
A Visual Medium for Programmatic
Control of Interactive Applications

Luke S. Zettlemoyer and Robert St. Amant
Department of Computer Science
North Carolina State University

EGRC-CSC Box 7534
Raleigh, NC 27695-7534

{lszettle | stamant}@eos.ncsu.edu

ABSTRACT
The VisMap system provides for “visual manipulation” of
arbitrary off-the-shelf applications, through an application’s
graphical user interface. VisMap’s API-independent control
has advantages for tasks that can benefit from direct access
to the functions of the user interface. We describe the
design goals and architecture of the system, and we discuss
two applications, a user-controlled visual scripting program
and an autonomous solitaire-playing program, which
together demonstrate some of the capabilities and
limitations of the approach.

Keywords
Interaction techniques, agents, demonstrational interfaces,
development tools

INTRODUCTION
In modern software environments, interactive applications
often control one another in an arrangement that can lead to
increased modularity, improved software reuse, and more
coherence in the user interface, among other benefits.
Rather than building special-purpose, standalone utilities, a
developer can extend an application’s functionality by way
of its application programming interface, or API. This
approach is followed by many commercial applications
such as Netscape Navigator.
Unfortunately, current techniques for the programmatic
control of interactive applications have subtle
shortcomings. Suppose that I have devised a set of
application-independent methods for computer-assisted
tutoring for word processing, methods that depend on close
interaction (perhaps at the mouse gesture level) with the
user. As a developer, I face a number of obstacles. I must
either limit my development to a single application or be
forced to develop several versions of my software, one for

the API of each different application—sometimes for each
different version of a single application. I must hope that
the developers of each API have had the foresight to
support the types of interaction I require. I must hope that
the functions in each API are appropriate for the
abstractions that will appear in my extensions to the user
interface of the application. Even if my project appears
trivial, from a user interface design viewpoint, a variety of
such technical issues may bring it to a halt.
The problem lies with the mismatch between the
functionality of an application as seen through its user
interface and as seen through its API. The functionality of
an interactive application is most naturally defined by its
user interface: its capabilities have been carefully
developed to offer specific coverage of tasks, to act at an
appropriate level of abstraction, to accommodate the
cognitive, perceptual, and physical abilities of the user. The
API, on the other hand, is much more closely tied to the
software architecture, with only an indirect relationship to
the user interface. For some tasks, this indirection rules out
the most appropriate means of managing interaction with
the user. In some situations, we want to be able to control
an interactive application directly, through the same
medium that users rely on—its user interface.
We have developed a system, called VisMap (for "visual
manipulation"), that supports the control of an application
through its graphical user interface, bypassing its API.
VisMap takes its input from the screen display, runs image
processing algorithms over its contents to build a structured
representation of interface objects, and passes this
representation to a controller program. Responses from the
controller are output by VisMap as mouse and keyboard
gestures that control the application. VisMap allows a
broad range of interaction with an application in this way,
through the same medium as the user.
At first glance this approach may seem a profligate waste of
processing power. Consider, however, that much of the time
the processor would otherwise sit idle; much of the
additional processing cost is hidden. Visual manipulation
has potential advantages as well. For various reasons some

.

applications lack an API; others allow only limited control
through their API. In some cases (e.g. online tools for
layout and task analysis) an API cannot substitute for direct
access to the events and appearance of the interface. In
general we hope that VisMap will contribute to the
development of systems for programming by
demonstration, improved macro recorders, wizards, help
systems, tutorials, advisory systems, visual scripting
systems, and agent-based systems—opportunities to extend
off-the-shelf interactive systems that one cannot modify
directly as a developer.
VisMap is a relatively new system, and thus we have not yet
built applications in all these areas. Instead, we describe
two applications that give the flavor of the approach,
demonstrating its feasibility and some of its generality. The
first, VisScript, gives users a simple facility for running
visual scripts. Though as yet a simple prototype, VisScript
promises greater flexibility and coverage than existing
macro definition utilities. The second application,
VisSolitaire, allows an artificial intelligence planning
system to play solitaire. As a problem domain, solitaire
poses few conceptual difficulties; rather, the task highlights
VisMap's ability to control an application that has non-
standard interface controls and no API. In both
applications, VisMap is responsible for low-level
interaction with the application, while the relevant domain
knowledge is provided by easily interchanged controller
modules.
Our work benefits the CHI community in two ways. From a
developer’s perspective, the direct benefit is a flexible
complement to API-based control of interactive
applications. Imagine for example building a tutorial or
walkthrough for an arbitrary suite of applications, including
tasks in the operating system, and being able to work at a
consistent level of abstraction and with the same vocabulary
across all the diverse components of the system. A designer
need not be constrained by software architecture limitations
when tasks can be accomplished through the user interface.
The potential benefit for users is equally great, if less direct.
The potential applications for VisMap, as described above,
can extend the functionality and coherence of direct
manipulation interfaces. Our early experience with the
system and its applications has shown the approach to have
considerable promise.

DESIGN GOALS
VisMap acts as an intermediary between a controlling
application and an application to be controlled, which we
will call the “controller” and the “application” respectively.
Informally, VisMap provides the controller with the eyes
and hands (the sensors and effectors) necessary to manage
the application. The user may even act in the role of a
controller, when appropriate. An earlier version of VisMap
[13] has given us a good deal of insight into the design
goals for this kind of system. Three sets of goals arise from
the need to interact with applications, controllers, and users.

An enormous effort goes into the development of
application user interfaces [6], toward the implicit goal of
matching the abilities and limitations of human users. In
interacting with applications through such interfaces, the
ideal system accommodates and exploits this bias toward
human-like perception, action, and cognition wherever
possible.
1. Sensors: At the “physical” level, the system must

process input from the joint human-computer system.
This includes monitoring the mouse and keyboard as
well as distinguishing visual and temporal patterns in
the contents of the screen.

2. Effectors: At the same level, the system must be able to
control an application through its user interface, via
mouse and keyboard gestures.

3. Information processing: The system must be able to
recognize the patterns in its input stream as constituting
specific types of information, and to combine these
patterns into known structures and relationships.

A second set of goals arises from the need to support
controller programs. From a controller’s perspective, the
ideal system has these properties:
4. Coverage: It must provide the functions necessary to

control a variety of applications, but in an application-
independent manner.

5. Extensibility: It must support extensions, possibly
application-dependent, beyond the basic coverage
functions.

6. Representational flexibility: It must support a means of
adjusting the amount and level of detail—setting the
appropriate level of abstraction—in the information
exchanged.

Finally, the ideal system cannot neglect the user, who is
interacting with an otherwise direct manipulation
environment. The system adds an element of autonomy to
the environment: it may in some cases take actions not
explicitly specified by the user. While this can be managed
without subverting the benefits of direct manipulation [11],
the ideal system must at a minimum address these issues:
7. User control: The system must respond continuously to

user control, when it is available.
8. User awareness: It must be clear at all times whether

the system is taking autonomous action in the interface.
The system we present in the next section does not meet all
of these goals; it does however approach our ideals in its
design. Even an ideal system, however, will encounter
several limitations. First, the benefit of API-independence
is offset by dependence on an application’s user interface. If
an interface supports extreme variations in look and feel
layered over the same functionality, this can result in less
generality for a visual system rather than more. Second, a
purely visual system will have no access to the internal data

structures of an application. Others have demonstrated [9]
that a good deal of information can be derived directly from
the screen, information that would be difficult to gain
otherwise, but not all useful information appears on the
screen. Third, a visual system has no choice but to work
through the interface. Even if a task might be better carried
out behind the scenes, without the user’s knowledge, this
option is not available. These implications are unavoidable
for a visual system and limit the range of its application.

SYSTEM DESIGN
We have described the general architecture of VisMap
elsewhere [14]. Here we give a brief recap and discuss how
it meets the design goals identified in the last section.
VisMap is divided into three separate modules: the event
management module, or EMM, the image processing
module, or IPM, and the internal state representation
module, or ISRM. These three modules provide all of
VisMap’s processing. VisMap’s architecture and methods
of communication can be seen in Figure 1.
The EMM handles events as both a sensor and an effector.
It manipulates the operating system’s event queue, able
both to observe user-initiated events as they pass through
the queue and to insert its own events into the queue. In its
sensor role the EMM supports the first design goal by
maintaining an internal variable-length queue of user-
generated events for processing in later stages. In its
effector role the EMM meets the second design goal: its
event insertions are indistinguishable from user-generated
events. The EMM can be used to select icons, click buttons,
pull down menus, turn on radio buttons, and carry out all
other standard operations we have experimented with.
These are implemented as sequences of low-level events:
move-mouse, mouse-down, mouse-up, key-down, and key-

up. Some useful higher-level abstractions, such as click-
button, which requires a sequence of these more primitive
events, have been implemented, but the issue of deciding on
an appropriate level of abstraction currently remains open.
The IPM rounds out support for the first design goal and
partially meets the third, in a conventional sequence of
image processing stages [1]. The IPM begins with a two-
dimensional image of the screen. In the segmentation stage,
the module breaks the image into pixel groups by color.
The white background of a list box, for example, would end
up in a single group. In the feature computation stage the
module attaches features to each group that describe its
internal structure and its relationship with other groups.
Figure gives an example that shows how the “area” feature
of an pixel group would be computed. Note that these
computations are data-driven, bottom-up—there is no
guarantee that a feature will be useful for the interpretation
of a given group. In the interpretation stage, features are
iteratively combined via rules to build structures that
correspond to “meaningful” objects. In contrast to the
second stage, interpretation is top-down. Rules are
hypotheses that must be verified in their identification of
objects in the interface. Figure shows an interpretation rule
for identifying a list box.
The ISRM is responsible for integrating the information
provided by the IPM and the EMM over time. It maintains
a representation of the temporal and spatial changes
observable through the screen buffer. This information is
then available to controllers so they can observe changes in
their applications. The ISRM completes our coverage of the
sensor/information processing design goals.

Figure 1. VisMap General Architecture and Communication

VisMap

Operating System

VisSolitaire

VisScript

Controllers

Solitaire

File Managers

Visible
Applications

Sockets
Messaging

OS Hooks—
Messaging

Event
Messaging

Image Processing

Event Management

Internal State

M
od

ul
es

In pursuing the first set of design goals we have in effect
defined a simple artificial user, a kind of programmable
user model. A system limited to our description so far,
however, is incomplete: it is entirely independent of an
operating environment. This issue is addressed by the
second set of design goals, which require that we flesh out
the feature computation and interpretation rule libraries of
the IPM until they have sufficient coverage of functionality
in a real user interface (Microsoft Windows in our current
implementation.)
The IPM contains in total 29 feature computation functions
and 80 interpretation rules of the types shown in Figure 2
and Figure 3. A sample of the IPM’s processing is shown in
Figure 4. The top picture shows the original interface, the
bottom picture all of the widgets that the IPM has
identified. Given the performance of its libraries across a
variety of applications, VisMap can claim good coverage
(the fourth design goal) in interacting with the user
interface.
The fifth design goal requires that a controller be able to
extend VisMap’s capabilities to handle special-purpose
processing. For example, an application may include
specialized controls that are not commonly found in other
domains and are not be available thorough any APIs.
Server-side image maps displayed in web browsers are a
common example. Visual representations of interactive
widgets are not accessible to the browser or the local
system; processing is handled remotely by the server. To a
VisMap controller, however, a button graphic with the
appropriate appearance, however generated, is treated no
differently than an actual widget in a local application.
The sixth design goal entails giving a controller the ability
to tailor its interaction with VisMap to an appropriate level
of abstraction. For example, should every mouse movement
event, every mouse up and mouse down, be passed to the
controller? Perhaps common abstractions, such as
selection? The current implementation of VisMap is
relatively inflexible in this regard. The level of
representation is programmable, but cannot be varied at run
time. Controllers connect to VisMap through standard TCP

sockets to communicate with a fixed set of commands and
responses. The interaction, though limited, supports the
necessary range of communication for our prototype
controllers.
To summarize VisMap’s coverage of the design goals up to
this point, the sensor/effector design goals are met. VisMap
can reliably recognize all the user interface controls we
have worked with: buttons, scroll bars (including the scroll
box, scroll arrows, and background regions), list boxes,
menu items, check boxes, radio buttons and application
windows. VisMap also meets the fourth and fifth design
goals by providing a basic set of functions, which can be
extended at the cost of a nontrivial programming effort. The
sixth design goal of variable abstraction is not met.
User interaction issues, touched on in the final two design
goals, raise a number of unsolved problems. VisMap
essentially adds another player to the user interface
environment. Depending on the controller, a VisMap-based
system may exhibit a high degree of autonomy or none at
all. (Examples of these two extremes are described in the
sections below.) Mixed-initiative interaction with an
automated system raises a number of elementary HCI
questions: Will users know where they are in the interaction

Operation GetArea()
 MaxPossibleNumPixels = GetWidth() * GetHeight()
 Area = ActualNumPixels() /MaxPossibleNumPixels
Return Area

Figure 2. A feature computation of area

If there exists a downArrow()
 That is containedIn() a raisedButton()
 That is toTheRightOf() a rectangularTextArea()
 Which is recessed() and has a width()

 greater than its height()
Then we have found a list box
Figure 3. An interpretation rule to identify a list box

Figure 4. IPM results

process? Will t
can do, where
cannot be answ
considered in t
controller and a
In VisMap’s cu
these and rela
experience wit
that its autono
visual cues tha
the user, and t
turned off.
VisMap comp
efficiency has
resolutions and
of execution.
screen resolutio
with 128 megab
Notably, only
Windows opera
that VisMap is
system-indepen
Windows emu
machine.) Ano
conventions fo
list boxes, and
contradict our
of VisMap is t
user interface i
environment, t
interface, is in

VisSolitaire
Building a sys
without the int
to waste time a
than it might in
based systems,
driven approa
benefit from
applications, to
constantly incr
software. Man
however, never

We believe that a contributing factor is the difficulty in
developing a tight integration with existing applications at
the user interface. Solitaire represents applications that pose
obstacles to such an integration:
• The application uses non-standard icons in its interface,

which means that a controller cannot simply ask for,
say, the positions of the windows or buttons in the
interface.

S
Re
6

8

10

11

Figure 5 s
creen
solution

Sample Execution
Time

40x480 2.32 seconds

00x600 3.72 seconds

24x768 5.85 seconds

52x864 7.81 seconds

. Screen Processing Execution Time
hey know how they arrived there, what they
 they can go from there? These questions
ered for VisMap in isolation, but must be

he context of its integration with a specific
pplication.
rrent state of development, we must sidestep
ted questions until we have gained more
h its use. VisMap does nevertheless ensure
mous actions are accompanied by strong
t control has temporarily shifted away from
hat its activity can easily be interrupted and

rises 2,800 lines of C++ code. Runtime
 been considered for different screen
 effort is being put into increasing the speed
Current sample running time for various
ns on a 300 megahertz Pentium II processor
ytes of RAM are given in Figure 5.
about 3% of the system is specific to the
ting system. This lends support to our claim

 largely platform-independent and operating
dent (e.g., VisMap should easily port to a
lator running on a Macintosh or a Unix
ther 40% is specific to Windows interface
r visual display: the appearance of buttons,
other controls. This latter point may seem to
earlier claim; however, one of the strengths
hat it separates operating system issues from
ssues. A port to the Macintosh and its native
o test the degree of dependence on the user
planning.

tem that allows a computer to play solitaire
ervention of a human user—in other words,
ll by itself—has more serious underpinnings
itially appear. A great deal of work in agent-
 demonstrational interfaces, and other AI-
ches to improving user interaction could

a stronger connection to commercial
 gain leverage from market pressures that

ease the power and flexibility of interactive
y (even most) interactive AI systems,
 leave the research laboratory.

• The application has no API, which means that
conventional programmatic control is not possible in
any case.

• The internals of the application are not available to us
as developers; we cannot simply rewrite it to
accommodate external control.

• Assistance in the application can reasonably take the
form of direct action, rather than advice to the user
(e.g., “In order to accomplish your task, follow steps X,
Y, and Z.”)

VisSolitaire, an exemplar of a VisMap-based system, has
three components. The first component is the application,
an unmodified version of Microsoft Solitaire. VisMap is the
second component, responsible for the visual and physical
aspects of the game, such as interpreting layout and screen
icons, and moving the mouse. The third component is an
AI planning system (UCPOP [8]) which handles the
strategy of solitaire through an abstract game-playing
representation.
The integration of these components is straightforward.
The application generates an initial game state, displayed as
card images the screen. For the initial move and each
thereafter, VisMap identifies the cards and groups them in
their layout, the stock, waste, tableau, and foundation piles.
This process occurs through the segmentation, feature
computation, and interpretation stages described above; it
leads to a screen-coordinate representation of all cards in
play. From the Cartesian representation VisMap constructs
a symbolic abstraction and passes it to the planner. The
planner processes the game state, selects a move, and
passes it back to VisMap to be executed.
The planner maintains most of the relevant knowledge
about the problem, represented in a set of plan operators, or
a domain. The planner analyzes the state representation
supplied by VisMap and constructs a plan to satisfy the top-

(:operator tableau-to-foundation
 :parameters (?tn ?tr ?s ?fn ?fr)
 :precondition (and (tableau-last ?tn ?tr ?s)
 (foundation-last ?fn ?fr ?s)
 (previous-rank ?tr ?fr))
 :effect (tableau-to-foundation ?tn ?tr ?s ?fn ?fr))

Figure 6. Solitaire operator

level goal of making a move. In actuality, because we are
not especially concerned with solitaire-playing strategies,
there is very little planning involved. A sample operator, of
ten in total, is shown in Figure 6. Parameters in the operator
shown contain numerical identifiers for the tableau and
foundation piles and the suits and ranks of the cards. If the
precondition of this operator holds in the current
environment, the effect specifies that the card of suit s and
rank tr should be moved from tableau pile tn to foundation
pile fn, to end up on the card with suit s and rank fr. The
top-level goal for the planner, in all initial states, is simply
the disjunction of the effects of all its operators.
In this implementation, the planner returns operators that
are specified down to the level of commands to press and
release the mouse button and to move the mouse from one
location to another (though these locations are in an abstract
representation independent of screen coordinates.) We
could easily have arranged for interaction to occur at a
higher level of abstraction: "Drag 4S to 5H," for example,
ignoring the lowest level of mouse event processing, or
even "Move 4S to 5H," abstracting away the relationship
between mouse gestures and card movement altogether. Our
decision was to retain a high degree of detail at the planner
level, rather than adding what could be considered domain
knowledge to VisMap. A sample interaction sequence
between VisMap and VisSolitaire is shown in Figure 8. An
important issue remains open: how the level of abstraction
of the interaction can be modified, ideally on the fly, for
conceptual clarity and efficiency.
VisSolitaire plays a reasonable game of solitaire, from the
starting deal to a win or loss. The planner maintains a
minimal amount of state information between moves,

including a record of the sequence of its moves. On
encountering the same cards after working through the
stock, with no intervening moves that have changed the
tableau or foundation, the system stops with the loss.
VisSolitaire is implemented in Harlequin Lispworks and
communicates with VisMap via sockets. The VisMap
feature recognition rules required some time and effort to
build, enough to motivate future work on support tools for
their development.

VisScript
Researchers on both sides of the direct manipulation/
autonomous agents debate recognize the importance of
visual scripting to the future of direct manipulation
interfaces. Shneiderman calls graphical macro tools his
favorite project to advance general computing [12]. Myers
describes a wide range of benefits to incorporating scripting
into the interface [6]: the automation of repetitive tasks, the
addition of useful levels of abstraction, the delegation of

VisSolitaire COMMAND:
 (GET-CARDS-LAYOUT)
VisMap RESPONSE:
 (((8 :HEARTS) 2 1)
 ((:ACE :CLUBS) 5 1)
 ((6 :DIAMONDS) 1 2)
 ((5 :SPADES) 1 2)
 …
 ((9 :CLUBS) 7 2))

Figure 8. Sample interaction sequence

Figure 7. VisSolitaire playing solitaire

responsibility for low-level activities. Unfortunately, a
visual scripting tool based on current technology, even if it
were able to provide all these benefits, would still suffer a
number of drawbacks:
• Application-dependence: Some scripting tools can only

be used within a single application (e.g. macro
definition in Microsoft Word.)

• System-dependence: Some tools can exist only within a
specialized interface framework (such as Garnet or
Amulet [7].)

• Interoperability: Existing scripting tools that can move
between the interfaces of different applications, as well
as the operating system, can access only a limited
subset of the available functionality.

Another necessary element of a scripting tool is user
control—users should be able to write scripts and execute
them on demand. We have designed these considerations
into VisScript, an early prototype for executing scripts
through the user interface. VisScript is an attempt to
provide a tool with which users can simplify their
interactions with standard pre-existing user interfaces.
While VisScript is not a general purpose visual macro
system, we have taken important first steps towards
reaching the above goals.

VisScript allows users to enter commands and add them to
a script to be executed. The current list of commands
includes move-mouse, singe-click, double-click, and move-
mouse-to-text. These commands are combined in Figure 9,
which shows a script that allows the system to open a file
manager for the top level directory. During execution, the
progression through the script is entirely linear; VisScript
does not incorporate programming constructs to control its
flow. The commands are sent to VisMap to be executed one
at a time and the user can watch as the are performed.
VisScript is implemented in Java and communicates with
VisMap through TCP sockets. VisScript can run on the
same machine as VisMap or remotely. Working with
VisMap as a foundation, we were able to develop VisScript
in less than two days of programming effort. We consider
this evidence of the generality of VisMap and its potential
for building other useful tools.

RELATED WORK
A recent paper describes an earlier prototype of the VisMap
system, along with an application in usability testing [14].
The system presented at that time had a number of
limitations that are addressed in the current version. The
most significant step forward is conceptual: the earlier
system presented evidence that a visual manipulation
system could be built; in this paper we have presented our
perspective on how a visual manipulation system should be
built. More concretely, unlike the earlier system, the current
system can run fast enough to handle interaction with users,
although not at high rates of speed. Its interpretation rules
encompass a broad range of patterns that appear in the user
interface, not simply limited to standard controls. It
supports multiple simultaneous controllers, for a planned
application in cooperative computing environments.
The VisMap effort draws on three main areas of research:
user interface agents, programming by demonstration, and
programmable user models.
Lieberman outlines a number of areas relevant to the
VisMap approach [4]. His discussion emphasizes the
importance of granularity of event protocols, styles of
interaction with the user, and parallelism considerations.
Event granularity determines the level of abstraction at
which an agent interacts with an interface. For example,
should mouse movements be included in the information
exchanged? If not all mouse movements (possibly a very
large number, depending on the sampling rate), then which
ones are important? An interaction style describes the way
in which an agent interacts with the user. That is, it may not
always be sufficient for an agent to execute commands in an
interface; it may be necessary to communicate directly with
the user. This can force a different interaction style, for
example, on an agent designed mainly for direct
manipulation interactions. Issues of parallelism can enter
the picture when the agent and the user both try to
manipulate the same interface object. System performance
can also be affected by the activities of an agent. As

Figure 9. VisScript executing a simple script

discussed earlier, VisMap does not address these issues in
detail. For its current applications, it works at a system
event granularity, though its controllers operate at a higher
level of abstraction. As yet it has no mechanisms for
communicating directly with the user or managing parallel
activities.
Potter's TRIGGERS system [9] is an early example of an
approach similar to ours. TRIGGERS is an example of a
system for programming by demonstration, one of only a
few examples that work with off-the-shelf software.
TRIGGERS performs pattern matching on pixels on the
computer screen in order to infer information that is
otherwise unavailable to an external agent. A “trigger” is a
condition/action pair. Triggers are defined for such tasks as
surrounding a text field with a rounded rectangle in a
drawing program, shortening lines so that they intersect an
arbitrary shape, and converting text to a bold typeface. The
user defines a trigger by stepping through a sequence of
actions in an application, adding annotations for the
TRIGGERS system when appropriate. Once a set of triggers
have been defined, the user can activate them, iteratively
and exhaustively, to carry out their actions. From TRIGGERS
VisMap adopts the notion that the screen itself is a powerful
source of information for an agent, if it can be properly
interpreted.
The third area, programmable user models, has contributed
only indirectly to VisMap’s development. In Young’s
original description [13], PUMs were engineering models,
not to be executed directly. The intention was to provide
designers with an engineering model that could give
predictions at an early stage in user interface development.
This approach has shown significant promise, especially in
the recent work of Kieras and Meyer [3]. A natural
extension, which VisMap pursues, is the construction of
executable PUMs that can be applied directly to
implemented systems as well as those in the design stage.
The architecture of VisMap has no strong foundation in
cognitive theory, but could accommodate such a foundation
in an appropriate controller.

CONCLUSION
We view our work as facilitating technology. Many of the
most interesting extensions of graphical user interfaces have
been demonstrated in isolated research systems, and have
failed to make the transition to commercially available
software. We believe that the general layer VisMap
provides will allow such work (e.g. in visual scripting [7],
demonstrational interfaces [6], mixed-initiative interfaces
[10], and agents that interact directly with users [5]) to
reach the mainstream.

ACKNOWLEDGMENTS
We wish to thank Derrick Foley, who contributed
significantly to the development of character recognition
rules in VisSolitaire. Support for this work was provided by
North Carolina State University and the William R. Kenan
Institute for Engineering, Technology, and Science.

REFERENCES
1. Gentner, D., and Nielsen, J. The Anti-Mac Interface,

Communications of the ACM, 39:8 (August, 1996), 70-
82.

2. Gonzales, R.C. and Woods, R.W. Digital Image
Processing. Addison-Wesley, Reading, MA. 1992.

3. Kieras, D. and Meyer, D. E. An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction.

4. Lieberman, H. Integrating User Interface Agents with
Conventional Applications. Proceedings of Intelligent
User Interfaces ’98. (San Francisco, CA, January,
1998.) ACM Press, 39-46.

5. Maes, P. Agents that Reduce Work and Information
Overload. Communications of the ACM, 37:7, (July
1994), 31-40.

6. Myers, B. Demonstrational Interfaces: A Step Beyond
Direct Manipulation, Watch What I Do: Programming
by Demonstration, Allen Cypher, et. al., eds. MIT Press
Cambridge, MA. 1993. pp. 485-512.

7. Myers, B. Scripting Graphical Applications by
Demonstration. Proceedings of CHI ’98. (Los Angeles,
CA, April, 1998.) 534-541.

8. Penberthy, J. and Weld, D. UCPOP: A sound, complete,
partial-order planner for ADL. Proceedings of the Third
International Conference on Knowledge Representation
and Reasoning. 1992. Morgan Kaufmann, 103-114.

9. Potter, R. Triggers: Guiding Automation with Pixels to
Achieve Data Access. In Watch What I Do:
Programming by Demonstration. MIT Press,
Cambridge, MA. 1993.

10. Rich, C. and Sidner C. L. Adding a Collaborative Agent
to Graphical User Interfaces, Proceedings of UIST’96,
(1996), 21-30.

11. Shneiderman, B. Direct Manipulation for
comprehensible, predictable, and controllable user
interfaces. Proceedings of Intelligent User Interface’97.
(Orlando, FL, January, 1997.) ACM Press, 33-39.

12. Shneiderman, B., and Maes, P. Debate: Direct
Manipulation vs. Interface Agents. Interactions, 4:6
(November and December, 1997), 42-61.

13. Young, R. M., Green, T. R. G., and Simon, T.
Programmable User Models for Predictive Evaluation of
Interface Designs. Proceedings of CHI ’89. 15-19.

14. Zettlemoyer, L. S., St. Amant, R., and Dulberg, M. S.
Application control through the user interface.
Proceedings of Intelligent User Interfaces ’99.
(Redondo Beach, Los Angeles, CA, January, 1999.) To
appear

	ABSTRACT
	Keywords

	INTRODUCTION
	DESIGN GOALS
	SYSTEM DESIGN
	VisSolitaire
	VisScript

	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

