
SoftSig: Software-Exposed Hardware Signatures
for Code Analysis and Optimization ∗

James Tuck‡ Wonsun Ahn Luis Ceze† Josep Torrellas

‡NC State University
jtuck@ncsu.edu

University of Illinois at
Urbana-Champaign

{dahn2, torrellas}@cs.uiuc.edu

†University of Washington
luisceze@cs.washington.edu

Abstract
Many code analysis techniques for optimization, debugging, or
parallelization need to perform runtime disambiguation of sets of
addresses. Such operations can be supported efficiently and with
low complexity with hardware signatures.

To enable flexible use of signatures, this paper proposes to ex-
pose a Signature Register File to the software through a rich ISA.
The software has great flexibility to decide, for each signature,
which addresses to collect and which addresses to disambiguate
against. We call this architecture SoftSig. In addition, as an exam-
ple of SoftSig use, we show how to detect redundant function calls
efficiently and eliminate them dynamically. We call this algorithm
MemoiSE. On average for five popular applications, MemoiSE re-
duces the number of dynamic instructions by 9.3%, thereby reduc-
ing the execution time of the applications by 9%.

Categories and Subject Descriptors C.0 [Computer Systems Or-
ganization]: General; C.1.0 [Processor Architectures]: General

General Terms Performance, Design

Keywords Memory Disambiguation, Multi-core Architectures,
Runtime Optimization

1. Introduction
Many code analysis techniques need to ascertain at runtime whether
or not two or more variables have the same address. Such runtime
checks are the only choice when the addresses cannot be statically
analyzed by the compiler. They provide crucial information that is
used, for example, to perform various code optimizations, support
breakpoints in debuggers, or parallelize sequential codes.

Given the frequency and cost of performing these checks at run-
time, there have been many proposals to perform some of them in
hardware (e.g., [9, 11, 12, 13, 22, 28]). Such proposals have differ-
ent goals, such as ensuring that access reordering within a thread
does not violate dependences, providing multiple hardware watch-
points for debugging, or detecting violations of inter-thread depen-
dences in Thread-Level Speculation (TLS). The expectation is that
hardware-supported checking (or “disambiguation”) of addresses
will have little overhead.

∗ This work was supported in part by the National Science Founda-
tion under grants CHE-0121357 and CCR-0325603; DARPA under grant
NBCH30390004; DOE under grant B347886; and gifts from IBM, Intel,
and Sun.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/0003. . . $5.00

A straightforward implementation of hardware-supported dis-
ambiguation can be complex and inefficient. A key reason is that
it typically works by comparing an address to an associative struc-
ture with other addresses. For example, in TLS, when a processor
writes, its address is checked against the addresses in the specu-
lative buffers (or caches) of other processors. Similarly, in intra-
thread access reordering checkers (e.g., [9]), the address of a write
is checked against later reads that have been speculatively sched-
uled earlier by the compiler. In general, longer windows of specu-
lation require larger associative structures.

To improve efficiency, we would like to operate on sets of
addresses at a time, so that, in a single operation, we compare
many addresses. This can be accomplished with low complexity
with hardware signatures [2]. In this case, addresses are encoded
using hash functions and then accumulated into a signature. If we
provide hardware support for signature intersection as in Bulk [3],
then address disambiguation becomes simple and fast.

Signatures have been proposed for address disambiguation in
various situations, such as in load-store queues (e.g., [25]) and
in TLS and Transactional Memory (TM) systems (e.g., [3, 18,
31]). Typically, signatures are managed in hardware or have only
a simple software interface [18, 31]. However, to be truly useful for
code analysis and optimization techniques, signatures would need
to provide a rich interface to the software.

To enable flexible use of signatures for advanced code analysis
and optimization, this paper proposes to expose a Signature Regis-
ter File to the software through a sophisticated ISA. The software
has great flexibility to decide: (i) what stream of memory accesses
to collect in each signature, (ii) what local or remote stream of
memory accesses to disambiguate against each signature, and (iii)
how to manipulate each signature. We call this architecture SoftSig,
and describe the processor extensions needed to support it.

In addition, as an example of SoftSig use, this paper proposes
an algorithm to detect redundant function calls efficiently and elim-
inate them dynamically. We call this memoization algorithm Mem-
oiSE. Our results show that, on average for five popular multi-
threaded and sequential applications, MemoiSE reduces the num-
ber of dynamic instructions by 9.3%, thereby reducing the average
execution time of the applications by 9%.

This paper is organized as follows: Section 2 presents a back-
ground; Section 3 presents the SoftSig idea; Sections 4 and 5
present SoftSig’s software interface and architecture; Section 6 de-
scribes MemoiSE; Section 7 evaluates MemoiSE; and Section 8
presents related work.

2. Background
2.1 Hardware Signatures and Their Operations
Hardware signatures are special-purpose registers that store sets of
addresses and can quickly disambiguate them. They are typically
long — e.g., 1024 bits. A Bloom filter-based [2] hashing function

like the one shown in Figure 1(a) generates a superset encoding of
the addresses. Many addresses can be encoded into the fixed-length
signature. Ceze et al. [3] proposed using hardware functional units
that directly operate on signatures. Figure 1(b) shows some of the
operations that can be performed on signatures. Intersection and
union operations are performed via bit-wise AND and OR opera-
tions on the signatures. Interestingly, intersection can be interpreted
as a disambiguation operation between two sets of addresses. Ceze
et al. leveraged this insight to implement fast disambiguation in
Hardware Transactional Memory (HTM) and TLS.

Pe
rm

ut
e

. .
 .

Address

Signature

Decoder

Decoder

(a)

Op. Description
∩ Signature intersection
∪ Signature union
= ∅ Is signature empty?
∈ Membership of an address

in a signature

(b)

Figure 1. Address insertion into a signature (a) and some primitive
operations on signatures (b).

Several other systems have later adopted hardware signatures
and signature operations to speed up address disambiguation. For
example, this includes proposals for TM [18, 31] and a proposal to
enforce sequential consistency [4].

2.2 Memoization
Memoization is a technique that uses the basic observation that a
function (or expression) that is called twice with the same inputs
will compute the same result. Consequently, rather than computing
the same result again, memoization involves storing the outcome
in a lookup table and, on future occurrences of the function, simply
returning the answer provided by the lookup table. Michie [17] first
proposed memoization as a general way to avoid computing redun-
dant work, and it is routinely applied in dynamic programming [7]
and functional programming languages.

For memoization to be profitable, a function must be called with
the same inputs often, to ensure a high hit rate in the lookup table.
Also, the cost of the lookup must be less than that of executing the
function. Not all potentially profitable functions can be memoized,
however, since most functions in imperative languages like C have
side effects or reads from nonlocal memory which are extremely
hard to analyze statically [27]. In these cases, traditional memoiza-
tion cannot be used.

3. Idea: Exposing Signatures to Software
3.1 Basic Idea
Many code analysis and optimization techniques, debugging
schemes, and operations in speculative multithreading require the
runtime disambiguation of multiple memory addresses — either
accessed by a single thread or by multiple threads. We can signif-
icantly advance the art in these techniques if we support an envi-
ronment where hardware signatures are flexibly manipulatable in
software.

Such an environment must support three main operations: col-
lection of addresses, disambiguation of addresses, and conflict de-
tection. The software has a role in each of them. In Collection, the

software specifies the window of program execution whose mem-
ory accesses must be recorded in a signature — i.e., the set of pro-
gram statements to be monitored, possibly with some restriction
on the range of addresses to be recorded. Moreover, it specifies
whether reads, writes, or both should be collected.

In Disambiguation, the software specifies that the addresses
collected in a given signature be compared to the dynamic stream
of addresses accessed by (i) the local thread, (ii) other threads
(visible through coherence messages such as invalidations), or (iii)
both. Again, it also specifies whether reads and/or writes should be
examined.

Finally, in Conflict Detection, the software specifies what action
should be taken when the stream being monitored accesses an
address present in the signature. The action can be to set a bit that
the software can later check, or to trigger an exception and jump to
a predefined location — possibly undoing the work performed in
the meantime.

3.2 Examples
Figure 2 shows three examples of how this environment can be
used: function memoization (Charts (a) and (b)), debugging with
many watchpoints (Chart (c)), and Loop Invariant Code Motion
(LICM) (Charts (d) and (e)). Function memoization involves dy-
namically skipping a call to a function if it can be proved that do-
ing so will not affect the program state. As an example, Figure 2(a)
shows two calls to function foo and some pointer accesses in be-
tween. Suppose that the compiler can determine that the value of
the input argument is the same in both calls, but is unable to prove
whether or not the second call is dynamically redundant — due
to non-analyzable memory references inside or outside foo. With
signatures (Figure 2(b)), the compiler enables address collection
over the first call into a signature, and then disambiguation of ac-
cesses against the signature until the next call. Before the second
call, the code checks if the signature observed a conflict. If it did
not, and no write in foo overwrites something read in foo, then
the second invocation of foo can be skipped.

A desirable operation when debugging a program is knowing
when a memory location is accessed. Debuggers offer this sup-
port in the form of a “watch” command, which takes as an argu-
ment an address to be watched, or watchpoint. Some processors
provide hardware support to detect when a watchpoint is accessed
(e.g., [11]). However, due to the hardware costs involved, only a
modest number of watchpoints is supported (e.g., 4). With signa-
tures, a large number of addresses can be simultaneously watched
with very low overhead. As an example, Figure 2(c) collects ad-
dresses y and z in a signature. Then, it collects into the signature all
the addresses that are accessed in foo. After that, it disambiguates
all subsequent accesses against the signature, triggering a break-
point if a conflict is detected. The system is watching for accesses
to any of the addresses collected.

Finally, Figures 2(d) and (e) show an example of LICM. Fig-
ure 2(d) shows a loop that computes an expression at every iter-
ation. If the value of the expression remains the same across it-
erations, it would offer savings to move the computation before
the loop. However, the code may contain non-analyzable memory
references that prevent the compiler from moving the code. With
signatures and checkpointing support, the compiler can transform
the code as in Figure 2(e). Before the loop, a checkpoint is gener-
ated, and the expression is computed and saved in a register while
collecting the addresses into a signature. Then, the loop is executed
without the expression, while disambiguating against the signature.
After the loop, the code checks if the signature observed a conflict.
If it did, the state is rolled back to the checkpoint and execution
resumes at the beginning of the unmodified loop.

while(...) {
 ...
 ... = <expr>
 ...
}

(d) (e)

foo(x);

... = y
z = ...

foo(x);

(a) (b) (c)

foo(x);

... = y
z = ...

if(conflict)
 foo(x);

Sig

∩

Collection

Disambig.

Conflict
Detection

checkpoint()
reg = <expr>
while(...) {
 ...
 ... = reg
 ...
}
if (conflict)
 rollback(no_opt:)
else
 goto done:

no_opt:
 <original loop>
done:

Sig

∩

Collection

Disambig.

Conflict
Detection

...= y

...= z

foo(x);

...

...

...
∩

SigCollection

Disambig.

Conflict
Detection

SigCollection

SigCollection

trigger
breakpoint

Figure 2. Three examples of how to use hardware signatures that are manipulatable in software.

3.3 Design Overview and Guidelines
To expose hardware signatures to software, we extend a conven-
tional superscalar processor with a Signature Register File (SRF),
which can hold a signature in each of its Signature Registers (SRs).
Moreover, we add a few new instructions to manipulate signatures,
enabling address collection, disambiguation, and conflict detection.
We call our architecture SoftSig. Before describing SoftSig, we
outline some design guidelines that we follow. The guidelines are
listed in Table 1.

G1 Minimize SR accesses and copies
G2 Manage the SRF through dynamic allocation
G3 Imprecision should never compromise correctness
G4 Manage imprecision to provide the most efficiency
G5 Minimize imprecision and unnecessary conflicts

Table 1. Design guidelines in SoftSig.

3.3.1 Signature Registers are Unlike General Purpose
Registers

SRs must be treated differently than General Purpose Registers
(GPRs) because they are different in two ways. First, an SR is much
larger than a 64-bit GPR — SRs are 1 kilobit in SoftSig. Due to
their size, SRs are costly to read, move and copy. Second, SRs are
persistent. Once a SR begins collecting or disambiguating, it must
remain in the SRF for the duration of the operation in order to work
as expected. An operation may take a very long time to complete,
as can be seen from the examples in Figure 2.

These observations motivate two design guidelines:

G1: Minimize SR accesses and copies. Given the size of SRs,
it is important to minimize SR accesses and copies. Every move
typically takes several cycles, while accessing the SRF consumes
power. Consequently, we minimize any negative impact on execu-
tion time or power consumption through several measures. First, on
a context switch, the system does not save or restore SRs; rather,
signatures are discarded. Second, the compiler never spills SRs to
the stack. Finally, we design the logic to minimize reading SRs
from the SRF. While these measures may appear to be severe limi-
tations, our approach works well in spite of them.

G2: Manage the SRF through dynamic allocation. Given the
size of SRs, there are few of them. Moreover, given their persis-
tence, their use must be coordinated across an entire program’s ex-
ecution. This introduces the issue of how to assign SRs so that (i)
we enable as many uses as possible in the program and (ii) we use
them where they are most profitable.

To maximize the number of uses, it is better to allocate the SRs
dynamically than to reserve the SRs based on static compiler anal-
ysis. For a given number of potential SR uses in a program, it may

be difficult for the compiler to determine whether or not the life-
times of these uses will overlap in time during execution. Conse-
quently, the compiler may have to assume the worst case of maxi-
mum lifetime overlap, and refrain from exploiting all opportunities.
Dynamic allocation, on the other hand, uses dynamic information
on the actual use lifetime to exploit as many opportunities at a time
as SRs are available. This approach requires software routines or
hardware logic to examine the current state of the SRF and decide
whether a SR can be allocated.

As an example, Figure 3 shows the case of two SRs and a pro-
gram with four uses with hard-to-predict lifetimes. If we allocate
SRs statically, we can only cover two uses. In practice, these two
uses do not overlap in time (Chart (a)). If, instead, SRs are allocated
dynamically, since at most two uses overlap in time, we can cover
the four uses.

(a) Static allocation (b) Dynamic allocation

SR1 SR2
Time

SR1 SR1
SR2SR2

Time

Figure 3. Employing SR1 and SR2 in uses whose lifetime (length
of the segment) is unpredictable statically.

We leave the problem of deciding which uses of SRs are most
worthwhile to the compiler, programmer, or a feedback-directed
optimization framework.

3.3.2 System Must Cope with Imprecision
SoftSig must cope with multiple forms of imprecision. One form of
imprecision is the encoding of signatures. Instead of an exact list of
addresses, only a superset of addresses is actually known. Because
of this, conflicts may be reported even when an exact list would
show that there were none. Such conflicts are called false positives.

Another source of imprecision is the dynamic de/allocation
policy of the SRF. Signatures may be silently displaced while in
use. Consequently, an optimization can fail simply because of how
the SRF is managed at runtime.

The presence of imprecision motivates three design guidelines:

G3: Imprecision should never compromise correctness. The
system must be designed such that imprecision hurts at most per-
formance and never correctness. Therefore, any software that uses
an SR must be prepared to cope with a conflict that turns out to
be a false positive. For instance, consider the watchpoint example
in Figure 2(c). A conflict may not be the result of an access to a
watched location. The software needs to handle this case gracefully.

In addition, to handle the case of the unexpected deallocation
of an in-use SR, SoftSig makes this event appear as if a conflict
had occurred. Since the code must always work correctly in the

Category Instruction Description
bcollect.(rd,wr,r/w) R1 Begin collecting addresses into SRF[R1]. Depending on the specifier, collect only reads,

writes, or both
Collection ecollect R1 End collecting addresses into SRF[R1]

filtersig R1,R2,R3 Do not collect or disambiguate addresses between R2 and R3 into/against SRF[R1]
Disambiguation bdisamb.(rd,wr,r/w).(loc,rem) R1 Begin disambiguating local or remote accesses (depending on the specifier) against

SRF[R1]. Depending on the specifier, disambiguate only reads, writes, or both
edisamb.(loc,rem) R1 End disambiguating local or remote accesses (depending on the specifier) against SRF[R1]

Persistence, allocsig R1,R2 Allocate register SRF[R2] and return its Status Vector in R1
Status, & dallocsig R1 Deallocate SRF[R1]
Exceptions sigstatv R1,R2 Return the Status Vector of SRF[R2] in R1

exptsig R1,target Except to target if a conflict occurs on SRF[R1]
ldsig R1,addr Load from addr into SRF[R1]
stsig R1,addr Store SRF[R1] to addr
mvsig R1,R2 SRF[R1]← SRF[R2]

Manipulation clrsig R1 SRF[R1]← ∅, clear Status Vector and set a=1,z=1,x=0
union R1,R2,R3 SRF[R1]← SRF[R2]∪ SRF[R3]
insert elem R1,R2 SRF[R2]← R1 ∪ SRF[R2]
member R1,R2,R3 R1← (R2 ∈ SRF[R3]) ? 1 : 0
intersect R1,R2,R3 SRF[R1]← SRF[R2] ∩ SRF[R3]

Table 2. SoftSig software interface.

presence of false positive conflicts, this approach will always be
correct.

G4: Manage imprecision to provide the most efficiency. Some
imprecision can be managed in software by controlling how Soft-
Sig is used. Specifically, many false positives may indicate that
SRs are too full and do not have enough precision. Using SRs over
shorter code ranges or finding a way to filter some of the addresses
are effective solutions to manage imprecision. SoftSig provides an
instruction for filtering (Section 4).

In addition, many SR deallocations indicate competing uses for
the SRF. In this case, profiling can help determine the subset of SR
uses that are most profitable. Software should judiciously manage
both of these effects to provide the most efficiency.

G5: Minimize imprecision and unnecessary conflicts. Signa-
tures will always have imprecision due to their hash-based imple-
mentation. However, to minimize additional sources of impreci-
sion, the hardware must support address collection and disambigua-
tion at precise instruction boundaries. Also, to minimize unneces-
sary conflicts, disambiguation should be performed only against the
addresses that are strictly necessary for correctness. In so doing, the
number of unnecessary conflicts will decrease.

4. SoftSig Software Interface
Based on the previous discussion, this section describes SoftSig’s
software interface.

4.1 The Signature Register File (SRF)
A core includes an SRF, which holds a set of SRs. SRs are not
saved and restored at function calls and returns. Instead, SRs have
persistence — they are allocated when needed and, in normal cir-
cumstances, deallocated only when they are not needed anymore.
Consequently, when an SR is allocated, it is assigned a Name spec-
ified by the program. Such a name is used to refer to it until deallo-
cation. The instructions used to manipulate SRs constitute SoftSig’s
software interface. They are shown in Table 2 and discussed next.

4.2 Collection
Collection is the operation that accumulates into an SR the ad-
dresses of the memory locations accessed during a window of exe-
cution. SoftSig supports collection using two instructions, namely
bcollect and ecollect. When bcollect is executed, ad-
dress collection begins. Depending on the instruction suffix, it will

collect only reads (rd), only writes (wr), or both reads and writes
(r/w). When ecollect is executed, address collection ends. Both
instructions take as argument a general purpose register (GPR) that
contains the name of the SR.

For some optimizations, it is important to skip collection over
a range of addresses that the compiler can guarantee need not be
considered. This is supported with the filtersig instruction. Its
inputs are the name of the SR, and the beginning and end of the
range — specified using virtual addresses.

4.3 Disambiguation
Disambiguation is the operation that checks for conflicts between
addresses being accessed and a signature that has been collected or
is currently being collected. SoftSig supports disambiguation using
two instructions, namely bdisamb and edisamb. The former
begins disambiguation, while the latter ends it. Both instructions
take as argument a GPR that contains the name of the SR. They
demarcate a code region during which the hardware continually
checks addresses for conflicts with the signature.

Disambiguation can be configured in many ways. One category
of specification is whether the signature is disambiguated against
accesses issued by the local processor or by remote ones. While
the examples in Figure 2 all used local disambiguation, remote
disambiguation is useful in a multithreaded program to identify
when other threads issue accesses that conflict with those in a local
signature. In addition, disambiguation can be configured to occur
in only reads, only writes, or both reads and writes. As we will see,
remote disambiguation relies on the cache coherence protocol to
flag accesses by remote processors. Consequently, signatures only
observe those remote accesses that cause coherence actions in the
local cache — e.g., remote reads to a location that is only in shared
state in the local cache will not be seen.

In some cases, it may be desirable to disambiguate accesses
performed by remote processors against a local signature that is
currently being collected. This often occurs under HTM or TLS. In
this case, we first need to use bdisamb to begin disambiguation
and then bcollect to begin collection. Swapping the order of
these two instructions is unsafe because it results in a window of
time when conflicts can be missed.

When disambiguation is enabled and the hardware detects a
conflict with a signature, the hardware records it in a Status Vector
associated with the signature. Later in this section, we will show
how the interface specifies the actions to take on a conflict.

The filtersig instruction blocks disambiguation over its
range of addresses for the specified signature.

4.4 Persistence, Signature Status, and Exceptions
The allocsig and dallocsig instructions allocate and deal-
locate, respectively, an SR in the SRF. Each instruction takes as an
argument a GPR that holds the name of the SR. allocsig further
takes a second GPR that returns the Status Vector of the SR. Finally,
allocsig always allocates an SR, even if it requires silently dis-
placing an existing signature. Consequently, any code optimization
that uses SRs must be wary of the hardware displacing a signature
it is relying upon.

The sigstatv instruction returns the Status Vector of an
SR in a GPR. Figure 4 shows the fields of the vector. For now,
consider the three 1-bit fields in the figure that are unshaded. They
describe whether the signature is currently allocated (a), is zero
(z), or has recorded a conflict (x). If sigstatv is called on a
deallocated signature, a default Status Vector is returned with a=0,
z=0, and x=1. Consequently, all code optimizations have to be
implemented under the assumption that this default vector means
that the signature cannot be trusted to hold meaningful results.

x e

Exception
Conflict

za r l [3:2] c [1:0]

Zero
Allocated

Local disambiguation (off, rd, wr, r/w)
Collection (off, rd, wr, r/w)

r [5:4]

Remote disambiguation (off, rd, wr, r/w)

Figure 4. Status Vector associated with a signature.

While this makes it possible to generate code that will always
function correctly, it would be inefficient to require a Status Vector
check before every signature operation. Therefore, SoftSig supplies
an additional simplifying policy: a disambiguation or collection
operation on a deallocated signature is converted into a NOP.

The sigstatv instruction makes it possible to explicitly
query for the presence of a conflict. However, it is not always
desirable to schedule an instruction to test for a conflict. Consider
the case of watchpoints in Figure 2(c) — any conflict should be
reported immediately when it occurs. To enable such behavior,
SoftSig provides the exptsig instruction. exptsig specifies an
exception handler that should be triggered when a conflict occurs
on a specific SR. Exptsig takes as arguments the SR and the
address of the first instruction of the exception handler.

The shaded fields in the Status Vector shown in Figure 4 supply
additional configuration information that is only valid if the signa-
ture is allocated. Starting from the right, the fields show the status
of collection, and of local and remote disambiguation. The status
can be off, only reads, only writes, and reads plus writes. The e bit
indicates whether an exception should be generated on a conflict.

4.5 Signature Manipulation
SoftSig provides a set of operations to manipulate signatures. Ta-
ble 2 lists them. Since they are straightforward, we leave it to the
reader to understand their use from the description in the table.

4.6 Interaction with Checkpointing
As shown Figures 2(a)-(c), SoftSig is useful without the need for
machine checkpoints. However, if the system supports checkpoint-
ing — either in software or in hardware — SoftSig can provide
additional functionality. Specifically, it can enable efficient execu-
tion of optimizations where the code performs some risky operation

speculatively and then tests whether the execution was correct. If it
was not, execution is rolled back.

Figures 2(d)-(e) showed an example of speculative optimiza-
tion. The expression is assumed loop invariant and hoisted before
the loop. After the loop is executed, there is a check to see if the
assumption was correct. If it was not, the checkpoint is restored and
the original loop is executed. Note, however, that SoftSig’s appli-
cability is not limited to speculative environments.

4.7 Managing Signature Registers
It is necessary that each SR have a unique name. If two SRs had
the same name, they could be confused with one another and lead
to incorrect programs. Within a thread, the compiler can typically
guarantee that each dynamic SR instance has a different name. For
example, it can derive the name at allocation time based on the
address of the function that allocates the SR.

This approach, however, does not guarantee that names are
unique across different threads or processes time-sharing a proces-
sor. One possible solution is to include the thread or process ID
as part of the name of the SR. This approach works well for SMT
processors. For single-threaded processors, by simply invalidating
the SRF at context switches as per guideline G1, we eliminate any
possible confusion between SR instances.

5. SoftSig Architecture
The SoftSig architecture consists of several extensions to a super-
scalar processor. As shown in Figure 5, the extensions are grouped
into a SoftSig Processor Module (SPM), which contains the Sig-
nature Register File (SRF), the Status Vectors, FUs to operate on
signatures, the exception vectors, and a module called the In-flight
Conflict Detector (ICD), which aids remote disambiguation. The
SPM interacts with the Reorder Buffer (ROB) and the Load-Store
Queue (LSQ) in support of collection and disambiguation. The rest
of this section describes the architecture in detail.

Processor

LSQ

ROB

SoftSig Processor
Module (SPM)

Signature
Functional

Unit (SFUs)

Status
Vectors

Signature
Register File

(SRF)
Exception
Vectors

ICD

Figure 5. SoftSig architecture.

5.1 SoftSig Instruction Execution
In our design, SoftSig instructions execute only when they reach the
head of the ROB. Therefore, SRs are neither renamed nor updated
by speculative instructions or updated out of order. We choose this
approach to follow guidelines G1, G2, and G5 in Section 3.3.
Indeed, if we allowed speculative instructions to update SRs, every
speculative instruction that updated an SR would have to make
a new copy of the SR, in order to be able to support precise
exceptions. The additional accesses and copies required would run
counter to guideline G1.

In addition, allowing speculative instructions to update SRs
would induce a larger number of in-use SRs. This is at odds with
guideline G2, which prescribes that the SRs should be allocated
and deallocated dynamically in the most efficient manner. Finally,
allowing out-of-order update of the SRs would make it hard to
maintain precise boundaries in the code sections where signatures
are collected or disambiguated. The signatures would then be more
imprecise, which would hurt guideline G5.

However, executing SoftSig instructions only when they reach
the head of the ROB has two disadvantages. First, some non-
SoftSig instructions may have data dependences with SoftSig in-
structions — for example, instructions that check the Status Vector.
Such instructions will have to wait for the SoftSig ones to execute.
However, thanks to out-of-order execution, other, independent in-
structions can continue to execute. The second disadvantage is that
remote disambiguation does not work correctly in this environment
unless the ICD module is added. Section 5.5.1 presents this prob-
lem in more detail and describes our solution.

5.2 Signature Register File
As shown in Figure 6, the SRF is composed of three modules,
namely the Signature Register Array, the Operation Select, and the
Signature Encode. The former contains all the SRs, and has a read
(Sig Out) and a write (Sig In) port. In turn, each SR has an input
(In) and an output (Out) data port, control signals for union with
the input (∪), intersection with the input (∩), read (Rd), and write
(Wr), and output signals that flag a conflict (Conflict[i]) or a zero
SR (Zero[i]).

Signature Register (SR)
⋃
⋂
Rd
Wr

In

Out

X
C[i]
D[i]
R[i]
W[i]

Operation
Select

Signature
Register Array

Sig_In

Sig_Out

Conflict[i]

Signature Encode

VirtAddr

PhysAddr

Op

Name

Status
Vectors

Sig_Enc
Signature

Z Zero[i]

Figure 6. The signature register file.

The Operation Select module generates the control signals for
the SRs. Specifically, it can set the Collect (C[i]), Disambiguate
(D[i]), Read (R[i]), or Write (W[i]) signals for one or more SRs
simultaneously. To generate these signals, it takes as inputs the
Status Vectors of all the SRs and, if applicable, the type of operation
to perform (Op), the name of the SR to operate on (Name), and the
virtual address of the local access (VirtAddr). The latter is needed
in case we need to filter ranges of addresses.

Finally, the Signature Encode module takes a physical address
and transforms it into a signature (Sig Enc). Either Sig Enc or an
explicit signature can be routed into the Signature Register Array
for collection, disambiguation, or writing.

5.3 Allocation and Deallocation
When an allocsig instruction reaches the head of the ROB, the
hardware attempts to allocate an SR. If an SR with the same name
is already allocated, no action is performed. Otherwise, an SR is
cleared, its Status Vector is initialized, and the SR name is stored
in the Operation Select module.

If there is no free SR, then one is selected for displacement. The
system tries to displace an SR that has its Conflict bit set. If no
such SR exists, then an SR is selected at random. In either case, the
name of the deallocated SR is removed from the Operation Select
module.

When a dallocsig instruction reaches the head of the ROB,
the hardware deallocates the corresponding SR. This operation
involves removing the SR name from the Operation Select module.

5.4 Collection and Local Disambiguation
When a bcollect or a bdisamb.loc instruction reaches the
head of the ROB, the hardware notifies the LSQ to begin sending
to the SoftSig Processor Module (SPM) the address (virtual and
physical) and type of access of all memory operations as they retire.

In addition, the appropriate bits in the corresponding Status Vector
are set. As addresses are streamed into the SPM, they are handled
by the SRF as described previously.

If no conflict is detected on a memory operation, the ROB is
notified that the corresponding instruction can retire; otherwise, the
Conflict signal is raised and, depending on the configuration, an
exception may be generated (Section 5.6).

When an ecollect or an edisamb.loc instruction reaches
the head of the ROB, the corresponding Status Vector is updated.
When both collection and local disambiguation have terminated for
all SRs, the LSQ does not forward state to the SPM any longer.

5.5 Remote Disambiguation
The bdisamb.rem instruction enables the SPM to watch the ad-
dresses of external coherence actions, while the edisamb.rem
terminates this ability — if no other SR is performing remote dis-
ambiguation. Both instructions also update the Status Vector of the
corresponding SR. As usual, edisamb.rem performs its actions
when it reaches the head of the ROB. However, bdisamb.rem
is different in that, for correctness, it needs to perform some of its
actions earlier. In the following, we consider why this is the case
and how we ensure correct remote disambiguation.

5.5.1 Correctly Supporting Remote Disambiguation
The challenging scenario occurs when SoftSig performs address
collection and remote disambiguation on the same SR simulta-
neously. This is a common situation in HTMs. In this case, to
eliminate any window of vulnerability where a conflicting ex-
ternal coherence action could be missed, we must enclose the
bcollect and ecollect instructions inside the region bounded
by bdisamb.rem and edisamb.rem instructions. This is
shown in Figure 7(a), which also includes a load to variable X in-
side the code section being collected and remotely disambiguated.

Time

bdisamb.rem

bcollect

ecollect

edisamb.rem

Collection &
Remote
Disambiguation

(a)

load X

Time

bdisamb.rem

bcollect

ecollect

edisamb.rem

t0
t1
t2 load X (reaches ROB head)

(load executes)
External
invalidation
on X

(b)

Head of ROB

bdisamb.rem

load X
SPM

ICD

SR

Turn on at issue

Insert when it reaches
Head of ROB.

Insert when
it executes

(c)

Remove when it
reaches Head of ROB

Figure 7. The ICD prevents missing a remote conflict.

However, as shown in Figure 7(b), due to out-of-order execu-
tion, the load may execute at time t0, which is before it reaches the
head of the ROB (and updates the SR) at time t2. Unfortunately, if
an external invalidation on X is received at time t1 — in between
the time the load reads at t0 and the time it updates the SR at t2
— the conflict will be missed. Note that we cannot assume that the

consistency model supported by the processor will force the retry
of the load to X.

This inconsistency occurs because loads read data potentially
much earlier than they update the SR. To solve this problem, we add
the In-flight Conflict Detector (ICD) to the SPM, and require that
bdisamb.rem perform most of its actions in the (in-order) issue
stage. More specifically, the ICD is a counter-based Bloom filter
that automatically accumulates the addresses of all in-flight loads.
As shown in Figure 7(c), when the load executes, X is inserted into
the ICD. When the load reaches the head of the ROB, X is inserted
into the SR and, since the ICD is counter-based, it is removed from
the ICD. If remote address disambiguation is enabled, any external
coherence action is disambiguated against both the SR and the ICD.
If a conflict is found on either the ICD or the SR, then the SR is
flagged as having a conflict. In the example shown, the conflict will
be detected by the ICD as soon as the invalidation is received.

Moreover, we must ensure that bdisamb.rem turns the ICD
on before any subsequent load could be executed. Consequently,
we conservatively require that bdisamb.rem turn the ICD on and
start directing external coherence addresses to the SPM as soon as
the bdisamb.rem instruction goes through the (in-order) issue
stage. This is shown in Figure 7(c). However, bdisamb.rem does
not update the Status Vector until it reaches the head of the ROB.
This is because only then can we guarantee that the corresponding
allocsig instruction has retired.

Based on this design, the full behavior of the ICD is as follows.
When bdisamb.rem is issued, the ICD is turned on. When a
load executes, its address is added to the ICD; when a load reaches
the head of the ROB or is found to be misspeculated, its address
is removed from the ICD. If an external coherence action has a
conflict with the ICD, the ICD sets a flag indicating a conflict and
remembers the ROB index of the youngest load instruction i that
has executed so far. All SRs that are collecting and performing
remote disambiguation from this point until i retires will have their
Conflict bit set in their Status Vector. Once i retires, the ICD clears
its conflict flag — since any SR that starts collection after i should
not be affected by this conflict. The ICD remains active from the
time the first bdisamb.rem is issued until no signatures perform
remote disambiguation anymore.

5.5.2 Handling Cache Displacements under Remote
Disambiguation

A final challenge to supporting remote disambiguation involves
cache displacements. The problem is that a cache is only guaran-
teed to see external coherence actions on those addresses that it
caches. If the cache displaces a line, the cache may not see future
coherence actions by other processors on that particular line. There-
fore, consider a processor that performs both collection and remote
disambiguation on an SR. Suppose that the processor references a
line, inserts its address in the SR, and then displaces the line from
the cache. Future coherence actions by other processors on that line
may not be seen by the cache and, therefore, remote disambiguation
cannot be trusted to identify all remote conflicts.

To prevent this case, when remote disambiguation against an
SR is in progress, the hardware takes a special action when a
line is displaced from the cache. Specifically, the line’s address
is disambiguated against the SR, as if the cache had received an
external invalidation on that line. This approach may conservatively
generate a non-existing conflict. However, it will never result in
missing a real conflict.

A more expensive, alternative approach would involve explicitly
preventing the displacement of lines whose address are collected in
the SR — for as long as remote disambiguation is in progress. This
is the approach used in HTM and TLS systems. We do not support
this approach.

5.6 Exceptions
When a conflict is detected on an SR, an exception may be trig-
gered. The SPM supports registering exception handlers in a table,
as shown in Figure 5 as Exception Vectors. If an exception is regis-
tered for a given SR, it is triggered when a conflict is detected. For
a conflict caused by a local access, a precise exception is generated.
For a conflict caused by an external coherence action, the handler
is called as soon as the ICD or the SR detect the conflict.

When an exception is raised, the SPM notifies the processor’s
front end of the target address and informs the ROB of the instruc-
tions that need to be flushed. The exception handler then pushes the
return address into a register and disables the handling of additional
exceptions. Since other SRs may still be under disambiguation, ad-
ditional exceptions are buffered and serviced sequentially.

6. MemoiSE: Signature-Enhanced Memoization
Memoization has been used to replace redundant or precomputed
function calls with their outputs [17]. However, in languages such
as C and C++, function memoization is hard to apply because
memory state is often changed through non-analyzable pointer ac-
cesses. Using SoftSig, however, we propose a very general, low-
overhead, and effective approach to increasing the number of func-
tion calls that can be memoized. We call our approach MemoiSE,
for Signature-Enhanced memoization. In this section, we describe
MemoiSE’s general approach, the MemoiSE algorithm, and some
optimizations to reduce its overhead.

6.1 A General Memoization Framework
Memoization algorithms work by caching the values of the inputs
and outputs of a function in a lookup table. When the function is
next invoked, the lookup table is searched for an entry with an iden-
tical set of input values. If such an entry is found, the output values
are copied out of the lookup table into the appropriate locations
(memory or registers), and the function execution is skipped.

Unfortunately, a function’s inputs and outputs are not just the
explicit input arguments passed to the function and the explicit out-
put arguments returned by the function. They also include implicit
inputs and outputs. These are other variables that the function reads
from memory or writes to memory. To build a generic memoization
algorithm, both explicit and implicit inputs and outputs need to be
considered.

A naive approach would log the values of all implicit inputs and
outputs in the table, in the same way as explicit inputs and out-
puts are logged. Unfortunately, implicit inputs and outputs cannot
always be determined statically by the compiler, and there can be a
very large number of them.

With MemoiSE, we do not log implicit inputs and outputs.
Instead, we note that, if none of the implicit inputs or outputs have
been written to since the end of the previous invocation of the
function, then they have the same values. Such a condition can be
easily checked using SoftSig. Indeed, during the initial execution of
the function, we collect the addresses of all the implicit inputs and
outputs in signatures. After the function completes, as the processor
continues execution, the hardware enables the disambiguation of
these signatures against all processor accesses. If, by the time
execution reaches another call to the function, no conflicts have
been discovered, it is safe to assume that the implicit inputs and
outputs have not changed.

It is possible that, during the execution of the function, an
implicit output overwrites a location read by an implicit input. In
this case, since an input has changed, memoization should fail.
We call this case Internal Corruption, and it must be detected to
guarantee correctness of the optimization. Fortunately, detecting
this case is easy with SoftSig signatures.

foo:

foo_body:

exit:
 ret

Prologue

Setup

...

...

Epilogue

foo_prologue:
 <set R1 to point to first lookup table entry>
 <if empty table, goto foo_setup>
foo_chk_entry:
 <check explicit inputs in lookup table entry>
 <if mismatch, goto foo_next_entry>
 sigstatv R0,R1
 <if R0 shows conflict or collection, goto foo_setup>
 <read out explicit outputs from lookup table entry>
 j exit

foo_next_entry:
 <set R1 to point to next lookup table entry>
 <if no more entries, goto foo_setup>
 j foo_chk_entry

foo_setup:
 <set R1 to point to new/recycled lookup table entry>
 <save explicit inputs in lookup table entry>
 add R2,R1,1
 allocsig R0,R1 /*SR collects reads */
 allocsig R0,R2 /*SR collects writes */
 clrsig R1
 clrsig R2
 filtersig R1,MIN_STACK,SP+C
 filtersig R2,MIN_STACK,SP+C
 bdisamb.wr.rem R1 /*detect remote conflict */
 bdisamb.wr.rem R2 /*detect remote conflict */
 bdisamb.wr.loc R1 /*detect internal corruption*/
 bcollect.rd R1
 bcollect.wr R2
 <save R1 and R2 on stack>

foo_epilogue:
 <restore R1 and R2 from stack>
 ecollect R1
 ecollect R2
 sigstatv R0,R1
 sigstatv R3,R2
 <if R0 or R3 has conflict, goto foo_cleanup>
 union R1,R1,R2 /*SR consolidation*/
 dallocsig R2
 <save explicit outputs in lookup table entry>
 j exit
foo_cleanup:
 dallocsig R1
 dallocsig R2
 <clear lookup table entry>

(a) Function code layout

(c) Prologue

struct {
 <explicit inputs>
 <explicit outputs>
}foo_lookup_table [M];

(b) Lookup table

(d) Setup

(f) Stack layout

(e) Epilogue

SP

SP+C

Upper stack:
implicit inputs and outputs

Lower stack: temporaries

Explicit inputs and outputs

MIN_STACK

Figure 8. Applying the MemoiSE algorithm to function foo: function code layout (a), lookup table (b), Prologue (c), Setup (d), Epilogue
(e), and stack layout (f).

In summary, MemoiSE works by recording the explicit inputs
and outputs of a function call in the lookup table, collecting the
addresses of the implicit inputs and outputs of the function using
signatures and, after the function is executed, disambiguating these
signatures against the addresses accessed by the code that follows.
When we reach the next call to the function, we successfully mem-
oize it if: (1) the explicit inputs match an entry in the lookup table,
(2) during function execution, implicit outputs did not overwrite
any implicit inputs, and (3) the implicit inputs and outputs have not
been modified since the previous call as determined by signature
disambiguation.

6.2 The MemoiSE Algorithm
MemoiSE is implemented by intercepting function calls using code
inserted in functions. Figure 8 shows the application of MemoiSE
to function foo. Part (a) shows the resulting layout of foo’s code.
MemoiSE inserts three code fragments: Prologue, Setup, and Epi-
logue. Part (b) shows the statically-allocated lookup table for foo.
An entry in the table records the values of the explicit inputs and
the explicit outputs of a call to foo. Different entries correspond to
different values of the explicit inputs. In a multithreaded program,
each thread has its own private copy of the lookup table to avoid
the need to synchronize on access to a shared table. In the follow-
ing, we explain the Prologue, Setup, and Epilogue code fragments.
Note that we have skipped some code optimizations in the figure to
make the code more readable.

6.2.1 Prologue
The Prologue is shown in Figure 8(c). It determines whether the
call can be memoized and, if so, it reads out the explicit outputs
stored in the lookup table and immediately jumps to the function
return. To understand the code, note that each entry in the lookup
table is logically associated with an SR. This SR was used to collect
the function’s memory accesses when the function was called with
the explicit inputs stored in the entry. Moreover, this SR has been

disambiguated against all local and remote accesses since that
function call was executed. Finally, the name of this SR was set
to be the virtual address of the lookup table entry.

Based on this organization, the code in Figure 8(c) first sets
register R1 to point to the first entry in the lookup table, which
is also the name of the associated SR. Then, the function’s explicit
inputs are compared to the values stored in the table entry. If they
are the same, then this entry’s explicit outputs can potentially be
reused. However, we first need to check that the associated SR has
not recorded a conflict since the function was last called with these
explicit inputs. To perform the check, we first use the sigstatv
instruction to read out the SR’s Status Vector into register R0. If
the bits in the Status Vector show both that there has been no
conflict and that this SR is not currently collecting addresses (if
it is still collecting, it would mean that the function is recursive
and, therefore, cannot be memoized), then memoization succeeds.
In this case, the explicit outputs are read out from the table entry
and control transfers to the function return. If, instead, memoization
fails, the function needs to be executed. Also, if the explicit inputs
did not match, we check subsequent table entries until a match is
found or the table is exhausted.

6.2.2 Setup
If the function call is not memoized, the Setup code fragment
initializes the necessary structures to record the effects of this call.
The code is shown in Figure 8(d). It involves three operations,
namely obtaining a new entry in the lookup table (or recycling the
entry that has the same explicit inputs, if it already exists), saving
the explicit inputs in the entry, and starting-up SRs to collect the
addresses of the implicit inputs and outputs.

The instructions for the third operation are shown in Figure 8(d).
We allocate two SRs — one for addresses read and one for ad-
dresses written. In the figure, the name of the SR for reads is the
address of the table entry, and it is stored in R1; the name of the SR

for writes is obtained by adding 1 to the entry’s address, and it is
stored in R2.

The next step is to skip the collection of (and the disambigua-
tion against) the addresses of local accesses to memory-allocated
variables that are neither implicit inputs nor implicit outputs. These
are temporaries that are created on the stack for use during the
call, or are explicit inputs or outputs passed on the stack. The
stack locations where such variables are allocated is shown in Fig-
ure 8(f): we store explicit inputs or outputs between SP and SP+C,
and temporaries between MIN STACK and SP. In Figure 8(d), the
filtersig instruction ensures that accesses to these variables
are neither collected nor disambiguated against.

Next, we initiate disambiguation of remote writes against both
SRs, and of local writes against the SR that collects reads. The
latter operation will detect internal corruption (Section 6.1). Note
that remote disambiguation is only necessary for multithreaded
programs. Then, we start address collection for both SRs. Finally,
we save R1 and R2 in the stack, since function foo may write these
registers, and we will need them later.

6.2.3 Epilogue
After foo executes, we can fill the entry in the lookup table. This
process is performed by the Epilogue as shown in Figure 8(e). This
code first restores R1 and R2 from the stack and ends collection for
both SRs. It then obtains the Status Vectors of the SRs and checks
that they have not recorded a conflict. If either one has recorded a
conflict, then memoization is not possible; we discard the entry in
the lookup table and deallocate the two SRs.

Otherwise, the two SRs are consolidated into one SR (whose
name is in R1 in the example) to save space. Moreover, the explicit
outputs of the call are saved in the entry of the lookup table. Note
that the remaining SR is currently under disambiguation against
local and remote writes.

6.3 Optimizations for Lower Overhead
Since only some functions can benefit from memoization, a profiler
should identify which functions are amenable to memoization and
apply MemoiSE only to them, as per G4. We leverage an analytical
model proposed by Ding and Li [8] to identify which functions are
most likely to benefit from memoization.

Furthermore, searching a large lookup table usually adds signif-
icant overhead. Consequently, we use profiling to discover which
functions mostly need a single-entry table. For these functions, we
restructure the table while providing space for only a single entry,
so that the table can be accessed with very low overhead.

7. Evaluation
7.1 Experimental Setup
To estimate the potential of MemoiSE, we implemented an analysis
tool that uses Pin [16], a software framework for dynamic binary
instrumentation. The output of Pin is connected to a simulator of
a multiprocessor memory subsystem based on SESC [23]. The
simulator models per-processor private L1 caches attached to a
shared L2 cache. Some parameters of the architecture are shown
in Table 3. With this setup, we can estimate MemoiSE’s reduction
in number of instructions executed and in execution time. The latter
is obtained assuming that, when memory accesses do not stall the
processor, the average IPC of non-memory instructions is 1. We
model the overlap of instructions with L2 misses.

For our experiments, we run the applications shown in Table 4.
They are Firefox, Gaim, Impress, SESC and Supertux. The first
three are popular applications used on many personal computers.
SESC is an architectural simulator [23] and Supertux is an open-
source arcade game. Of these applications, Firefox, Impress, and

Reorder buffer 50 entries
Signature register file 16 signature registers, 1Kbit each
L1 cache: size, line, assoc, lat. 64 KB, 64B, 4, 1 cycle
L2 cache: size, line, assoc, lat. 2 MB, 64B, 8, 10 cycles
Max. outstanding L2 misses 16
Memory latency 500 cycles

Table 3. Parameters of the architecture simulated.

App.
(Num

Threads)

Description Section Analyzed

Firefox
(6)

Popular web
browser

Begins after initialization, while
it loads the iacoma.cs.uiuc.edu
webpage

Gaim
(1)

Open source
instant messaging
program

Begins once a client is running.
It consists of opening a new mes-
sage window, sending a message,
and receiving a message

Impress
(6)

OpenOffice
presentation
software

Begins with opening a sample
presentation and continues while
a user interacts with it

SESC
(1)

Architectural
simulator
available from
SourceForge.net

Performs a functional simulation
of the mcf program using the de-
fault simulator configuration from
SourceForge.net

Supertux
(2)

“Jump’n run”
arcade
sidescroller game
like Mario
Brothers

Performed during game play. It
begins when the penguin drops to
the ground. It continues until the
penguin dies and respawns

Table 4. Applications studied.

Supertux are multithreaded, and run with 6, 6, and 2 threads, re-
spectively. For each application, we trace an execution of over 400
million instructions.

We study MemoiSE in the context of the four environments of
Table 5. By default, the results are normalized to Baseline.

Environ. Description
Baseline No MemoiSE

MemoiSE applied selectively to some functions
Plain (P) using a cost-benefit analysis as in [8]. Lookup

table size is limited to 10 entries
Optimized P optimized by reducing the lookup table size
(O) to a single entry for functions that get little

benefit from larger tables. It has low overhead
Ideal (I) O with unlimited number of SRs and no false positive

conflicts. It approximates an ideal hardware behavior

Table 5. Environments analyzed.

7.2 Impact of MemoiSE
Figure 9 shows the dynamic instruction counts of the P, O, and I
environments relative to Baseline. The figure shows data for each
application and the average. Each bar is divided into two segments.
The segment above zero (Gains) is the fraction of application in-
structions eliminated by memoizing function calls. The segment
below zero (Overhead) is the additional instructions added by the
memoization algorithm. The difference between Gains and Over-
head is the savings achieved by MemoiSE, and is shown above each
bar. A better optimization will have a taller Gains and a shorter
Overhead.

From the figure, we see that, on average, P eliminates 13% of
the application instructions. However, it adds overhead instructions,
resulting in an average net instruction reduction of only 5.9%. For

Firefox Gaim Impress SESC Supertux Avg

-15.0
-10.0

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0

%
 D

yn
. I

ns
tr

uc
tio

ns

Overhead Gains

P O I

1.4 1.4 2.4

P O I

2.7 3.2
4.5

P O I

0.0 1.1 1.7

P O I

14 20 20

P O I

11 20 20

P O I

5.9 9.3 9.9

Figure 9. Dynamic instruction count relative to Baseline.

SESC and Supertux, the reduction in application instructions is
especially significant, reaching over 25%. Moving now to the O
bars, we see that keeping most of the tables to a single entry results
in much lower overheads, while, in most cases, still eliminates a
similar number of application instructions. The result is that the
average net instruction reduction is lifted to 9.3% — and about 20%
for SESC and Supertux.

Interestingly, having an unlimited number of SRs with no false
positive conflicts (I bar) offers little additional advantage. The
average net instruction reduction is slightly under 10%. Therefore,
16 SRs of 1Kbit each appear to be enough.

Figure 10 shows the execution times of the P, O, and I envi-
ronments relative to Baseline. The figure shows that the execution
time reductions closely follow the reductions in instruction count.
On average, O offers a 9% reduction in execution time. Moreover,
the reduction reaches 19% for SESC and Supertux. This is a sig-
nificant reduction in execution time on challenging applications. In
addition, the average reductions are nearly identical to those for the
I environment. They are slightly better than for the P environment.

Firefox Gaim Impress SESC Supertux Avg

0

0.2

0.4

0.6

0.8

1.0

N
or

m
.E

xe
.T

im
e

P O I P O I P O I P O I P O I P O I

Figure 10. Execution time relative to Baseline.

Our execution time analysis provides insights into the over-
heads of MemoiSE. Because MemoiSE adds a lookup table for
each memoized function, the overheads of memoization can vary
depending on the cache behavior of the accesses to the lookup ta-
bles. Fortunately, we observed that the accesses to the lookup tables
rarely caused L2 misses due to the temporal locality of function
calls.

Figure 11 shows the contention on the SRF. For each applica-
tion and for the average, the figure shows the average number of
accesses per cycle to the SRF for collection and disambiguation.
Each bar is broken into four categories of accesses: C-Rd is the
collection of read addresses, C-Wr is the collection of written ad-
dresses, D-Loc is local disambiguation, and D-Rem is remote dis-
ambiguation. There are also additional accesses due to allocating,
deallocating, and manipulating SRs. However, they are not seen in
the figure because they account for a very small fraction of the total
accesses.

From the figure, we see that the average number of SRF ac-
cesses per cycle is about 0.11. This means that the SRF is only
accessed roughly once in 10 cycles. This is a tolerable access fre-
quency. In addition, for the multithreaded applications (Firefox,
Impress, and Supertux), remote disambiguation causes most of the
accesses. In all the applications, collection and local disambigua-
tion are less significant, in part due to the filtering of many stack
accesses.

Firefox Gaim Impress SESC Supertux Avg
0.0

0.05

0.1

0.15

0.2

0.25

0.3

S
R

F
 A

cc
es

se
s

P
er

 C
yc

le

C-Rd C-Wr D-Loc D-Rem

Figure 11. Mean number of SRF accesses per cycle of execution.

7.3 Function Characterization
To further understand MemoiSE, we analyze in detail one function
that is frequently memoized from each application. The functions
are shown in Table 6. From left to right, the columns of the table
show: (1) function name; (2) application name; (3) explicit inputs;
(4) type of the explicit output; (5) number of calls to the function
in the execution analyzed by Pin; (6) average dynamic size of each
call in instructions; (7) fraction of the total application instructions
eliminated by memoization (Gains in Figure 9) that are contributed
by this function; (8) fraction of the calls to the function that are
memoized; (9) fraction of the failed memoizations of this function
due to conflicts that are caused by false positives; and (10) average
read and (11) write set size, respectively, of the function when it is
successfully memoized. The read (or write) set size is the number
of reads (or writes) to different locations.

g value type compatible from Firefox is a function in
the GLib GTK+ core library that checks whether two object types
are compatible with each other. The check is done by accessing a
type table and examining the inheritance tree. As shown in the Mem
column, memoization is typically successful (75% of the times).
This is because the data structures are only updated when a type
is first registered. However, the large variation in the input values
sometimes causes misses in the lookup table.

pango fc font get glyph from Gaim is a Pango GTK+
font library function that gets the glyph index of a given Unicode
character for a font. The properties of a glyph within a font do
not change once the font is loaded into memory and are requested
frequently in Gaim as each character is processed. Memoization is
often successful (21% of the times, as shown in the Mem column),
as characters are repeated. However, a larger lookup table would be
desirable for a longer history of characters.

dl name match p from Impress is a function used internally
in the GNU C library to test whether the given name matches any
of the names of the given object. It is often used to resolve the name
of a dynamically-loaded object such as a shared library object.
Since the list of names for an object is updated only when it is first
registered (e.g., when a shared library is first loaded), this function
behaves much like a pure function at runtime. Consequently, as
shown in the Mem column, it is memoized 95% of the times.

Function Name App. Explicit Inputs Explicit
Output

#Calls
(Thous.)

Size
(Inst.)

Weight
(%)

Mem
(%)

FP
(%)

R
Set

W
Set

g value type compatible Firefox GType src type, GType dest type gboolean 17.8 212 19 75 0 7 0
pango fc font get glyph Gaim PangoFcFont* font, gunichar wc guint 25.1 322 5 21 1 29 0

dl name match p Impress const char* name, struct
link map* map int 41.1 80 31 95 0 8 0

OSSim::enoughMTMarks1 SESC this, int pid, bool justMe bool 33481.0 35 80 100 0 2 0

Sector::collision static Supertux

this, collision::Constraints*
constraints, const Vector&
movement, const Rect& dest,
GameObject& object

void 7.7 5023 14 29 10 551 0

Table 6. Five functions that are frequently memoized from the different applications.

Moreover, as shown in the Weight column, it contributes 31% of
the application instruction reduction.

OSSim::enoughMTMarks1 from SESC monitors several
conditions to determine when the program should begin and end
detailed timing simulation. While the condition checks are opti-
mized, they are performed frequently — some kind of check is
required after each instruction is simulated. The function is only 35
instructions, but it is called millions of times. Its memoization is
practically 100% successful, and it accounts for 80% of the appli-
cation instruction reduction.

Section::collision static from Supertux is part of
the game logic that detects when collisions occur. It is called from
three sites in the same function. The first two sites are in loops, with
each iteration changing one of the input parameters. As a result,
calls from these sites are not memoized. However, between the
second and third sites, no change typically occurs to the parameters,
allowing memoization. For these reasons, memoization is only
29% successful. Nonetheless, the function contributes 14% of the
application instruction reduction because it has a large size (5023
instructions). However, a read set size of 551 addresses, as shown
in the R Set column, leads to an increase in false positives. Indeed,
Column FP shows that, of all failed memoizations due to conflicts,
10% are caused by false positives.

One additional observation is that all these functions have a zero
write set when they are successfully memoized. We find that written
locations are typically read by the same function, causing internal
corruption and memoization failure.

8. Related Work
8.1 Signatures & Bloom Filters
SoftSig builds on the body of work that uses hardware signatures
and Bloom filters for efficient disambiguation (e.g., [3, 4, 18, 19,
21, 25, 31]). Bulk [3], LogTM-SE [31], and SigTM [18] are closely
related to SoftSig. Each system uses signatures for the explicit pur-
pose of supporting TM or TLS. For the case of Bulk and LogTM-
SE, these signatures are hardware registers that are used for the
sole purpose of logging memory accesses and performing conflict
detection. LogTM-SE can save and restore signatures to support
virtualization, but in no other way are they manipulated by soft-
ware.

SigTM employs a limited set of signature operations in software
to implement Software Transactional Memory. Software can insert
an address into a signature or do a membership test to support read
and write barriers. Software can also do remote disambiguation to
detect conflicts between transactions. SigTM, like LogTM-SE, has
the means to save or restore a signature.

However, none of these schemes provide a comprehensive ISA
to manipulate multiple signatures in a register file that enables the
wide variety of tasks discussed in Section 3. Furthermore, SoftSig
can be used even without support for speculative execution as in

MemoiSE. Per G1, we opted not to save and restore SRs for the
scenarios we considered. However, SoftSig does support save and
restore, and can use them if SoftSig were employed in a TM system.

8.2 Memoization
Memoization has been studied at the granularity of instructions [14,
15, 26, 27] and coarse-grained regions [5, 6, 10, 24, 30]. Sodani
et al. [27] empirically characterized the sources of instruction-level
repetition and some characteristics of function-level behavior. They
found that a large number of dynamic function calls are called with
repeated arguments, and that most of these calls had either implicit
inputs or side effects. This lead them to conclude that few functions
could be memoized. However, with SoftSig, implicit inputs and
side effects are easily coped with.

Connors et al. [5, 6] studied memoization of coarse-grained re-
gions of code using a compiler (augmented with profiling infor-
mation) to identify profitable regions. During execution, compiler-
inserted instructions direct the hardware to record the explicit in-
puts and outputs for a region in a hardware table. Then, when the
region is encountered again, the table is checked for a solution.
If one exists, the outputs are written into registers directly by the
hardware, and the region is skipped. To account for memory inputs,
each table entry has a memory valid bit which is cleared anytime a
memory input for that entry is potentially updated. The compiler is
responsible for scheduling invalidate instructions in the code. Wu
et al. [30] built on top of [5] by combining speculation and memo-
ization to exploit more region-level reuse.

MemoiSE differs from all of these in that it only targets func-
tions, as opposed to arbitrary regions of code. MemoiSE does have
an advantage, in particular over [6], in that it can dynamically de-
tect any memory access that invalidates an entry in the lookup ta-
ble. In addition, the memory accesses of a function do not need
to be analyzed statically for correct memoization. MemoiSE incurs
overhead for table lookups in software. Such lookups are done in
hardware in [6]. If MemoiSE lookups were done in hardware, the
overheads could be significantly reduced.

Ding and Li [8] proposed a compiler-directed memoization
scheme implemented fully in software. The compiler identifies
coarse-grained regions of code for reuse and then generates the nec-
essary code to store the inputs in a lookup table and check the table
on future calls. The compiler must prove that all inputs are invariant
for a memoized region. Also, because there is no hardware support,
the compiler must perform a cost-benefit analysis to decide when
a region of code is worth memoizing. MemoiSE is similar to this
approach in that the lookup table is a software structure and the
compiler/profiler must decide which functions to transform using
a similar cost analysis. MemoiSE, however, can more aggressively
select functions since implicit inputs and outputs are checked dy-
namically.

9. Conclusion
This paper proposed the SoftSig architecture to enable flexible use
of hardware signatures in software for advanced code analysis, op-
timization, and debugging. SoftSig exposes a Signature Register
File to the software through a rich ISA. The software has great
flexibility to decide: (i) what stream of memory accesses to col-
lect in each signature, (ii) what local or remote streams of memory
accesses to disambiguate against each signature, and (iii) how to
manipulate each signature. We also described the processor exten-
sions needed for SoftSig.

In addition, this paper proposed to use SoftSig to detect redun-
dant function calls efficiently and eliminate them dynamically. We
called our memoization algorithm MemoiSE. Our results showed
that, for five multithreaded and sequential applications, MemoiSE
reduced the number of dynamic instructions by 9.3% on average,
thereby reducing the average execution time of the applications by
9%.

SoftSig can be used for many other optimizations. Several pro-
posals for runtime-disambiguation based optimizations can be re-
visited, with potentially new applications or more general use [1,
13, 22, 29]. Also, aggressive speculative optimizations based on
checkpointing [20] may benefit from SoftSig’s ability to record in-
formation about a program’s dependences. Of course, SoftSig can
integrate into environments that already use signatures [3, 18, 31]
to enhance the software’s or the programmer’s control over signa-
ture building and disambiguation.

References
[1] D. Bernstein, D. Cohen, and D. E. Maydan, “Dynamic Memory

Disambiguation for Array References,” in International Symposium
on Microarchitecture, November 1994.

[2] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 11, July 1970.

[3] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in International Sympo-
sium on Computer Architecture, June 2006.

[4] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
Enforcement of Sequential Consistency,” in International Symposium
on Computer Architecture, June 2007.

[5] D. A. Connors, H. C. Hunter, B.-C. Cheng, and W.-M. W. Hwu,
“Hardware Support for Dynamic Activation of Compiler-Directed
Computation Reuse,” in International Conference on Architectural
Support for Programming Languages and Operating Systems,
November 2000.

[6] D. A. Connors and W.-M. W. Hwu, “Compiler-Directed Dynamic
Computation Reuse: Rationale and Initial Results,” in International
Symposium on Microarchitecture, November 1999.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, Cambridge, MA, 2001.

[8] Y. Ding and Z. Li, “A Compiler Scheme for Reusing Intermediate
Computation Results,” in International Symposium on Code Genera-
tion and Optimization, March 2004.

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-
M. W. Hwu, “Dynamic Memory Disambiguation Using the Memory
Conflict Buffer,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, October 1994.

[10] J. Huang and D. Lilja, “Exploiting Basic Block Value Locality with
Block Reuse,” in International Symposium on High Performance
Computer Architecture, January 1999.

[11] Intel Corporation, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. Volume 3B: System Programming Guide, Part II,
November 2007.

[12] V. Krishnan and J. Torrellas, “A Chip-Multiprocessor Architecture
with Speculative Multithreading,” IEEE Trans. on Computers,
September 1999.

[13] J. Lin, T. Chen, W.-C. Hsu, and P.-C. Yew, “Speculative Register
Promotion Using Advanced Load Address Table (ALAT),” in
International Symposium on Code Generation and Optimization,
March 2003.

[14] M. Lipasti, C. Wilkerson, and J. Shen, “Value Locality and Load Value
Prediction,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1996.

[15] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit Via
Value Prediction,” in International Symposium on Microarchitecture,
December 1996.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in International
Conference on Programming Language Design and Implementation,
June 2005.

[17] D. Michie, “”Memo” Functions and Machine Learning,” in Nature,
April 1968.

[18] C. C. Minh et al., “An Effective Hybrid Transactional Memory System
with Strong Isolation Guarantees,” in International Symposium on
Computer Architecture, June 2007.

[19] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi, “JETTY:
Filtering Snoops for Reduced Energy Consumption in SMP Servers,”
in International Symposium on High-Performance Computer Archi-
tecture, January 2001.

[20] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles,
“Hardware Atomicity for Reliable Software Speculation,” in Interna-
tional Symposium on Computer Architecture, June 2007.

[21] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom Filtering
Cache Misses for Accurate Data Speculation and Prefetching,” in
International Conference on Supercomputing, June 2002.

[22] M. Postiff, D. Greene, and T. Mudge, “The Store-load Address Table
and Speculative Register Promotion,” in International Symposium on
Microarchitecture, December 2000.

[23] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC Simulator,”
January 2005. http://sesc.sourceforge.net.

[24] S. Sastry, R. Bodik, and J. Smith, “Characterizing Coarse-Grained
Reuse of Computation,” in Workshop on Feedback-Directed and
Dynamic Optmization, 2000.

[25] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and S. Keckler,
“Scalable Hardware Memory Disambiguation for High ILP Proces-
sors,” in International Symposium on Microarchitecture, December
2003.

[26] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse,” in Interna-
tional Symposium on Computer Architecture, June 1997.

[27] A. Sodani and G. S. Sohi, “An Empirical Analysis of Instruction
Repetition,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1998.

[28] G. Sohi, S. Breach, and T. Vijayakumar, “Multiscalar Processors,” in
International Symposium on Computer Architecture, June 1995.

[29] B. Su, S. Habib, W. Zhao, J. Wang, and Y. Wu, “A Study of Pointer
Aliasing for Software Pipelining Using Run-time Disambiguation,” in
International Symposium on Microarchitecture, November 1994.

[30] Y. Wu, D.-Y. Chen, and J. Fang, “Better Exploration of Region-
level Value Locality with Integrated Computation Reuse and Value
Prediction,” in International Symposium on Computer Architecture,
June 2001.

[31] L. Yen et al., “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches,” in International Symposium on High
Performance Computer Architecture, February 2007.

