Online Learning of Relaxed CCG Grammars
for Parsing to Logical Form

Luke Zettlemoyer and Michael Collins

MIT Computer Science and Artificial Intelligence Lab

i

CSAIL

Learn Mappings to Logical Form

Given training examples like:

Input: List one way flights to Prague.
Output: Ax.flight (x)A one way (x)A to(x,PRG)

Challenging Learning Problem:

* Derivations (or parses) are not annotated

Extending previous approach: [Zettlemoyer & Collins 2005]

* Learn a lexicon and parameters for a weighted
Combinatory Categorial Grammar (CCGQG)

Challenge

Learning CCG grammars works well for complex, grammatical

sentences:

Input: Show me flights from Newark and New York to San
Francisco or Oakland that are nonstop.

Output: Ax.flight (x) A nonstop (x) A
(from(x,PRG) v from(x,NYC)) A (to(x,SFO) v to(x,0AK))

What about sentences that are common given spontaneous,
unedited input?
Input: Boston to Prague the latest on Friday.
Output: argmax(Ax.from(x,B0OS) A to(x,PRG) A day(x,FRI),
Ay.time(y))

This talk is about an approach that works for both cases.

Outline

Background
Relaxed parsing rules
Online learning algorithm

Evaluation

Background

* Combinatory Categorial Grammar (CCG)
* Weighted CCGs

* Learning lexical entries: GENLEX

CCG Lexicon

Words Category
flights N : Ax.flight (x)

to (N\N) /NP : Ax.Af.Ay.f(x) A to(y,x)
Prague NP : PRG

New York city NP : NYC

Parsing Rules (Combinators)

Application
« X/Y : f Y : a =>
° Y : a X\Y r =>

Composition
« X/Y : £
e Z\Y : £

Y/7Z : g =>
X\Y : g =>

Additional rules:
* Type Raising

* Crossed Composition

X/7
X\7Z

CCG Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
Af. £ Ax.flight(x) Ay.Af.Ax.f(y)Ato(x,y) PRG

N\N

Af.Ax.f(x) Ato(x,PRG)

N
Ax.flight (x) Ato(x, PRG)

S
Ax.flight (x) Ato(x, PRG)

Weighted CCG

Given a log-linear model with a CCG lexicon A, a
feature vector f, and weights w.

* The best parse is:

y¥ = argmax w- f(x,)
y

Where we consider all possible parses y for the sentence x
given the lexicon A.

Lexical Generation

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight(x)A to(x,PRG)

Output Lexicon

Words Category
Show me S/N : Af.f
flights N : Ax.flight (x)
to (N\N) /NP : Ax.Af.Ay.f(x) A to(y,x)

Prague NP : PRG

GENLEX: Substrings cross Categories

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: Ax.flight (x)A to (x,PRG)

Output Lexicon

All possible substrings: Categories created by rules that
Show trigger on the logical form:
X N : Ax.flight (x)
Show me (S\NP) /NP : Ax.Ay.to(y,x)

Show me flights

NAN) /NP : Ay.Af.Ax. ..
Show me flights to () Y B

[Zettlemoyer & Collins 2005]

Challenge Revisited

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday
S/NP NP/N N N\N N\N N\N

Will not parse:

Boston to Prague the latest on Friday
NP N\N NP/N NAN

Relaxed Parsing Rules

Two changes:

o Ad
re

d application and composition rules that
ax word order

° Ad

d type shifting rules to recover missing

words

These rules significantly relax the grammar

* Introduce features to count the number of
times each new rule is used in a parse

Review: Application

Disharmonic Application

* Reverse the direction of the principal category:

X\Y : f Y : a => X : f(a)
Y : a X/Y : £ => X : f(a)
flights one way
N N/N
Ax.flight (x) Af.Ax.f (x) None way (x)
N

Ax.flight (x) Aone way (x)

Review: Composition

Y/7Z : g => X/7Z : Ax.f(g(x))
X\Y : £ => X\Z : Ax.f(g(x))

Disharmonic Composition

* Reverse the direction of the principal category:

X\Y : f Y/7Z : g => X/7Z : Ax.f(g(x))
Y\Z : g X/Y : £ => X\Z : Ax.f(g(x))
to Prague the latest flight
Af.Ax. f(:g\ANto (x,PRG) Af.argmax (Ax Ng(/}:) JAx.time (x)) Ax. fl}.\]ght (x)
NP\N

Af.argmax (Ax.f(x)Ato(x,PRG), Ax.time (x))

N
argmax (Ax.flight(x) nto(x,PRG) , Ax.time (x))

Missing content words

Insert missing semantic content

e NP : ¢ => N\N : AMf.Ax.f(x) A p(x,cC)

flights Boston to Prague
N NP N\N
Ax.flight (x) BOS Af.Ax. f(x) Ato(x,PRG)
N\N

Af.Ax.f(x) Afrom(x,BOS)

N
Ax.flight(x) Afrom(x,BOS)

N
Ax.flight(x) Afrom(x,BOS) Ato(x,PRG)

Missing content-free words

Bypass missing nouns

e N\N : £f => N : f(Ax.true)

Northwest Air to Prague
N/N N\N
Af.Ax. £ (x)Nairline (x,NWA) Af.Ax. f (x) A to(x,PRG)
N

Ax. to(x,PRG)

N
Ax.airline(x,NWA) A to(x,PRG)

A Complete Parse

Boston to Prague the latest on Friday
NP N\N NP/N N\N
BOS Af .Ax.f(x)Ato(x,PRG) Af.argmax(Ax.f(x), Ax.time(x)) Af.Ax.f(x)rday(x,FRI)
N\N
Af.Ax. £ (x)Afrom(x,BOS) N

Ax.day(x,FRI)
N\N

Af . Ax.f(x)Afrom(x,BOS) Ato(x,PRG)

NP\N
Af.argmax(Ax.f (x)Afrom(x,BOS)Ato(x,PRG) , Ax.time (x))

N
argmax (Ax. from(x,BOS) Ato(x,PRG) Aday(x,FRI), Ax.time (x))

A Learning Algorithm

The approach is:
* Online: processes data set one example at a time

 Able to Learn Structure: selects a subset of the
lexical entries from GENLEX

* Error Driven: uses perceptron-style parameter

updates

* Relaxed: learns how much to penalize the use of

the relaxed parsing rules

Inputs: Training set {(x, z,) | i=1...n} of sentences and logical forms.
Initial lexicon A. Initial parameters w. Number of iterations T.

Computation: For¢t=1...T, i =1...n:
Step |: Check Correctness
e Let y*=argmax w- f(x,,y)
o If L(y*) =z, gyo to the next example
Step 2: Lexical Generation
* Set A=A U GENLEX(x,z,)
* Let y=arg max w-f(x,y)
* Define A, to be the lexical entries in y*
* Set lexiconto A= A U A,
Step 3: Update Parameters
° Lety' =argmax w- f(x,y)
I L) =z,
o Set w=w+ f(x,9)- f(x,y)
Output: Lexicon A and parameters w.

Related Work

Semantic parsing with:

* Inductive Logic Prog. [Zelle, Mooney 1996; Thompson, Mooney 2002]
* Machine Translation [Papineni et al. 1997; Wong, Mooney 2006, 2007]
* Probabilistic CFG Parsing [Miller et. al, 1996; Ge, Mooney 2006]
* Support Vector Mach. [Kate, Mooney 2006; Nguyen et al. 2006]
CCG: [Steedman 1996, 2000]
* Log-linear models [Clark, Curran 2003]
¢ Multi-modal CCG [Baldridge 2002]
* Wide coverage semantics [Bos et al. 2004]

* CCG Bank [Hockenmaier 2003]

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006
* Learns a probabilistic push-down automaton with EM
* |s integrated with speech recognition

A-WASP: Wong & Mooney 2007

* Builds a synchronous CFG with statistical machine
translation techniques

* Easily applied to different languages
Zettlemoyer and Collins 2005

* Uses GENLEX with maximum likelihood batch training
and stricter grammar

Two Natural Language Interfaces

ATIS (travel planning)
— Manually-transcribed speech queries
— 4500 training examples
— 500 example development set
— 500 test examples
Geo880 (geography)
— Edited sentences
— 600 training examples
— 280 test examples

Evaluation Metrics

Precision, Recall, and F-measure for:
» Completely correct logical forms
* Attribute / value partial credit
Ax.flight (x) A from(x,BOS) A to(x,PRG)

is represented as:
{from = BOS, to = PRG }

Two-Pass Parsing

Simple method to improve recall:

* For each test sentence that can not be parsed:
* Reparse with word skipping
* Every skipped word adds a constant penalty

* Output the highest scoring new parse

We report results with and without this two-pass
parsing strategy

ATIS Test Set

Exact Match Accuracy:

Precision Recall Fl
Single-Pass 90.61 81.92 86.05
Two-Pass 85.75 84.60 85.16

ATIS Test Set

Partial Credit Accuracy:

Precision Recall Fl
Single-Pass 96.76 86.89 91.56
Two-Pass 95.11 96.71 95.9
He & Young 2006 --- --- 90.3

Geo880 Test Set

Exact Match Accuracy:

Precision Recall Fl
Single-Pass 95.49 83.20 88.93
Two-Pass 91.63 86.07 88.76
Zettlemoyer & Collins 2005 96.25 79.29 86.95
Wong & Money 2007 93.72 80.00 86.31

ATIS Development Set

Exact Match Accuracy:

Precision Recall Fl
Full online method 87.26 74.44 80.35
Without features for new rules 70.33 42.45 52.95
Without relaxed word order rules 82.81 63.98 72.19
Without missing word rules 77.31 56.94 65.58

Summary

We presented an algorithm that:
* Learns the lexicon and parameters for a weighted CCG

* Introduces operators to parse relaxed word order

and recover missing words
* Uses online, error-driven updates

* Improves parsing accuracy for spontaneous, unedited

inputs

* Maintains the advantages of using a detailed grammatical

formalism

The End

Thanks

