
IBOTS: Agent Control Through the User Interface

Luke S. Zettlemoyer, Robert St. Amant, Martin S. Dulberg
Department of Computer Science
North Carolina State University

EGRC-CSC Box 7534
Raleigh, NC 27695-7534

{ lszettle 1 stamant 1 msdulber}@eos.ncsu.edu

ABSTRACT

This paper describes an ibot, a specialized software agent
that exists in the environment of the user interface. Such an
agent interacts with applications through the same medium
as a human user. Its sensors process screen contents and
mouse/keyboard events to monitor the user’s actions and
the responses of the environment, while its effecters can
generate such events for its own contributions to the
interaction. We describe the architecture of our agent and

* its algorithms for image processing, event management, and
state representation. We illustrate the use of the agent with
a small feasibility study in the area of software logging;
results are promising for future progress.

KEYWORDS
Agents, intelligent assistants, user interface

INTRODUCTION

Agents that collaborate with users in an interactive software
environment are becoming increasingly common. An agent
can act as a personal assistant to the user, helping to solve
difficult or unfamiliar problems. The agent’s contributions
take the form of making suggestions, exploring and
demonstrating alternatives, critiquing user decisions, and so
forth--in the ideal case, all the activities we might associate
with an intelligent human assistant.

Commercial interactive software applications have begun
to provide sophisticated application programmer interfaces
(APIs) for agents in the user interface. While this is a step
in the right direction, conventional techniques have subtle
shortcomings. Introductions to programming user interface
agents usually open with some variation on this: “In order
to implement an agent for your application.. .” This simple
beginning contains several unstated assumptions.

. You are the developer of the software for which you
would like to build an agent. Without being able to

Pertnission to make digital or hard topics of all or part of this work for

personal or classroom LW is granted witl~ut fez provided that copies

arc not made or distributed for prolit or commercinl advantage and that

topics bear this notice and the full citation on the first page. TO copy

otherwise. to republish, to post on servers or to redistribute to lists,

requires prior specific pcrmi.rsion anJ:or a fee.

IUI 99 Redondo Beach CA USA
Copyright ACM 1999 l-581 13-098~8/99/01...$5.00

modify and recompile the application, your ability to
add functionality is somewhat limited.

. Your agent’s actions will be limited to a single
application. Interoperability between applications,
however, is one of the most highly-touted advantages
of modern interactive software; an agent might
reasonably be expected to help users cope with the
potential complexities.

. You have foreseen the uses for which your agent will
be needed. That is, your agent’s design and
functionality must be compatible with the existing
application; if the necessary hooks are missing, the
application or API may need modification.

As others have recognized, not all of these assumptions will
hold in practice. Lieberman, for example, stresses the need
to attach agents to conventional applications while
minimizing the advanced planning required of the
program’s developer [3]. Our goals are largely inspired by
his work in integrating user interface agents into
conventional applications, Our approach demonstrates
significant progress toward this goal, in the form of a
prototype agent that can access off-the-shelf applications
through the user interface, with no reliance on the foresight
of application developers.

In the long term, we hope to provide users with agents that
work across applications, that have access to all the
functionality the users themselves can reach, and that can
work with off-the-shelf applications. Our ideal agent, in
principle, will act just as a human assistant might.
Figuratively speaking, it will pull the keyboard and mouse
over in front of itself, type or mouse a sequence of
commands to show the user a possible solution or to carry
out some task on its own, and then return control.

To do this an agent needs access to what the user sees and
what the user is able to do. Our approach involves the
notion of “external” user interface agents, agents that
operate outside and independently of any given application,
effectively as if we were to replace the human user with a
software assistant in the user interface. By analogy to
Etzioni and Weld’s softbots, we call this type of agent an

31

ibot. In our implementation, an ibot’s sensors are image
processing algorithms that run over the frame buffer
contents--processing exactly what a human user sees--and
routines for reading the system event queue. Its effecters
are routines for inserting events in the system event queue
so that its intentions can be conveyed to the interface, in
the same way the commands of a human user would be. The
ibot agent maintains a simple internal model of this
environment that it can reason and plan about. The result is
an agent that interacts with an application, in both input and
output, through the same medium as the user.

An eventual goal for our ibot research is an agent that
automatically builds a representation of the visible user
interface (learning if necessary), observes the user’s actions
and modifications to the information visible in the interface,
and provides the kind of intelligent assistance described
above. We have made significant early progress toward this
goal, in that the pieces (sensors, effecters, internal model-
building routines) are in place. To simplify our proof of
concept, we have arranged for the interaction of our
prototype with applications to occur off-line, without the
user in the loop. We expect that in the near future we will
consider issues involving more robust real-time agent
interaction.

We demonstrate the effectiveness of the ibot approach with
a proof-of-concept application in the area of software
logging. An ibot agent records the actions of the user in
solving a specific problem using an off-the-shelf
application. It plays back the trace offline, analyzing
patterns from a usability perspective. The goal of our
analysis is to identify inefficiencies, to suggest
improvements to the interface or to sequences of
interactions.

In the remainder of this paper we describe the architecture
of the current prototype, the domain-independent image
processing techniques that act as the system’s sensors, the
mouse and keyboard actions that act as the system’s
effecters, and the internal model the agent maintains of its
environment. We show how these components mesh in the
context of the logging application and discuss its potential
strengths and limitations as a practical tool.

RELATED WORK
The ibot effort draws on three areas of research: user
interface agents, programming by demonstration (PBD), and
programmable user models (PUMS).

Lieberman outlines a number of areas relevant to our
approach. His discussion emphasizes the importance of
granularity of event protocols, styles of interaction with the
user, and parallelism considerations. Event granularity
determines the level of abstraction at which an agent
interacts with an interface. For example, should mouse
movements be included in the information exchanged? If
not all mouse movements (possibly a very large number,
depending on the sampling rate), then which ones are

important? An interaction style describes the way in which
an agent interacts with the user. That is, it may not always
be sufficient for an agent to execute commands in an
interface; it may be necessary to communicate directly with
the user. This can force a different interaction style, for
example, on an agent designed mainly for direct
manipulation interactions. Issues of parallelism can enter
the picture when the agent and the user both try to
manipulate the same interface object. System performance
can also be affected by the activities of an agent. Our
current system is too immature to have considered these
issues in detail. It works at a system event granularity,
though it can use inference to reach a higher level of
abstraction in some cases. As yet it has no mechanisms for
communicating directly with the user or managing parallel
activities.

POtkr’S TRIGGERS system [4] is an early example of an
approach similar to ours. TRIGGERS performs pattern
matching on pixels on the computer screen in order to infer
information that is otherwise unavailable to an external
agent. A “trigger” is a condition/action pair. Triggers are
defined for such tasks as surrounding a text field with a
rounded rectangle in a drawing program, shortening lines so
that they intersect an arbitrary shape, and converting text to
a bold typeface. The user defines a trigger by stepping
through a sequence of actions in an application, adding
annotations for the TRIGGERS system when appropriate.
Once a set of triggers have been defined, the user can
activate them, iteratively and exhaustively, to carry out their
actions. From TRIGGERS we adopt the notion that the screen
itself is a powerful source of information for an agent, if it
can be properly interpreted.

A PUM is an engineering tool for interface designers [5,2]. It
simulates a user, to some appropriate degree of accuracy, in
order to provide a designer with feedback before more
extensive (and expensive) usability testing. Our agent can
be seen as a very limited form of PUM. Its sensors and
effecters interact with an interface in the same way as a
human user, although the models behind the interactions are
not realistic models of human motor control, perception, or
cognition. These, however, are natural extensions of the
approach, and are under current consideration.

IBOT ARCHITECTURE
Our agent architecture is designed to mimic the interaction
of a human user with one or more software applications.
Leaving aside visual interpretation, possibilities for
interaction are very limited: the user can make a few
stylized gestures with the mouse and press various keys on
the keyboard, watching the screen to see the effects of these
actions. The architecture provides sensors and effecters at
the same point of interaction as the human user.

Figure 1 shows the architecture and how it is layered on top
of the operating system. Hooks are placed into the
operating system that retrieve the information needed to
interact with any executing application. The agent’s low-

32

Figure 1 System Architecture and IBOT agents

level interactions with the operating system gives the
appearance of direct interaction with application interfaces.

The architecture is divided into three separate modules: the
image processing module (IPM), the event management
module (EMM) and the internal state representation module
(ISRM). Each gathers information from the other modules or
the operating system to complete its specified tasks.

The three-module design very roughly models the basic
human facilities that are brought into play during
interaction with a user interface. The image processing
module corresponds to the eyes of a user, with the ability to
observe (though not necessarily interpret) visual cues on the
screen. The event management module manipulates the
system event queue to simulate the range of interactions a
user can perform with a keyboard or mouse. Finally, the
internal state representation is the system’s simple
equivalent of a mental model of objects in the interface.

Image Processing Module
Through a set of domain-independent image processing
algorithms, the image processing module generates
information about the contents of the screen, including
visual identification of user interface widgets. Inference for
this identification follows a conventional three-stage
process, which starts by examining the contents of the
screen buffer at a low-level pixel representation and
finishes with a description of the high level user interface
components.

The process begins with a set of pixel colors and
coordinates. Pixels are grouped according to screen
location and color, forming pixel groups. These pixel
groups provide information through operators, which are
used to describe the visual properties of the screen buffer.
Finally we apply a set of heuristics that use the pixel group

operators to determine exactly where the user interface
components reside on the screen.

The initial screen capture is managed via operating system
calls. The resulting array of pixel color values is then fed
through the IPM, which carries out a process of
segmentation, representation, and description. These three
stages are an adaptation of a general three-step image
processing process [11.

Segmentation
Segmentation applies a pixel grouping algorithm to pixels
to distinguish groups by their differing colors, as shown in
Figure 2. The purpose of this algorithm is to group together
all pixels that are adjacent to each other and have the same
color.

While Receiving Pixel Colors
If Pixel is already grouped and

group color = pixel color
return /* no change needed */

If Pixel is already grouped
and group color != pixel color

remove pixel from previous group
IfPixel is ungrouped then

Create new pixelGroup containing pixel
For each &neighbor ofpixel

If neighbor is in a pixelGroup and neighbors
pixelGroup color = the new pixelGroup color

Merge pixelGroup with Neighbor pixelGroup
EndFor

EndWhile

Figure 2 Segmentation algorithm

The result is that for any two pixels p and q, p and q belong
to the same pixel group if and only if p and q are adjacent
and share the same color. This provides a method to group

all of the raw color information into building blocks that are
used later in the image processing.

The segmentation algorithm allows the pixels to be
activated in any order and allows pixel values to be
overwritten as parts of the screen buffer change. Partial or
total analysis of the screen can be performed depending on
how many pixel values are added through the algorithm.
Once a complete block of pixel information has been
obtained it can be passed to the Representation stage.

Representation
Representation is implemented as a set of operations that
are called to gather higher level information about the pixel
groups which have been formed. These operations can be
divided into two categories, inter-group operations and
it-&a-group operations.

Intra-group operations gather information about the
relationships between pixels within a particular pixel group.
This includes operations such as computing the bounding
box of a pixel group, determining the eight neighbor
connectivity of individual pixels, and computing
estimations of the surface area and perimeter of pixel
groups.

Inter-group operations identify relationships that exist
between two or more pixel groups. Inter-group operations
include determining the topological orientation of one pixel
group in relation to another (e.g., left of, above, contained
within) and operations that group pixel groups based on
common characteristics derived from applying any of the
pixel group operations (e.g., list all pixel groups contained
in a particular pixel group).

An example of an inter-group operation currently called
during image processing is GetArea(). GetArea makes
calls to other group operations and then returns an estimate
of the total area occupied by the pixel group. In pseudocode
it can be represented as in Figure 3.

Operation GetArea
MaxPossibleNumPixels = GetWidth * GetHeight
Area = ActualNumPixelsO MaxPossibleNumPixels

Return Area

Figure 3 An inter-group representation algorithm

The current set of operations provides basic tictionality
that can be extended to describe any functional or
geometrical relationship between pixels and their
corresponding pixel groups.

Description
Description is the third and final step. It makes use of all of
the information gathered to impose meaning on the visual
cues. Our method of description consists of the iterative
application of a set of heuristic rules that categorize and
identify user interface components.

To identify a widget, the IPM applies rules that specify its
low-level geometrical components and any necessary
relationships that exist between the widget and other pixel
groups on the screen. For example, the rule in Figure 4
finds list boxes. All of the function calls correspond to the
pixel group operations described above.

If there exists a downArrow()
That is containedIn() a raisedButton()
That is toTheRightOf() a rectangularTextArea(
Which is recessed0 and has a width0

greater than its height0
Then we have found a list box _

Figure 4 Rule to find a list box

The system processes all visible widgets with successive
applications of its rules. This iterative application of
operations and heuristics has been surprisingly successful.
It is important to note that we have not focused on the
sophistication of our image processing routines; they are
quite simple. Our singular advantage in this area is the
discrete, regular, and highly repetitive nature of patterns in
modem GUIs. This allows us to apply relatively standard
image processing techniques to great effect. The IPM has
been able to identify every type of interface component for
which we have taken the time to develop the heuristics.
Figure 5 shows a partial list of components the system
currently identifies and the number of pixel group
operations directly called by the heuristic. We are
developing geometrical analysis operations and character
recognition algorithms within this image processing
framework that we expect will capture almost every
relevant visual aspect of the display.

Scroll Bars 8

Check Boxes 4

Radio Buttons 5

List Boxes 8

Windows 7

Figure 5 Partial list of interface components.

Figure 6 shows the type of information that is gathered
through processing in the IPM. This shows how the system
as a whole is able to find all of user interface widgets
visible on the screen. The IPM was run on the dialog box on
the left of the figure, creating an internal representation of
all of the widgets. This internal representation was then
used to draw the right side of the figure. All of the visible
UI components for this particular dialog have been
identified. The visual feedback shown in Figure 6 would
normally not accompany a session with the system.

34

Figure 6. Results of the IPM displayed visually

As both a sensor and an effector, the EMM provides the
ability to interact with interfaces that the IPM has observed.
This is achieved by directly accessing the operating systems
event queue. The event handling module has the ability to
both observe the events as they pass through the queue and
to load the queue with its own events. We have restricted
the EMM to consider only keyboard and mouse events
because they are sufficient to provide for full interaction
with a conventional interface.

The EMM can observe events in two modes. Currently it
watches the event queue and selectively logs all events of
interest-that is, those types of events that we have
specified in advance. This allows the system to later return
to this information to infer what has actually happened with
the interface. However, the EMM also has the ability to
process event information at runtime. This can be done in
real-time with or without delay.

Internal State Representation Module
By gathering information from the EMM and the IPM, the
Interface State Representation Module can combine the
representation of the current appearance of the interface
with the appropriate keyboard or mouse input in order to
determine what is happening to a user interface at any
particular time. This state information is recorded and made
available for use by other modules in the system.

The system maintains a limited internal representation of
the visual appearance of the interface in the form of a list of
interface widget types and locations, coupled with lists of
recent keyboard and mouse events. This information can be
queried at any time to gather state information to support
agent-initiated actions and observations.

Through access to the ISRM, an ibot agent gains access to
basic system information, including

Event Management Module

The EMM plays back events through its ability to insert
items into the event queue in real-time. This is performed
with short delays between events to allow a user to watch a
particular action while it is being performed. While the
EMM is performing an action, all keyboard and mouse input
by the user is disabled, to prevent any confusion due to the
temporary shift of control away from the user. When the
EMM has finished, control returns to the user. Our work
toward mixed-initiative control in this situation has only
begun, but because we have only considered tasks that do
not directly involve the user up to this point, we have
encountered no problems. Nevertheless, the existing
version of the EMM demonstrates that the effecters
necessary for a future real-time advisory system are already
in place.

In our current testing, the EMM operates in an off-line mode
that allows it to recreate the actions of the user at its own
pace. This allows other modules as much time as needed to
infer meaning from the interactions that have occurred.

Common user interface knowledge represented in the
ERM. The ISFW encapsulates the knowledge to identify
basic user interface widgets across applications. This
knowledge becomes accessible to an agent as lists of
visible user interface widgets, which can be monitored
or manipulated through the EMM.

State information about how the user is interacting
with the application. By watching the state of the
mouse, keyboard, and application interface as
represented in the ISRM an agent can gain valuable
information about a user’s actions. The agent can then
formulate appropriate responses based on the user’s
past actions or inferred plans.

This information would be difficult for an agent to acquire
through an API (assuming that one existed), while our
system, through the ISRM, provides this basic information
for all visible applications.

The system is not restricted to acting in any one domain and
hence has no global knowledge representation. Instead, we
foresee that developers will generate domain-specific
representation systems on top of the information provided

35

This document contains important information for installing and using Microsoft Close
Comba

9
. A Bridge Too Far.

CONTENTS
A I allation Notes
8: !&kp Troubleshooting
C. Audio Problems
D. DirectX Problems

G. Tips, Information, and Corrections

A. Installation Notes

Recommended Windows 95 or Windows NT System Configuration

Figure 7 The system replaying users interactions in Microsoft Word

by the base system, tailored to the desired functionality of
the agent.

SOFTWARE LOGGING APPLICATION
We chose software logging as a test area within the larger
context of usability analysis for several reasons. First, some
activities within usability analysis fit the profile of tasks
appropriate for expert systems: codified domain knowledge,
limited dependence on context, input data accessible by an
automated system. Second, we are aware of no existing
intelligent tools aimed specifically at usability analysis
(though many more general-purpose intelligent tools, such
as layout assistants, can be used to improve usability.)
Finally, an automated system improves on the performance
of a human observer in some areas simply due to increased
consistency. For example, an automated system can monitor
the placement and timing of low-level mouse and keyboard
activity much more easily than a human observer.

Our current work is incomplete in several ways. First, the
system is not yet interactive, so all of our analysis and most
processing must be after the fact. Second, part of our effort
is to incorporate enough knowledge about user interactions
into the system to allow the system to compare expert
behavior on a task with novice behavior, in order to identify
areas for design attention. Only low-level representation
issues have been considered so far, and no comparison is
yet possible. The current status of the prototype is sufficient
nevertheless to illustrate some of the functionality of the
system and to show how a domain-specific extension of the
basic architecture will work.

We began with an informal evaluation, which proceeded as
follows. The experimenter launched Microsoft Word,
maximized the application to the full screen, and loaded a
text file. The EMM component was activated to monitor the

experiment. Each experiment participant was then given
two editing tasks, described in Figure 8.

Offline, after the interactive portion of the experiment had
concluded, these traces were played back with the logging
agent activated as seen in Figure 7. On the occurrence of
specific patterns of mouse events (e.g., before and after a
mouse down or mouse up event) the PM activated its
routines to record and process the frame buffer. A stream of
screen specifications was the result, a structured text
description of the kind of information shown graphically in
Figure 6. Each token in the stream consists of a
mouse/keyboard event or an element of a screen
description, which is a list of a recognized widget type and
its boundaries.

This task involves editing a Jile supplied by the
experimenters, Readmertf, in Microsoft Word.
Task I: Your task is to eliminate section E, “Hardware
and System Compatibility. . .” from the document. Start
by deleting the Section E header from the table of
contents at the top of the document. Change the
lettering of section headers F and G to E and F,
respectively, to reflect the deletion. Now perform the
corresponding changes in the body of the document.
Save the revised tile as Readmel. rt f .
Task 2: At the top of section A add the following table:

Processor 1 PlOO 1 P133 1 P166+

Capability 1 No I Maybe I Yes

Add page numbers to the document so that they appear
on all pages in the bottom left hand comer. Save the
revised file as Readme2. rtf .

Figure 8 Usability analysis tasks

36

These streams of tokens are combined into higher-level
abstractions by a log analysis module. We begin with a
geometrical description of the significant regions of the
window and types of behavior we expect to see within these
regions. For example, a sequence consisting of a mouse-
down event in the menubar region of a window followed by
vertical mouse-movement events in the menu that appears
constitutes a menu-select operation. For our purposes, we
are not so much concerned with identifying the sequences
that correspond to common operations, but rather with
sequences that show inefficient or even incorrect behaviors.
We have implemented two examples:

Menubar search: The user moves the mouse
horizontally within the menubar region of a window.
The more common case is preceded by a mouse-down
event, in which the user is searching through the menus
for a specific item, but some users move the mouse
over the menubar headers without looking at the menus
as they try to recall the placement of an item.

Menu search: The user mouses down in the menubar
region, which causes the appearance of a menu. This
may be followed by a pause (during which the user is
presumed to be reading the menu items) or by vertical
mouse movements down the menu,

These sequences can be thought of as pattern recognition
rules: they identify specific types of behavior of interest to
the system. Currently the system does nothing with this
information except to record it, so that we might later bring
it to the attention of an interface designer. While this is
sufficient from a usability perspective, the eventual plan is
for the system to be able to interpret these sequences on the
fly, to give the user assistance in unfamiliar situations.

In AI terms, we are effectively building plan critics, where
the plan is the sequence of events the user steps through. A
critic observes the construction of a plan for specific
undesired patterns, and corrects them. In the current
implementation only the observations are the responsibility
of the system, their correction the responsibility of the
human designer; future versions will integrate both areas of
critic functionality into the system.

As a standalone system, the logging agent is far t?om
complete. Only a few critics have been implemented, and
its functionality is extremely limited. Nevertheless it shows
something of the promise of the external agent approach to
such problems.

CONCLUSION

The current prototype is implemented in approximately
1700 lines of C++ code. It runs in the Windows operating
systems and gathers its information through WIN32 system
calls. IBOT makes very little use of the OS other than to
gather low level windows events and screen buffer
information.

The architecture provides a hanrework that could be ported
to any operating system that supports access to the mouse

and keyboard event messages as well as access to the video
buffer at a pixel level. This architecture is a framework that
provides a tool to access information about the current state
of the I/O devices that a computer provides for interaction,
including the mouse, keyboard, and display as well as all of
the potentially useful observable information that they
provide.

The functionality of the system we have described overlaps
that of conventional systems for logging user interaction,
even macro recorders. These can easily collect the same
kind of information, but analysis is a different matter.
Without a detailed specification of the interface, it can be
extremely difficult to interpret mouse movements and
gestures in the appropriate context. The dynamically
changing specification of an interface, as generated by our
ibot agent, provides some of this necessary context.

One might see our work as a rather roundabout way to
reach the goal of agents integrated into conventional
interfaces. Unfortunately, the benefits of agent-based user
interfaces are often not apparent to mainstream software
developers. System software will not support such agents
until they demonstrate their advantages, but in the meantime
it is very difficult to experiment with them without such
support. We are limited to home-grown systems where we
have the control we need. Our approach solves several
problems: it can be used with existing software, requires no
knowledge of the internals of the software, runs across
multiple applications, and is based mainly on platform-
independent algorithms. In contrast to application-internal
agents, our ibot has the disadvantage of being forced to
reason almost exclusively based on visual cues and user
actions. Our preliminary work, however, suggests that this
approach can be adequate for some interesting classes of
tasks.

REFERENCES
1.

2.

3.

4.

5.

Gonzales, R.C. and Woods, R.W. Digital Image
Processing. Addison-Wesley Publishing Company,
Reading, MA. 1992.

Kieras, D. and Meyer, D. E. An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction.

Lieberman, H. Integrating User Interface Agents with
Conventional Applications. Proceedings of IUI’98. (San
Francisco, CA, January, 1998.) ACM Press, 39-46.

Potter, R. TRIGGERS: Guiding Automation with Pixels
to Achieve Data Access. In Watch What I Do:
Programming by Demonstration. MIT Press,
Cambridge, MA. 1993.

Young, R.M., Green, T.R.G. and Simon, T.
Programmable User Models for Predictive Evaluation of
Interface Designs. In Proceedings of CHZ’89. ACM
Press, 15-19.

37

