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ABSTRACT 

This paper describes an ibot, a specialized software agent 
that exists in the environment of the user interface. Such an 
agent interacts with applications through the same medium 
as a human user. Its sensors process screen contents and 
mouse/keyboard events to monitor the user’s actions and 
the responses of the environment, while its effecters can 
generate such events for its own contributions to the 
interaction. We describe the architecture of our agent and 

* its algorithms for image processing, event management, and 
state representation. We illustrate the use of the agent with 
a small feasibility study in the area of software logging; 
results are promising for future progress. 
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INTRODUCTION 

Agents that collaborate with users in an interactive software 
environment are becoming increasingly common. An agent 
can act as a personal assistant to the user, helping to solve 
difficult or unfamiliar problems. The agent’s contributions 
take the form of making suggestions, exploring and 
demonstrating alternatives, critiquing user decisions, and so 
forth--in the ideal case, all the activities we might associate 
with an intelligent human assistant. 

Commercial interactive software applications have begun 
to provide sophisticated application programmer interfaces 
(APIs) for agents in the user interface. While this is a step 
in the right direction, conventional techniques have subtle 
shortcomings. Introductions to programming user interface 
agents usually open with some variation on this: “In order 
to implement an agent for your application.. .” This simple 
beginning contains several unstated assumptions. 

. You are the developer of the software for which you 
would like to build an agent. Without being able to 
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modify and recompile the application, your ability to 
add functionality is somewhat limited. 

. Your agent’s actions will be limited to a single 
application. Interoperability between applications, 
however, is one of the most highly-touted advantages 
of modern interactive software; an agent might 
reasonably be expected to help users cope with the 
potential complexities. 

. You have foreseen the uses for which your agent will 
be needed. That is, your agent’s design and 
functionality must be compatible with the existing 
application; if the necessary hooks are missing, the 
application or API may need modification. 

As others have recognized, not all of these assumptions will 
hold in practice. Lieberman, for example, stresses the need 
to attach agents to conventional applications while 
minimizing the advanced planning required of the 
program’s developer [3]. Our goals are largely inspired by 
his work in integrating user interface agents into 
conventional applications, Our approach demonstrates 
significant progress toward this goal, in the form of a 
prototype agent that can access off-the-shelf applications 
through the user interface, with no reliance on the foresight 
of application developers. 

In the long term, we hope to provide users with agents that 
work across applications, that have access to all the 
functionality the users themselves can reach, and that can 
work with off-the-shelf applications. Our ideal agent, in 
principle, will act just as a human assistant might. 
Figuratively speaking, it will pull the keyboard and mouse 
over in front of itself, type or mouse a sequence of 
commands to show the user a possible solution or to carry 
out some task on its own, and then return control. 

To do this an agent needs access to what the user sees and 
what the user is able to do. Our approach involves the 
notion of “external” user interface agents, agents that 
operate outside and independently of any given application, 
effectively as if we were to replace the human user with a 
software assistant in the user interface. By analogy to 
Etzioni and Weld’s softbots, we call this type of agent an 
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ibot. In our implementation, an ibot’s sensors are image 
processing algorithms that run over the frame buffer 
contents--processing exactly what a human user sees--and 
routines for reading the system event queue. Its effecters 
are routines for inserting events in the system event queue 
so that its intentions can be conveyed to the interface, in 
the same way the commands of a human user would be. The 
ibot agent maintains a simple internal model of this 
environment that it can reason and plan about. The result is 
an agent that interacts with an application, in both input and 
output, through the same medium as the user. 

An eventual goal for our ibot research is an agent that 
automatically builds a representation of the visible user 
interface (learning if necessary), observes the user’s actions 
and modifications to the information visible in the interface, 
and provides the kind of intelligent assistance described 
above. We have made significant early progress toward this 
goal, in that the pieces (sensors, effecters, internal model- 
building routines) are in place. To simplify our proof of 
concept, we have arranged for the interaction of our 
prototype with applications to occur off-line, without the 
user in the loop. We expect that in the near future we will 
consider issues involving more robust real-time agent 
interaction. 

We demonstrate the effectiveness of the ibot approach with 
a proof-of-concept application in the area of software 
logging. An ibot agent records the actions of the user in 
solving a specific problem using an off-the-shelf 
application. It plays back the trace offline, analyzing 
patterns from a usability perspective. The goal of our 
analysis is to identify inefficiencies, to suggest 
improvements to the interface or to sequences of 
interactions. 

In the remainder of this paper we describe the architecture 
of the current prototype, the domain-independent image 
processing techniques that act as the system’s sensors, the 
mouse and keyboard actions that act as the system’s 
effecters, and the internal model the agent maintains of its 
environment. We show how these components mesh in the 
context of the logging application and discuss its potential 
strengths and limitations as a practical tool. 

RELATED WORK 
The ibot effort draws on three areas of research: user 
interface agents, programming by demonstration (PBD), and 
programmable user models (PUMS). 

Lieberman outlines a number of areas relevant to our 
approach. His discussion emphasizes the importance of 
granularity of event protocols, styles of interaction with the 
user, and parallelism considerations. Event granularity 
determines the level of abstraction at which an agent 
interacts with an interface. For example, should mouse 
movements be included in the information exchanged? If 
not all mouse movements (possibly a very large number, 
depending on the sampling rate), then which ones are 

important? An interaction style describes the way in which 
an agent interacts with the user. That is, it may not always 
be sufficient for an agent to execute commands in an 
interface; it may be necessary to communicate directly with 
the user. This can force a different interaction style, for 
example, on an agent designed mainly for direct 
manipulation interactions. Issues of parallelism can enter 
the picture when the agent and the user both try to 
manipulate the same interface object. System performance 
can also be affected by the activities of an agent. Our 
current system is too immature to have considered these 
issues in detail. It works at a system event granularity, 
though it can use inference to reach a higher level of 
abstraction in some cases. As yet it has no mechanisms for 
communicating directly with the user or managing parallel 
activities. 

POtkr’S TRIGGERS system [4] is an early example of an 
approach similar to ours. TRIGGERS performs pattern 
matching on pixels on the computer screen in order to infer 
information that is otherwise unavailable to an external 
agent. A “trigger” is a condition/action pair. Triggers are 
defined for such tasks as surrounding a text field with a 
rounded rectangle in a drawing program, shortening lines so 
that they intersect an arbitrary shape, and converting text to 
a bold typeface. The user defines a trigger by stepping 
through a sequence of actions in an application, adding 
annotations for the TRIGGERS system when appropriate. 
Once a set of triggers have been defined, the user can 
activate them, iteratively and exhaustively, to carry out their 
actions. From TRIGGERS we adopt the notion that the screen 
itself is a powerful source of information for an agent, if it 
can be properly interpreted. 

A PUM is an engineering tool for interface designers [5,2]. It 
simulates a user, to some appropriate degree of accuracy, in 
order to provide a designer with feedback before more 
extensive (and expensive) usability testing. Our agent can 
be seen as a very limited form of PUM. Its sensors and 
effecters interact with an interface in the same way as a 
human user, although the models behind the interactions are 
not realistic models of human motor control, perception, or 
cognition. These, however, are natural extensions of the 
approach, and are under current consideration. 

IBOT ARCHITECTURE 
Our agent architecture is designed to mimic the interaction 
of a human user with one or more software applications. 
Leaving aside visual interpretation, possibilities for 
interaction are very limited: the user can make a few 
stylized gestures with the mouse and press various keys on 
the keyboard, watching the screen to see the effects of these 
actions. The architecture provides sensors and effecters at 
the same point of interaction as the human user. 

Figure 1 shows the architecture and how it is layered on top 
of the operating system. Hooks are placed into the 
operating system that retrieve the information needed to 
interact with any executing application. The agent’s low- 
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Figure 1 System Architecture and IBOT agents 

level interactions with the operating system gives the 
appearance of direct interaction with application interfaces. 

The architecture is divided into three separate modules: the 
image processing module (IPM), the event management 
module (EMM) and the internal state representation module 
(ISRM). Each gathers information from the other modules or 
the operating system to complete its specified tasks. 

The three-module design very roughly models the basic 
human facilities that are brought into play during 
interaction with a user interface. The image processing 
module corresponds to the eyes of a user, with the ability to 
observe (though not necessarily interpret) visual cues on the 
screen. The event management module manipulates the 
system event queue to simulate the range of interactions a 
user can perform with a keyboard or mouse. Finally, the 
internal state representation is the system’s simple 
equivalent of a mental model of objects in the interface. 

Image Processing Module 
Through a set of domain-independent image processing 
algorithms, the image processing module generates 
information about the contents of the screen, including 
visual identification of user interface widgets. Inference for 
this identification follows a conventional three-stage 
process, which starts by examining the contents of the 
screen buffer at a low-level pixel representation and 
finishes with a description of the high level user interface 
components. 

The process begins with a set of pixel colors and 
coordinates. Pixels are grouped according to screen 
location and color, forming pixel groups. These pixel 
groups provide information through operators, which are 
used to describe the visual properties of the screen buffer. 
Finally we apply a set of heuristics that use the pixel group 

operators to determine exactly where the user interface 
components reside on the screen. 

The initial screen capture is managed via operating system 
calls. The resulting array of pixel color values is then fed 
through the IPM, which carries out a process of 
segmentation, representation, and description. These three 
stages are an adaptation of a general three-step image 
processing process [ 11. 

Segmentation 
Segmentation applies a pixel grouping algorithm to pixels 
to distinguish groups by their differing colors, as shown in 
Figure 2. The purpose of this algorithm is to group together 
all pixels that are adjacent to each other and have the same 
color. 

While Receiving Pixel Colors 
If Pixel is already grouped and 

group color = pixel color 
return /* no change needed */ 

If Pixel is already grouped 
and group color != pixel color 

remove pixel from previous group 
IfPixel is ungrouped then 

Create new pixelGroup containing pixel 
For each &neighbor ofpixel 

If neighbor is in a pixelGroup and neighbors 
pixelGroup color = the new pixelGroup color 

Merge pixelGroup with Neighbor pixelGroup 
EndFor 

EndWhile 

Figure 2 Segmentation algorithm 

The result is that for any two pixels p and q, p and q belong 
to the same pixel group if and only if p and q are adjacent 
and share the same color. This provides a method to group 



all of the raw color information into building blocks that are 
used later in the image processing. 

The segmentation algorithm allows the pixels to be 
activated in any order and allows pixel values to be 
overwritten as parts of the screen buffer change. Partial or 
total analysis of the screen can be performed depending on 
how many pixel values are added through the algorithm. 
Once a complete block of pixel information has been 
obtained it can be passed to the Representation stage. 

Representation 
Representation is implemented as a set of operations that 
are called to gather higher level information about the pixel 
groups which have been formed. These operations can be 
divided into two categories, inter-group operations and 
it-&a-group operations. 

Intra-group operations gather information about the 
relationships between pixels within a particular pixel group. 
This includes operations such as computing the bounding 
box of a pixel group, determining the eight neighbor 
connectivity of individual pixels, and computing 
estimations of the surface area and perimeter of pixel 
groups. 

Inter-group operations identify relationships that exist 
between two or more pixel groups. Inter-group operations 
include determining the topological orientation of one pixel 
group in relation to another (e.g., left of, above, contained 
within) and operations that group pixel groups based on 
common characteristics derived from applying any of the 
pixel group operations (e.g., list all pixel groups contained 
in a particular pixel group). 

An example of an inter-group operation currently called 
during image processing is GetArea(). GetArea makes 
calls to other group operations and then returns an estimate 
of the total area occupied by the pixel group. In pseudocode 
it can be represented as in Figure 3. 

Operation GetArea 
MaxPossibleNumPixels = GetWidth * GetHeight 
Area = ActualNumPixelsO MaxPossibleNumPixels 

Return Area 

Figure 3 An inter-group representation algorithm 

The current set of operations provides basic tictionality 
that can be extended to describe any functional or 
geometrical relationship between pixels and their 
corresponding pixel groups. 

Description 
Description is the third and final step. It makes use of all of 
the information gathered to impose meaning on the visual 
cues. Our method of description consists of the iterative 
application of a set of heuristic rules that categorize and 
identify user interface components. 

To identify a widget, the IPM applies rules that specify its 
low-level geometrical components and any necessary 
relationships that exist between the widget and other pixel 
groups on the screen. For example, the rule in Figure 4 
finds list boxes. All of the function calls correspond to the 
pixel group operations described above. 

If there exists a downArrow() 
That is containedIn() a raisedButton() 
That is toTheRightOf() a rectangularTextArea( 
Which is recessed0 and has a width0 

greater than its height0 
Then we have found a list box _ 

Figure 4 Rule to find a list box 

The system processes all visible widgets with successive 
applications of its rules. This iterative application of 
operations and heuristics has been surprisingly successful. 
It is important to note that we have not focused on the 
sophistication of our image processing routines; they are 
quite simple. Our singular advantage in this area is the 
discrete, regular, and highly repetitive nature of patterns in 
modem GUIs. This allows us to apply relatively standard 
image processing techniques to great effect. The IPM has 
been able to identify every type of interface component for 
which we have taken the time to develop the heuristics. 
Figure 5 shows a partial list of components the system 
currently identifies and the number of pixel group 
operations directly called by the heuristic. We are 
developing geometrical analysis operations and character 
recognition algorithms within this image processing 
framework that we expect will capture almost every 
relevant visual aspect of the display. 

Scroll Bars 8 

Check Boxes 4 

Radio Buttons 5 

List Boxes 8 

Windows 7 

Figure 5 Partial list of interface components. 

Figure 6 shows the type of information that is gathered 
through processing in the IPM. This shows how the system 
as a whole is able to find all of user interface widgets 
visible on the screen. The IPM was run on the dialog box on 
the left of the figure, creating an internal representation of 
all of the widgets. This internal representation was then 
used to draw the right side of the figure. All of the visible 
UI components for this particular dialog have been 
identified. The visual feedback shown in Figure 6 would 
normally not accompany a session with the system. 
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Figure 6. Results of the IPM displayed visually 

As both a sensor and an effector, the EMM provides the 
ability to interact with interfaces that the IPM has observed. 
This is achieved by directly accessing the operating systems 
event queue. The event handling module has the ability to 
both observe the events as they pass through the queue and 
to load the queue with its own events. We have restricted 
the EMM to consider only keyboard and mouse events 
because they are sufficient to provide for full interaction 
with a conventional interface. 

The EMM can observe events in two modes. Currently it 
watches the event queue and selectively logs all events of 
interest-that is, those types of events that we have 
specified in advance. This allows the system to later return 
to this information to infer what has actually happened with 
the interface. However, the EMM also has the ability to 
process event information at runtime. This can be done in 
real-time with or without delay. 

Internal State Representation Module 
By gathering information from the EMM and the IPM, the 
Interface State Representation Module can combine the 
representation of the current appearance of the interface 
with the appropriate keyboard or mouse input in order to 
determine what is happening to a user interface at any 
particular time. This state information is recorded and made 
available for use by other modules in the system. 

The system maintains a limited internal representation of 
the visual appearance of the interface in the form of a list of 
interface widget types and locations, coupled with lists of 
recent keyboard and mouse events. This information can be 
queried at any time to gather state information to support 
agent-initiated actions and observations. 

Through access to the ISRM, an ibot agent gains access to 
basic system information, including 

Event Management Module 

The EMM plays back events through its ability to insert 
items into the event queue in real-time. This is performed 
with short delays between events to allow a user to watch a 
particular action while it is being performed. While the 
EMM is performing an action, all keyboard and mouse input 
by the user is disabled, to prevent any confusion due to the 
temporary shift of control away from the user. When the 
EMM has finished, control returns to the user. Our work 
toward mixed-initiative control in this situation has only 
begun, but because we have only considered tasks that do 
not directly involve the user up to this point, we have 
encountered no problems. Nevertheless, the existing 
version of the EMM demonstrates that the effecters 
necessary for a future real-time advisory system are already 
in place. 

In our current testing, the EMM operates in an off-line mode 
that allows it to recreate the actions of the user at its own 
pace. This allows other modules as much time as needed to 
infer meaning from the interactions that have occurred. 

Common user interface knowledge represented in the 
ERM. The ISFW encapsulates the knowledge to identify 
basic user interface widgets across applications. This 
knowledge becomes accessible to an agent as lists of 
visible user interface widgets, which can be monitored 
or manipulated through the EMM. 

State information about how the user is interacting 
with the application. By watching the state of the 
mouse, keyboard, and application interface as 
represented in the ISRM an agent can gain valuable 
information about a user’s actions. The agent can then 
formulate appropriate responses based on the user’s 
past actions or inferred plans. 

This information would be difficult for an agent to acquire 
through an API (assuming that one existed), while our 
system, through the ISRM, provides this basic information 
for all visible applications. 

The system is not restricted to acting in any one domain and 
hence has no global knowledge representation. Instead, we 
foresee that developers will generate domain-specific 
representation systems on top of the information provided 
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This document contains important information for installing and using Microsoft Close 
Comba 

9 
. A Bridge Too Far. 
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Figure 7 The system replaying users interactions in Microsoft Word 

by the base system, tailored to the desired functionality of 
the agent. 

SOFTWARE LOGGING APPLICATION 
We chose software logging as a test area within the larger 
context of usability analysis for several reasons. First, some 
activities within usability analysis fit the profile of tasks 
appropriate for expert systems: codified domain knowledge, 
limited dependence on context, input data accessible by an 
automated system. Second, we are aware of no existing 
intelligent tools aimed specifically at usability analysis 
(though many more general-purpose intelligent tools, such 
as layout assistants, can be used to improve usability.) 
Finally, an automated system improves on the performance 
of a human observer in some areas simply due to increased 
consistency. For example, an automated system can monitor 
the placement and timing of low-level mouse and keyboard 
activity much more easily than a human observer. 

Our current work is incomplete in several ways. First, the 
system is not yet interactive, so all of our analysis and most 
processing must be after the fact. Second, part of our effort 
is to incorporate enough knowledge about user interactions 
into the system to allow the system to compare expert 
behavior on a task with novice behavior, in order to identify 
areas for design attention. Only low-level representation 
issues have been considered so far, and no comparison is 
yet possible. The current status of the prototype is sufficient 
nevertheless to illustrate some of the functionality of the 
system and to show how a domain-specific extension of the 
basic architecture will work. 

We began with an informal evaluation, which proceeded as 
follows. The experimenter launched Microsoft Word, 
maximized the application to the full screen, and loaded a 
text file. The EMM component was activated to monitor the 

experiment. Each experiment participant was then given 
two editing tasks, described in Figure 8. 

Offline, after the interactive portion of the experiment had 
concluded, these traces were played back with the logging 
agent activated as seen in Figure 7. On the occurrence of 
specific patterns of mouse events (e.g., before and after a 
mouse down or mouse up event) the PM activated its 
routines to record and process the frame buffer. A stream of 
screen specifications was the result, a structured text 
description of the kind of information shown graphically in 
Figure 6. Each token in the stream consists of a 
mouse/keyboard event or an element of a screen 
description, which is a list of a recognized widget type and 
its boundaries. 

This task involves editing a Jile supplied by the 
experimenters, Readmertf, in Microsoft Word. 
Task I: Your task is to eliminate section E, “Hardware 
and System Compatibility. . .” from the document. Start 
by deleting the Section E header from the table of 
contents at the top of the document. Change the 
lettering of section headers F and G to E and F, 
respectively, to reflect the deletion. Now perform the 
corresponding changes in the body of the document. 
Save the revised tile as Readmel. rt f . 
Task 2: At the top of section A add the following table: 

Processor 1 PlOO 1 P133 1 P166+ 

Capability 1 No I Maybe I Yes 

Add page numbers to the document so that they appear 
on all pages in the bottom left hand comer. Save the 
revised file as Readme2. rtf . 

Figure 8 Usability analysis tasks 

36 



These streams of tokens are combined into higher-level 
abstractions by a log analysis module. We begin with a 
geometrical description of the significant regions of the 
window and types of behavior we expect to see within these 
regions. For example, a sequence consisting of a mouse- 
down event in the menubar region of a window followed by 
vertical mouse-movement events in the menu that appears 
constitutes a menu-select operation. For our purposes, we 
are not so much concerned with identifying the sequences 
that correspond to common operations, but rather with 
sequences that show inefficient or even incorrect behaviors. 
We have implemented two examples: 

Menubar search: The user moves the mouse 
horizontally within the menubar region of a window. 
The more common case is preceded by a mouse-down 
event, in which the user is searching through the menus 
for a specific item, but some users move the mouse 
over the menubar headers without looking at the menus 
as they try to recall the placement of an item. 

Menu search: The user mouses down in the menubar 
region, which causes the appearance of a menu. This 
may be followed by a pause (during which the user is 
presumed to be reading the menu items) or by vertical 
mouse movements down the menu, 

These sequences can be thought of as pattern recognition 
rules: they identify specific types of behavior of interest to 
the system. Currently the system does nothing with this 
information except to record it, so that we might later bring 
it to the attention of an interface designer. While this is 
sufficient from a usability perspective, the eventual plan is 
for the system to be able to interpret these sequences on the 
fly, to give the user assistance in unfamiliar situations. 

In AI terms, we are effectively building plan critics, where 
the plan is the sequence of events the user steps through. A 
critic observes the construction of a plan for specific 
undesired patterns, and corrects them. In the current 
implementation only the observations are the responsibility 
of the system, their correction the responsibility of the 
human designer; future versions will integrate both areas of 
critic functionality into the system. 

As a standalone system, the logging agent is far t?om 
complete. Only a few critics have been implemented, and 
its functionality is extremely limited. Nevertheless it shows 
something of the promise of the external agent approach to 
such problems. 

CONCLUSION 

The current prototype is implemented in approximately 
1700 lines of C++ code. It runs in the Windows operating 
systems and gathers its information through WIN32 system 
calls. IBOT makes very little use of the OS other than to 
gather low level windows events and screen buffer 
information. 

The architecture provides a hanrework that could be ported 
to any operating system that supports access to the mouse 

and keyboard event messages as well as access to the video 
buffer at a pixel level. This architecture is a framework that 
provides a tool to access information about the current state 
of the I/O devices that a computer provides for interaction, 
including the mouse, keyboard, and display as well as all of 
the potentially useful observable information that they 
provide. 

The functionality of the system we have described overlaps 
that of conventional systems for logging user interaction, 
even macro recorders. These can easily collect the same 
kind of information, but analysis is a different matter. 
Without a detailed specification of the interface, it can be 
extremely difficult to interpret mouse movements and 
gestures in the appropriate context. The dynamically 
changing specification of an interface, as generated by our 
ibot agent, provides some of this necessary context. 

One might see our work as a rather roundabout way to 
reach the goal of agents integrated into conventional 
interfaces. Unfortunately, the benefits of agent-based user 
interfaces are often not apparent to mainstream software 
developers. System software will not support such agents 
until they demonstrate their advantages, but in the meantime 
it is very difficult to experiment with them without such 
support. We are limited to home-grown systems where we 
have the control we need. Our approach solves several 
problems: it can be used with existing software, requires no 
knowledge of the internals of the software, runs across 
multiple applications, and is based mainly on platform- 
independent algorithms. In contrast to application-internal 
agents, our ibot has the disadvantage of being forced to 
reason almost exclusively based on visual cues and user 
actions. Our preliminary work, however, suggests that this 
approach can be adequate for some interesting classes of 
tasks. 
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