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ABSTRACT 
The VisMap system provides for “visual manipulation” of 
arbitrary off-the-shelf applications, through an application’s 
graphical user interface. VisMap’s API-independent control 
has advantages for tasks that can benefit from direct access 
to the functions of the user interface. We describe the 
design goals and architecture of the system, and we discuss 
two applications, a user-controlled visual scripting program 
and an autonomous solitaire-playing program, which 
together demonstrate some of the capabilities and 
limitations of the approach. 
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INTRODUCTION 
In modern software environments, interactive applications 
often control one another in an arrangement that can lead to 
increased modularity, improved software reuse, and more 
coherence in the user interface, among other benefits. 
Rather than building special-purpose, standalone utilities, a 
developer can extend an application’s functionality by way 
of its application programming interface, or API. This 
approach is followed by many commercial applications 
such as Netscape Navigator. 
Unfortunately, current techniques for the programmatic 
control of interactive applications have subtle 
shortcomings. Suppose that I have devised a set of 
application-independent methods for computer-assisted 
tutoring for word processing, methods that depend on close 
interaction (perhaps at the mouse gesture level) with the 
user. As a developer, I face a number of obstacles. I must 
either limit my development to a single application or be 
forced to develop several versions of my software, one for 

the API of each different application—sometimes for each 
different version of a single application. I must hope that 
the developers of each API have had the foresight to 
support the types of interaction I require. I must hope that 
the functions in each API are appropriate for the 
abstractions that will appear in my extensions to the user 
interface of the application. Even if my project appears 
trivial, from a user interface design viewpoint, a variety of 
such technical issues may bring it to a halt. 
The problem lies with the mismatch between the 
functionality of an application as seen through its user 
interface and as seen through its API. The functionality of 
an interactive application is most naturally defined by its 
user interface: its capabilities have been carefully 
developed to offer specific coverage of tasks, to act at an 
appropriate level of abstraction, to accommodate the 
cognitive, perceptual, and physical abilities of the user. The 
API, on the other hand, is much more closely tied to the 
software architecture, with only an indirect relationship to 
the user interface. For some tasks, this indirection rules out 
the most appropriate means of managing interaction with 
the user. In some situations, we want to be able to control 
an interactive application directly, through the same 
medium that users rely on—its user interface. 
We have developed a system, called VisMap (for "visual 
manipulation"), that supports the control of an application 
through its graphical user interface, bypassing its API. 
VisMap takes its input from the screen display, runs image 
processing algorithms over its contents to build a structured 
representation of interface objects, and passes this 
representation to a controller program. Responses from the 
controller are output by VisMap as mouse and keyboard 
gestures that control the application. VisMap allows a 
broad range of interaction with an application in this way, 
through the same medium as the user. 
At first glance this approach may seem a profligate waste of 
processing power. Consider, however, that much of the time 
the processor would otherwise sit idle; much of the 
additional processing cost is hidden. Visual manipulation 
has potential advantages as well. For various reasons some 
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applications lack an API; others allow only limited control 
through their API. In some cases (e.g. online tools for 
layout and task analysis) an API cannot substitute for direct 
access to the events and appearance of the interface. In 
general we hope that VisMap will contribute to the 
development of systems for programming by 
demonstration, improved macro recorders, wizards, help 
systems, tutorials, advisory systems, visual scripting 
systems, and agent-based systems—opportunities to extend 
off-the-shelf interactive systems that one cannot modify 
directly as a developer. 
VisMap is a relatively new system, and thus we have not yet 
built applications in all these areas. Instead, we describe 
two applications that give the flavor of the approach, 
demonstrating its feasibility and some of its generality. The 
first, VisScript, gives users a simple facility for running 
visual scripts. Though as yet a simple prototype, VisScript 
promises greater flexibility and coverage than existing 
macro definition utilities. The second application, 
VisSolitaire, allows an artificial intelligence planning 
system to play solitaire. As a problem domain, solitaire 
poses few conceptual difficulties; rather, the task highlights 
VisMap's ability to control an application that has non-
standard interface controls and no API. In both 
applications, VisMap is responsible for low-level 
interaction with the application, while the relevant domain 
knowledge is provided by easily interchanged controller 
modules. 
Our work benefits the CHI community in two ways. From a 
developer’s perspective, the direct benefit is a flexible 
complement to API-based control of interactive 
applications. Imagine for example building a tutorial or 
walkthrough for an arbitrary suite of applications, including 
tasks in the operating system, and being able to work at a 
consistent level of abstraction and with the same vocabulary 
across all the diverse components of the system. A designer 
need not be constrained by software architecture limitations 
when tasks can be accomplished through the user interface. 
The potential benefit for users is equally great, if less direct. 
The potential applications for VisMap, as described above, 
can extend the functionality and coherence of direct 
manipulation interfaces. Our early experience with the 
system and its applications has shown the approach to have 
considerable promise. 

DESIGN GOALS 
VisMap acts as an intermediary between a controlling 
application and an application to be controlled, which we 
will call the “controller” and the “application” respectively. 
Informally, VisMap provides the controller with the eyes 
and hands (the sensors and effectors) necessary to manage 
the application. The user may even act in the role of a 
controller, when appropriate. An earlier version of VisMap 
[13] has given us a good deal of insight into the design 
goals for this kind of system. Three sets of goals arise from 
the need to interact with applications, controllers, and users. 

An enormous effort goes into the development of 
application user interfaces [6], toward the implicit goal of 
matching the abilities and limitations of human users. In 
interacting with applications through such interfaces, the 
ideal system accommodates and exploits this bias toward 
human-like perception, action, and cognition wherever 
possible. 
1. Sensors: At the “physical” level, the system must 

process input from the joint human-computer system. 
This includes monitoring the mouse and keyboard as 
well as distinguishing visual and temporal patterns in 
the contents of the screen. 

2. Effectors: At the same level, the system must be able to 
control an application through its user interface, via 
mouse and keyboard gestures. 

3. Information processing: The system must be able to 
recognize the patterns in its input stream as constituting 
specific types of information, and to combine these 
patterns into known structures and relationships. 

A second set of goals arises from the need to support 
controller programs. From a controller’s perspective, the 
ideal system has these properties: 
4. Coverage: It must provide the functions necessary to 

control a variety of applications, but in an application-
independent manner. 

5. Extensibility: It must support extensions, possibly 
application-dependent, beyond the basic coverage 
functions. 

6. Representational flexibility: It must support a means of 
adjusting the amount and level of detail—setting the 
appropriate level of abstraction—in the information 
exchanged. 

Finally, the ideal system cannot neglect the user, who is 
interacting with an otherwise direct manipulation 
environment. The system adds an element of autonomy to 
the environment: it may in some cases take actions not 
explicitly specified by the user. While this can be managed 
without subverting the benefits of direct manipulation [11], 
the ideal system must at a minimum address these issues: 
7. User control: The system must respond continuously to 

user control, when it is available. 
8. User awareness: It must be clear at all times whether 

the system is taking autonomous action in the interface. 
The system we present in the next section does not meet all 
of these goals; it does however approach our ideals in its 
design. Even an ideal system, however, will encounter 
several limitations. First, the benefit of API-independence 
is offset by dependence on an application’s user interface. If 
an interface supports extreme variations in look and feel 
layered over the same functionality, this can result in less 
generality for a visual system rather than more. Second, a 
purely visual system will have no access to the internal data 



structures of an application. Others have demonstrated [9] 
that a good deal of information can be derived directly from 
the screen, information that would be difficult to gain 
otherwise, but not all useful information appears on the 
screen. Third, a visual system has no choice but to work 
through the interface. Even if a task might be better carried 
out behind the scenes, without the user’s knowledge, this 
option is not available. These implications are unavoidable 
for a visual system and limit the range of its application.  

SYSTEM DESIGN 
We have described the general architecture of VisMap 
elsewhere [14]. Here we give a brief recap and discuss how 
it meets the design goals identified in the last section. 
VisMap is divided into three separate modules: the event 
management module, or EMM, the image processing 
module, or IPM, and the internal state representation 
module, or ISRM.  These three modules provide all of 
VisMap’s processing. VisMap’s architecture and methods 
of communication can be seen in Figure 1. 
The EMM handles events as both a sensor and an effector.  
It manipulates the operating system’s event queue, able 
both to observe user-initiated events as they pass through 
the queue and to insert its own events into the queue. In its 
sensor role the EMM supports the first design goal by 
maintaining an internal variable-length queue of user-
generated events for processing in later stages. In its 
effector role the EMM meets the second design goal: its 
event insertions are indistinguishable from user-generated 
events. The EMM can be used to select icons, click buttons, 
pull down menus, turn on radio buttons, and carry out all 
other standard operations we have experimented with. 
These are implemented as sequences of low-level events: 
move-mouse, mouse-down, mouse-up, key-down, and key-

up. Some useful higher-level abstractions, such as click-
button, which requires a sequence of these more primitive 
events, have been implemented, but the issue of deciding on 
an appropriate level of abstraction currently remains open. 
The IPM rounds out support for the first design goal and 
partially meets the third, in a conventional sequence of 
image processing stages [1]. The IPM begins with a two-
dimensional image of the screen. In the segmentation stage, 
the module breaks the image into pixel groups by color. 
The white background of a list box, for example, would end 
up in a single group. In the feature computation stage the 
module attaches features to each group that describe its 
internal structure and its relationship with other groups. 
Figure  gives an example that shows how the “area” feature 
of an pixel group would be computed. Note that these 
computations are data-driven, bottom-up—there is no 
guarantee that a feature will be useful for the interpretation 
of a given group. In the interpretation stage, features are 
iteratively combined via rules to build structures that 
correspond to “meaningful” objects. In contrast to the 
second stage, interpretation is top-down. Rules are 
hypotheses that must be verified in their identification of 
objects in the interface. Figure  shows an interpretation rule 
for identifying a list box. 
The ISRM is responsible for integrating the information 
provided by the IPM and the EMM over time. It maintains 
a representation of the temporal and spatial changes 
observable through the screen buffer. This information is 
then available to controllers so they can observe changes in 
their applications. The ISRM completes our coverage of the 
sensor/information processing design goals. 
 

 

Figure 1. VisMap General Architecture and Communication 
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In pursuing the first set of design goals we have in effect 
defined a simple artificial user, a kind of programmable 
user model. A system limited to our description so far, 
however, is incomplete: it is entirely independent of an 
operating environment. This issue is addressed by the 
second set of design goals, which require that we flesh out 
the feature computation and interpretation rule libraries of 
the IPM until they have sufficient coverage of functionality 
in a real user interface (Microsoft Windows in our current 
implementation.) 
The IPM contains in total 29 feature computation functions 
and 80 interpretation rules of the types shown in Figure 2 
and Figure 3. A sample of the IPM’s processing is shown in 
Figure 4. The top picture shows the original interface, the 
bottom picture all of the widgets that the IPM has 
identified. Given the performance of its libraries across a 
variety of applications, VisMap can claim good coverage 
(the fourth design goal) in interacting with the user 
interface. 
The fifth design goal requires that a controller be able to 
extend VisMap’s capabilities to handle special-purpose 
processing. For example, an application may include 
specialized controls that are not commonly found in other 
domains and are not be available thorough any APIs. 
Server-side image maps displayed in web browsers are a 
common example. Visual representations of interactive 
widgets are not accessible to the browser  or the local 
system; processing is handled remotely by the server.  To a 
VisMap controller, however, a button graphic with the 
appropriate appearance, however generated, is treated no 
differently than an actual widget in a local application. 
The sixth design goal entails giving a controller the ability 
to tailor its interaction with VisMap to an appropriate level 
of abstraction. For example, should every mouse movement 
event, every mouse up and mouse down, be passed to the 
controller? Perhaps common abstractions, such as 
selection? The current implementation of VisMap is 
relatively inflexible in this regard. The level of 
representation is programmable, but cannot be varied at run 
time. Controllers connect to VisMap through standard TCP 

sockets to communicate with a fixed set of commands and 
responses. The interaction, though limited, supports the 
necessary range of communication for our prototype 
controllers. 
To summarize VisMap’s coverage of the design goals up to 
this point, the sensor/effector design goals are met. VisMap 
can reliably recognize all the user interface controls we 
have worked with: buttons, scroll bars (including the scroll 
box, scroll arrows, and background regions), list boxes, 
menu items, check boxes, radio buttons and application 
windows. VisMap also meets the fourth and fifth design 
goals by providing a basic set of functions, which can be 
extended at the cost of a nontrivial programming effort. The 
sixth design goal of variable abstraction is not met. 
User interaction issues, touched on in the final two design 
goals, raise a number of unsolved problems. VisMap 
essentially adds another player to the user interface 
environment. Depending on the controller, a VisMap-based 
system may exhibit a high degree of autonomy or none at 
all. (Examples of these two extremes are described in the 
sections below.) Mixed-initiative interaction with an 
automated system raises a number of elementary HCI 
questions: Will users know where they are in the interaction 

Operation GetArea() 
      MaxPossibleNumPixels =  GetWidth() * GetHeight() 
      Area = ActualNumPixels() /MaxPossibleNumPixels 
Return Area 

Figure 2. A feature computation of area 

 
If there exists a downArrow() 
        That is containedIn() a raisedButton() 
        That is toTheRightOf() a rectangularTextArea() 
        Which is recessed() and has a width()  

              greater than its height() 
Then we have found a list box 
Figure 3. An interpretation rule to identify a list box 
 
Figure 4. IPM results 
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We believe that a contributing factor is the difficulty in 
developing a tight integration with existing applications at 
the user interface. Solitaire represents applications that pose 
obstacles to such an integration: 
• The application uses non-standard icons in its interface, 

which means that a controller cannot simply ask for, 
say, the positions of the windows or buttons in the 
interface. 
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• The application has no API, which means that 
conventional programmatic control is not possible in 
any case. 

• The internals of the application are not available to us 
as developers; we cannot simply rewrite it to 
accommodate external control. 

• Assistance in the application can reasonably take the 
form of direct action, rather than advice to the user 
(e.g., “In order to accomplish your task, follow steps X, 
Y, and Z.”) 

VisSolitaire, an exemplar of a VisMap-based system, has 
three components.  The first component is the application, 
an unmodified version of Microsoft Solitaire. VisMap is the 
second component, responsible for the visual and physical 
aspects of the game, such as interpreting layout and screen 
icons, and moving the mouse.  The third component is an 
AI planning system (UCPOP [8]) which handles the 
strategy of solitaire through an abstract game-playing 
representation. 
The integration of these components is straightforward.  
The application generates an initial game state, displayed as 
card images the screen. For the initial move and each 
thereafter, VisMap identifies the cards and groups them in 
their layout, the stock, waste, tableau, and foundation piles. 
This process occurs through the segmentation, feature 
computation, and interpretation stages described above; it 
leads to a screen-coordinate representation of all cards in 
play. From the Cartesian representation VisMap constructs 
a symbolic abstraction and passes it to the planner. The 
planner processes the game state, selects a move, and 
passes it back to VisMap to be executed. 
The planner maintains most of the relevant knowledge 
about the problem, represented in a set of plan operators, or 
a domain. The planner analyzes the state representation 
supplied by VisMap and constructs a plan to satisfy the top-

(:operator tableau-to-foundation 
   :parameters (?tn ?tr ?s ?fn ?fr) 
   :precondition  (and (tableau-last ?tn ?tr ?s) 
  (foundation-last ?fn ?fr ?s) 
                (previous-rank ?tr ?fr)) 
   :effect  (tableau-to-foundation ?tn ?tr ?s ?fn ?fr)) 
 

Figure 6. Solitaire operator 



level goal of making a move. In actuality, because we are 
not especially concerned with solitaire-playing strategies, 
there is very little planning involved. A sample operator, of 
ten in total, is shown in Figure 6. Parameters in the operator 
shown contain numerical identifiers for the tableau and 
foundation piles and the suits and ranks of the cards. If the 
precondition of this operator holds in the current 
environment, the effect specifies that the card of suit s and 
rank tr should be moved from tableau pile tn to foundation 
pile fn, to end up on the card with suit s and rank fr. The 
top-level goal for the planner, in all initial states, is simply 
the disjunction of the effects of all its operators. 
In this implementation, the planner returns operators that 
are specified down to the level of commands to press and 
release the mouse button and to move the mouse from one 
location to another (though these locations are in an abstract 
representation independent of screen coordinates.) We 
could easily have arranged for interaction to occur at a 
higher level of abstraction: "Drag 4S to 5H," for example, 
ignoring the lowest level of mouse event processing, or 
even "Move 4S to 5H," abstracting away the relationship 
between mouse gestures and card movement altogether. Our 
decision was to retain a high degree of detail at the planner 
level, rather than adding what could be considered domain 
knowledge to VisMap. A sample interaction sequence 
between VisMap and VisSolitaire is shown in Figure 8. An 
important issue remains open: how the level of abstraction 
of the interaction can be modified, ideally on the fly, for 
conceptual clarity and efficiency. 
VisSolitaire plays a reasonable game of solitaire, from the 
starting deal to a win or loss. The planner maintains a 
minimal amount of state information between moves, 

including a record of the sequence of its moves. On 
encountering the same cards after working through the 
stock, with no intervening moves that have changed the 
tableau or foundation, the system stops with the loss. 
VisSolitaire is implemented in Harlequin Lispworks and 
communicates with VisMap via sockets.  The VisMap 
feature recognition rules required some time and effort to 
build, enough to motivate future work on support tools for 
their development. 

VisScript 
Researchers on both sides of the direct manipulation/ 
autonomous agents debate recognize the importance of 
visual scripting to the future of direct manipulation 
interfaces. Shneiderman calls graphical macro tools his 
favorite project to advance general computing [12]. Myers 
describes a wide range of benefits to incorporating scripting 
into the interface [6]: the automation of repetitive tasks, the 
addition of useful levels of abstraction, the delegation of 

VisSolitaire COMMAND: 
 (GET-CARDS-LAYOUT) 
VisMap RESPONSE: 
 (((8 :HEARTS) 2 1) 
    ((:ACE :CLUBS) 5 1) 
  ((6 :DIAMONDS) 1 2) 
  ((5 :SPADES) 1 2) 
 … 
 ((9 :CLUBS) 7 2)) 

Figure 8.  Sample interaction sequence 

Figure 7. VisSolitaire playing solitaire 



responsibility for low-level activities. Unfortunately, a 
visual scripting tool based on current technology, even if it 
were able to provide all these benefits, would still suffer a 
number of drawbacks: 
• Application-dependence: Some scripting tools can only 

be used within a single application (e.g. macro 
definition in Microsoft Word.) 

• System-dependence: Some tools can exist only within a 
specialized interface framework (such as Garnet or 
Amulet [7].) 

• Interoperability: Existing scripting tools that can move 
between the interfaces of different applications, as well 
as the operating system, can access only a limited 
subset of the available functionality. 

Another necessary element of a scripting tool is user 
control—users should be able to write scripts and execute 
them on demand. We have designed these considerations 
into VisScript, an early prototype for executing scripts 
through the user interface. VisScript is an attempt to 
provide a tool with which users can simplify their 
interactions with standard pre-existing user interfaces. 
While VisScript is not a general purpose visual macro 
system, we have taken important first steps towards 
reaching the above goals.  

VisScript allows users to enter commands and add them to 
a script to be executed. The current list of commands 
includes move-mouse, singe-click, double-click, and move-
mouse-to-text. These commands are combined in Figure 9, 
which shows a script that allows the system to open a file 
manager for the top level directory. During execution, the 
progression through the script is entirely linear; VisScript 
does not incorporate programming constructs to control its 
flow. The commands are sent to VisMap to be executed one 
at a time and the user can watch as the are performed. 
VisScript is implemented in Java and communicates with 
VisMap through TCP sockets. VisScript can run on the 
same machine as VisMap or remotely. Working with 
VisMap as a foundation, we were able to develop VisScript 
in less than two days of programming effort. We consider 
this evidence of the generality of VisMap and its potential 
for building other useful tools. 

RELATED WORK 
A recent paper describes an earlier prototype of the VisMap 
system, along with an application in usability testing [14]. 
The system presented at that time had a number of 
limitations that are addressed in the current version. The 
most significant step forward is conceptual: the earlier 
system presented evidence that a visual manipulation 
system could be built; in this paper we have presented our 
perspective on how a visual manipulation system should be 
built. More concretely, unlike the earlier system, the current 
system can run fast enough to handle interaction with users, 
although not at high rates of speed. Its interpretation rules 
encompass a broad range of patterns that appear in the user 
interface, not simply limited to standard controls. It 
supports multiple simultaneous controllers, for a planned 
application in cooperative computing environments. 
The VisMap effort draws on three main areas of research: 
user interface agents, programming by demonstration, and 
programmable user models.  
Lieberman outlines a number of areas relevant to the 
VisMap approach [4]. His discussion emphasizes the 
importance of granularity of event protocols, styles of 
interaction with the user, and parallelism considerations. 
Event granularity determines the level of abstraction at 
which an agent interacts with an interface. For example, 
should mouse movements be included in the information 
exchanged? If not all mouse movements (possibly a very 
large number, depending on the sampling rate), then which 
ones are important? An interaction style describes the way 
in which an agent interacts with the user. That is, it may not 
always be sufficient for an agent to execute commands in an 
interface; it may be necessary to communicate directly with 
the user. This can force a different interaction style, for 
example, on an agent designed mainly for direct 
manipulation interactions. Issues of parallelism can enter 
the picture when the agent and the user both try to 
manipulate the same interface object. System performance 
can also be affected by the activities of an agent. As 

Figure 9. VisScript executing a simple script 



discussed earlier, VisMap does not address these issues in 
detail. For its current applications, it works at a system 
event granularity, though its controllers operate at a higher 
level of abstraction. As yet it has no mechanisms for 
communicating directly with the user or managing parallel 
activities. 
Potter's TRIGGERS system [9] is an early example of an 
approach similar to ours. TRIGGERS is an example of a 
system for programming by demonstration, one of only a 
few examples that work with off-the-shelf software. 
TRIGGERS performs pattern matching on pixels on the 
computer screen in order to infer information that is 
otherwise unavailable to an external agent. A “trigger” is a 
condition/action pair. Triggers are defined for such tasks as 
surrounding a text field with a rounded rectangle in a 
drawing program, shortening lines so that they intersect an 
arbitrary shape, and converting text to a bold typeface. The 
user defines a trigger by stepping through a sequence of 
actions in an application, adding annotations for the 
TRIGGERS system when appropriate. Once a set of triggers 
have been defined, the user can activate them, iteratively 
and exhaustively, to carry out their actions. From TRIGGERS 
VisMap adopts the notion that the screen itself is a powerful 
source of information for an agent, if it can be properly 
interpreted. 
The third area, programmable user models, has contributed 
only indirectly to VisMap’s development. In Young’s 
original description [13], PUMs were engineering models, 
not to be executed directly. The intention was to provide 
designers with an engineering model that could give 
predictions at an early stage in user interface development. 
This approach has shown significant promise, especially in 
the recent work of Kieras and Meyer [3]. A natural 
extension, which VisMap pursues, is the construction of 
executable PUMs that can be applied directly to 
implemented systems as well as those in the design stage. 
The architecture of VisMap has no strong foundation in 
cognitive theory, but could accommodate such a foundation 
in an appropriate controller. 

CONCLUSION 
We view our work as facilitating technology. Many of the 
most interesting extensions of graphical user interfaces have 
been demonstrated in isolated research systems, and have 
failed to make the transition to commercially available 
software. We believe that the general layer VisMap 
provides will allow such work (e.g. in visual scripting [7], 
demonstrational interfaces [6], mixed-initiative interfaces 
[10], and agents that interact directly with users [5]) to 
reach the mainstream. 
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