

Step |: Context-independent parse

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List

ones| from Newark on Friday.

Ax.!

N

AN from(x,NEW) A day (x,FRI)

Step |: Context-independent parse

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List ones from Newark on Friday.

N

Ax.!f(x) A from(x,NEW) A day (x,FRI)

Step |: Context-independent parse

An Example Analysis

Context:

-

Ax.flight (x)Afrom(x,NYC)

ANto (x,SEA)

Current sentence:

List ones from Newark on Friday.

N

Ax.!f(x) A from(x,NEW) A day (x,FRI)

Step |: Context-independent parse

Step 2: Resolve reference

An Example Analysis

Context: Current sentence:
4)
}\f'tgl(jfggg;)/\from(x’zwc) List ones from Newark on Friday.

\ j NS4

| Ax.!f(x) A from(x,NEW) A day (x,FRI)

Ax.flight (x)Ato(x,SEA)

Step |: Context-independent parse

Step 2: Resolve reference

An Example Analysis

Context: Current sentence:
4)
}\f'tgl(jfggg;)/\from(x’zwc) List ones from Newark on Friday.

\ j NS4

| Ax.!f(x) A from(x,NEW) A day (x,FRI)

Ax.flight (x)Ato(x,SEA)

T~

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day(x,FRI)

Step |: Context-independent parse

Step 2: Resolve reference

Talk Outline

e Sketch of Approach

m) « Context-sensitive Derivations
* A Learning Algorithm

e Evaluation

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
*Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
»'Step |: Context-independent parsing
*Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

List

S/N
M. £(x)

Step |: CCG Parsing

flights to Singapore
N (N\N) /NP NP
Ax.flight(x) Ay.-Af.hx.f(x) Ato(x,y) sin
N\N

AMN.Ax.f(x) A to(x,sin)

N
Ax.flight(x) A to(x,sin)

S
Ax.flight(x) A to(x,sin)

Step |: CCG Parsing

List flights to Singapore
S/N N (N\N) /NP NP
NE. £ (x) Ax.flight(x) Ay.-Af.hx.f(x) Ato(x,y) sin
N\N

AMN.Ax.f(x) A to(x,sin)

N
Ax.flight(x) A to(x,sin)

S
Ax.flight(x) A to(x,sin)

List

S/N
M. £(x)

Step |: CCG Parsing

flights to Singapore
N (N\N) /NP NP
Ax.flight(x) Ay.-Af.hx.f(x) Ato(x,y) sin
N\N

AMN.Ax.f(x) A to(x,sin)

N
Ax.flight(x) A to(x,sin)

S
Ax.flight(x) A to(x,sin)

List

S/N
M. £(x)

Step |: CCG Parsing

flights to Singapore
N (N\N) /NP NP
Ax.flight(x) |My-Af.hx.f(x) Ato(x,y) sin
N\N
AMN.Ax.f(x) A to(x,sin)

N
Ax.flight(x) A to(x,sin)

S
Ax.flight(x) A to(x,sin)

List

S/N
M. £(x)

Step |: CCG Parsing

flights to Singapore
N (N\N) /NP NP
Ax.flight(x) Ay.-Af.hx.f(x) Ato(x,y) sin
N\N

AMN.Ax.f(x) A to(x,sin)

N
Ax.flight(x) A to(x,sin)

S
Ax.flight(x) A to(x,sin)

Step |: Referential lexical items

List ones from Newark on Friday.

N

Ax.!f(x) A from(x,NEW) A day (x,FRI)

Step |: Referential lexical items

List ones from Newark on Friday.

N

Ax.!f(x) A from(x,NEW) A day (x,FRI)

First extension:
e Add referential lexical items

ones | N | Ax.!f(x)]

Y2

it NP l e]

Step |: Type-shifting operations

Second extension:
* Add type-shifting operators for elliptical expressions

the cheapest

Step |: Type-shifting operations

Second extension:
* Add type-shifting operators for elliptical expressions

the cheapest

NP/N
Ag.argmin(qg, Ay.cost(y))

Step |: Type-shifting operations

Second extension:
* Add type-shifting operators for elliptical expressions

the cheapest

NP/N
Ag.argmin(qg, Ay.cost(y))

NP
argmin(Ax.!'£f(x), Ay.cost(y))

Step |: Type-shifting operations

Second extension:
* Add type-shifting operators for elliptical expressions

the cheapest

NP/N
Ag.argmin(qg, Ay.cost(y))

NP
argmin(Ax.!'£f(x), Ay.cost(y))

A/B : g => A g(hx.1f(x))
where g is a function with input type <e, t>

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
*Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
»'Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

Step 2: Resolving References

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

For each reference:
* Select an expression from the context
* Substitute into current analysis

Step 2: Selecting from Context

For each logical form in context,
enumerate e and <e, t> type subexpressions:

Context:

s

Ax.flight (x)Afrom(x,NYC)

Ax.flight (x)Ato(x,SEA)

argmax (Ax.flight (x

ANto(x,SEA)

A from(x,NEW) A day (x, FRI)

)AtO (x,SEA)
A from(x,BOS),

Ay.depart (y))

Step 2: Selecting from Context

For each logical form in context,
enumerate e and <e, t> type subexpressions:

Context:

4)
Ax.flight (x)Afrom(x,NYC) —> GF A
ANto(x,SEA)

Ax.flight (x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

argmax (Ax.flight (x)Ato(x,SEA)
A from(x,BOS),

Ay.depart (y))

Step 2: Selecting from Context

For each logical form in context,
enumerate e and <e, t> type subexpressions:

Context:

(x)
x.flight(x)Afrom(x,NYC) —>» GSFEA
ANto (x,SEA) ti\‘\~\

Ax.flight (x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

argmax (Ax.flight (x)Ato(x,SEA)
A from(x,BOS),

Ay.depart (y))

Step 2: Selecting from Context

For each logical form in context,
enumerate e and <e, t> type subexpressions:

Context:

4 N
Ax.flight (x)Afrom(x,NYC)

Ato(x,SEA) §
Ax.flight (x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

argmax (Ax.flight (x)Ato(x,SEA)
A from(x,BOS),

Ay.depart (y))

\ Ax.flight(x)Afrom(x,NYC)Ato(x,SEA)

Step 2: Selecting from Context

For each logical form in context,

enumerate e and <e, t> type subexpressions:

Context:
e N
Ax.flight (x)Afrom(x,NYC) —>» SFEA
ANto(x,SEA)
T~ NYC

Ax.flight (x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

argmax (Ax.flight (x)Ato(x,SEA)
A from(x,BOS),

Ay.depart (y))

\\\“kx.flight(x)Afrom(x,NYC)Ato(x,SEA)

Ax.from(x,NYC) Ax.flight(x) Ax.flight(x)

ANto (x,SEA)

ANto (x,SEA)

ANfrom(x,NYC)

Step 2: Selecting from Context

For each logical form in context,
enumerate e and <e, t> type subexpressions:

Context:
4 N\

Ax.flight (x)Afrom(x,NYC)
Ato (x,SEA) ‘§;::::
Ax.flight (x)Ato(x,SEA)

A from(x,NEW) A day (x, FRI)

argmax (Ax.flight (x)Ato(x,SEA)
A from(x,BOS),

Ay.depart (y))

\\\“kx.flight(x)Afrom(x,NYC)Ato(x,SEA)

Ax.from(x,NYC) Ax.flight(x) Ax.flight(x)

ANto (x,SEA)

Ax.to(x,SEA)

ANto (x,SEA)

Ax.from(x,NYC)

ANfrom(x,NYC)

Ax.flight (x)

Step 2: Resolving References

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

For each reference:
* Select an expression from the context
* Substitute into current analysis

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
*Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
*Step 2: Resolve all references
»'Step 3: Optionally, perform an elaboration

Step 3: Elaboration operations

Show me the latest flight from New York to Seattle.

argmax (Ax.flight(x) A from(x,NYC) A to(x,SEA) ,
Ay.time(y))

on Friday
argmax (Ax.flight(x) A from(x,NYC) A to(x,SEA) A day(x,FRI),
Ay.time(y))

Step 3: Elaboration operations

4) .
argmax (Ax.flight (x) Ato(x,SEA) A on Friday
from(x,NYC),
Ay.time(y))
\ J

Ax.day (x,FRI)

Step 3: Elaboration operations

4) .
argmax (Ax.flight (x) Ato(x,SEA) A on Friday
from(x,NYC),
Ay.time(y))
\ J

Ax.day (x,FRI)

\4

MNf.argmax (Ax.flight (x)Ato(x,SEA) A
from(x,NYC) N £(x),
Ay.time(y))

Step 3: Elaboration operations

4) .
argmax (hx.flight (x) Ato(x,SEA) A on Friday
from(x,NYC),
Ay.time(y))
\ J

Ax.day (x,FRI)

\4

N Jlargmax (Ax.flight (x)Ato(x,SEA) A

from(x,NYC) AN |f(x),
Ay.time(y))

Step 3: Elaboration operations

4) .
argmax (hx.flight (x) Ato(x,SEA) A on Friday
from(x,NYC),
Ay.time(y))
\ J

Ax.day (x,FRI)

\4

N Jlargmax (Ax.flight (x)Ato(x,SEA) A

from(x,NYC) AN |f(x),
Ay.time(y))

\

argmax (Ax.flight(x) A from(x,NYC) A to(x,SEA) A day(x,FRI),
Ay.time(y))

Step 3: Elaboration operations

-

argmax (Mx.flight (x) Ato(x,SEA) A on Friday
from(x,NYC),
Ay.time(y))

NE.

Ax.day (x,FRI)

\4

argmax (Ax.flight (x)Ato(x,SEA) A
from(x,NYC) AN |f(x),
Ay.time(y))

\

argmax (Ax.flight(x) A from(x,NYC) A to(x,SEA) A day(x,FRI),
Ay.time(y))

Possible elaborations:
* Potentially expand any embedded variable
e Can do deletions on elaboration function

Derivations

ka.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ Y, \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Three step process:
*Step |: Context-independent parsing
*Step 2: Resolve all references
*Step 3: Optionally, perform an elaboration

Talk Outline

e Sketch of Approach
e Context-sensitive Derivations

e A Learning Algorithm

e Evaluation

Scoring Derivations

(kx.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ y \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Scoring Derivations

(kx.flight(x)Afrom(x,NYC) List ones from Newark on Friday.

ANto(x,SEA)
_ y \>/

v Ax.!f(x) A from(x,NEW) A day (x, FRI)

Ax.flight (x)Ato(x,SEA) /

Ax.flight(x)Ato(x,SEA) A from(x,NEW) A day (x, FRI)

Weighted linear model:
*Introduce features: f(d)
e Compute scores for derivations: w- f(d)

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

v

Ax.flight (x) Ato (x,SEA)

‘55\5555*‘

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!f(x) AN from(x,NEW) A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

v

Ax.flight (x) Ato (x,SEA)

--~“~5;

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!f(x) AN from(x,NEW) A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

e Distance indicators, for integers (0,1]2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

v

Ax.flight (x) Ato (x,SEA)

‘55\5555*‘

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!f(x) AN from(x,NEW) A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

AxL

flight

(

v

X)ANto(x,SEA)

‘55\5555*‘

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N4

Ax.!f(x) A from(x,NEW)

A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

* Copy indicators, for all predicates {

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

to, }

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

v

Ax.flight (x) Ato (x,SEA)

‘55\5555*‘

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!f(x) AN from(x,NEW) A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

Features for Derivations: /(d)

(\x.flight (x) (x,NYC)

ANto(x,SEA)

\.

~

v

Ax.flight (x) Ato (x,SEA)

--~“~5;

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!F(x) A

from

(x,NEW) A day (x, FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates

{(from, fligh t), l(from, from}, (from, to), }

Features for Derivations: /(d)

KXX.flight(x)Afrom(x,NYC)
ANto(x,SEA)

~N

v

Ax.flight (x) Ato (x,SEA)

‘55\5555*‘

Ax.flight (x)Ato(x,SEA) A from(x,NEW) A day (x,FRI)

List ones from Newark on Friday.

N

Ax.!f(x) AN from(x,NEW) A day (x,FRI)

/

Parsing features: set from Zettlemoyer and Collins (2007)

Context features:

* Distance indicators, for integers (0,1,2,...)

e Copy indicators, for all predicates {r1ignt, from, to,...}

* Deletion indicators, for all pairs of predicates
{(from, fligh t), (from, from), (from, to), }

Inference and Learning

Two computations:

e Best derivation:
d* = arg max w- f(d)

e Best derivation with final logical form z :

d =arg max w-f(d)
ds.t. Ld)=z

We use a beam search algorithm.

Inference and Learning

Two computations:
e Best derivation:

d* = arg max w- f(d)

e Best derivation with final logical form z :

d =arg max w-f(d)
ds.t. Ld)=z

We use a beam search algorithm.

Learning:

e Hidden variable version of the structured perceptron algorithm
[Liang et al., 2006] [Zettlemoyer & Collins, 2007]

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Step |: Check Correctness
e Find best analysis: d* = arg max w- f(d)
e If correct: L(d*) == z;; , go to the Step 3.

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Step |: Check Correctness

e Find best analysis: d* = arg max w- f(d)
e If correct: L(d*) == z;; , go to the Step 3.

Step 3: Update context: Append z;jto C

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Step |: Check Correctness

e Find best analysis: d* = arg max w- f(d)
e If correct: L(d*) == z;; , go to the Step 3.

Step 2: Update Parameters
e Find best correct analysis: &' = arg AW f(d)
e Update parameters:w =w + f(d") — f(d¥)

Step 3: Update context: Append z;jto C

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Step |: Check Correctness

e Find best analysis: d* = arg max w- f(d)
e If correct: L(d*) == z;; , go to the Step 3.

Step 2: Update Parameters

¢ Find best correct analysis{d' =arg max w- f(d)
d s.t. L(d):Z, i

* Update parameters:w = w + f{(d"} — f(d*)
Step 3: Update context: Append z;jto C

Output: Parameters w.

Inputs: Training set {/; | i =1...n} of interactions. Each interaction
I ={(wijzi;) | j =1...n;} is a sequence of sentences and logical forms.
Initial parameters w. Number of iterations T.

Computation:

For t=1...T, i =1...n : (Iterate interactions)
Set C ={} (Reset Context)

For j =1...n;: (Iterate training examples)

Step |: Check Correctness
e Find best analysis: [d* = arg max w-f(d)JJ

d
o If correct: L(d*) == z;;, go to the Step

Step 2: Update Parameters

¢ Find best correct analysis{d' =arg max W'f(d)
ds.t. L(d)=z

* Update parameters:w = w + f{(d')} — f.
Step 3: Update context: Append z;jto C

Output: Parameters w.

Talk Outline

e Sketch of Approach
e Context-sensitive Derivations

* A Learning Algorithm

=)+ Evaluation

Evaluation

e Domain: ATIS travel database queries

* 399 training interactions (3813 sentences)
* |27 test interactions (826 sentences)

e Comparison: previous state-of-the-art [Miller et al. 1996]

* requires full annotation of all syntactic, semantic, and
context-resolution decisions
* decision tree learning

The Miller et al. [1996] Approach

Step |:Semantic parsing Step 2: Select frame and
© fill slot values
ltop
/wh-question
Air-Transportation
arrival . .
Np Show: (Armrival-Time)
flight-constraints s i te M n
e constrain Origin: (City "Boston")
Destination: (City "Atlanta")
departure
vp
fight Jeparture cation Figure 3: A sample semantic frame.
fcorenp lpp pp
time flight departure departure c1ty arrival |ocaé\cuy®
/wh-head /Jaux /det /np-head /comp /vp-hcad Iprep /npr lvp—head /prep /npr
| | |
then dlo the flights that leave from Boston amve in Atlanta

Figure 2: A sample parse tree.

Step 3: Optionally copy slot values from previous frames

Evaluation

e Domain: ATIS travel database queries

* 399 training interactions (3813 sentences)
* |27 test interactions (826 sentences)

e Comparison: previous state-of-the-art [Miller et al. 1996]

e Metric: accuracy recovering fully correct meanings

Evaluation

e Domain: ATIS travel database queries

* 399 training interactions (3813 sentences)
* |27 test interactions (826 sentences)

e Comparison: previous state-of-the-art [Miller et al. 1996]

e Metric: accuracy recovering fully correct meanings

*Result: improved accuracy
©/8.4% => 83.7%
* less engineering effort: only annotated final meanings

Varying the Length of a Context Window M

ATIS Development Set:

Context Length Accuracy
M=0 454
M=1 79.8
M=2 81.0
M=3 82.1
M=4 81.6

M=10 81.4

Example Learned Feature VWeights

Negative weights:
*Distance features: (1,2,3,...)

Positive weights:

* Copy features: f1ight, from, to

*Deletion features: (from, from),
(nonstop, connect),
(during-day, time)

Summary

4)
Ax.flight(x)Afrom(x,NYC)

Atolx, SEA) Show me the cheapest?

Ax.flight(x)Ato(x,SEA)
A from(x,NEW) A day (x, FRI)

\- .

f

argmax (hx.flight (x) A from(x,NEW) A to(x,SEA) A day(x,FRI),
ANy.cost (y))

Key challenges:

e Structured input and output, hidden structure not annotated

Solution:

* Analysis: two-stage approach
* | earn: how to incorporate meaning from the context

The End

