
june 2009 | vol. 52 | no. 6 | communications of the acm 93

Two Hardware-Based
Approaches for Deterministic
Multiprocessor Replay
By Derek R. Hower, Pablo Montesinos, Luis Ceze, Mark D. Hill, and Josep Torrellas

doi:10.1145/1516046.1516068

Abstract
Many shared-memory multithreaded executions behave
nondeterministically when run on multiprocessor hardware
such as emerging multicore systems. Recording nondeter-
ministic events in such executions can enable deterministic
replay—e.g., for debugging. Most challenging to record are
memory races that can potentially occur on almost all mem-
ory references. For this reason, researchers have previously
proposed hardware to record key memory race interactions
among threads.

The two research groups coauthoring this paper inde-
pendently uncovered a dual approach: focus on recording
how long threads execute without interacting. From this
common insight, the groups developed two significantly
different hardware proposals. Wisconsin Rerun makes few
changes to standard multicore hardware, while Illinois
DeLorean promises much smaller log sizes and higher
replay speeds. By presenting both proposals in one paper,
we seek to illuminate the promise of the joint insight and
inspire future designs.

1. INTRODUCTION
Modern computer systems are inherently nondeterminis-
tic due to a variety of events that occur during an execution,
including I/O, interrupts, and DMA fills. The lack of repeat-
ability that arises from this nondeterminism can make it diffi-
cult to develop and maintain correct software. Furthermore, it
is likely that the impact of nondeterminism will only increase
in the coming years, as commodity systems are now shared-
memory multiprocessors. Such systems are not only impacted
by the sources of nondeterminism in uniprocessors, but also
by the outcome of memory races among concurrent threads.

In an effort to help ease the pain of developing software
in a nondeterministic environment, researchers have pro-
posed adding deterministic replay capabilities to computer
systems. A system with a deterministic replay capability can
record sufficient information during an execution to enable
a replayer to (later) create an equivalent execution despite
the inherent sources of nondeterminism that exist. With the
ability to replay an execution verbatim, many new applica-
tions may be possible:

Debugging: Deterministic replay could be used to provide
the illusion of a time-travel debugger that has the ability
to selectively execute both forward and backward in
time.

Security: Deterministic replay could also be used to enhance
the security of software by providing the means for an in-
depth analysis of an attack, hopefully leading to rapid
patch deployment and a reduction in the economic
impact of new threats.

Fault Tolerance: With the ability to replay an execution, it
may also be possible to develop hot-standby systems for
critical service providers using commodity hardware. A
virtual machine (VM) could, for example, be fed, in real
time, the replay log of a primary server running on a phys-
ically separate machine. The standby VM could use the
replay log to mimic the primary’s execution, so that in the
event that the primary fails, the backup can take over
operation with almost zero downtime.

As existing commercial products have already shown,
deterministic replay can be achieved with a software-only
solution when executing in a uniprocessor environment.18
This is due, in part, to the fact that sources of nondetermin-
ism in a uniprocessor, such as interrupts or I/O, are relatively
rare events that take a long time to complete. However, when
executing in a shared-memory multiprocessor environment,
memory races, which can potentially occur on every memory
access, are another source of nondeterminism. All-software
solutions exist,4, 8 but results show that they do not perform
well on workloads that interact frequently. Thus, it is likely
that a general solution will require hardware support. To
this end, Bacon and Goldstein2 originally proposed record-
ing all snooping coherence transactions, which, while fast,
produced a serial and voluminous log (see Figure 1).

Xu et al.16 modernized hardware support for multiproces-
sor deterministic replay in general and memory race record-
ing in particular. A memory race recorder is responsible for
logging enough information to reconstruct the order of all
fine-grained memory interleavings that occur during an exe-
cution. To reduce the amount of information that needs to
be logged (so that longer periods can be recorded for a fixed
hardware cost), the system proposed by Xu et al. implemented
in hardware an enhancement to Netzer’s transitive reduc-
tion optimization.13 The idea is to skip the logging of those
races that can be implied through transitivity, i.e., those races

The original Wisconsin Rerun6 paper as well as the origi-
nal Illinois DeLorean11 paper were published in the Pro-
ceedings of the 35th Annual International Symposium on
Computer Architecture (June 2008).

94 communications of the acm | may 2009 | vol. 52 | no. 6

research highlights

implied through the combination of previously logged races
and sequential program semantics. Figure 1a illustrates a
transitive reduction. Inter-thread races between instructions
accessing locations A and B, respectively, are not logged since
they are implied by the recorded race for location F.

While both the original16 and follow-on17 work by Xu
et al. were successful in achieving efficient log compres
sion (∼1B/1000 instructions executed), they required a large
amount of hardware state, on the order of an additional
L1 cache per core, in order to do so. Subsequent work by
Narayanasamy et al.12 on the Strata race recorder reduced this
hardware requirement but, as results in Hower and Hill6 show,
may not scale well as the number of hardware contexts in a
system increases. This is largely because Strata writes global
information to its log entries that contains a component
from each hardware thread context in the system.

A key observation, discovered independently by the
authors of this paper at the Universities of Illinois and
Wisconsin, is that by focusing on regions of independence,
rather than on individual dependencies, an efficient and
scalable memory race recorder can be made without sacri
ficing logging efficiency. Figure 1b illustrates this notion by
breaking the execution of Figure 1a into an ordered series of
independent execution regions. Because intra-thread depen-
dencies are implicit and do not need to be recorded, the exe-
cution in Figure 1b can be completely described by the three
inter-thread dependencies, which is the same amount of
information required after a transitivity reduction shown in
Figure 1a.

The authors of this paper have developed two different
systems, called Rerun6 and DeLorean,11 that both exploit the
same independence observation described above. These
systems, presented in the same session of ISCA 2008, exem-
plify different trade-offs in terms of logging efficiency and
implementation complexity. Rerun can be implemented
with small modifications to existing memory system archi-
tectures but writes a larger log than DeLorean. DeLorean
can achieve a greater log size reduction and a higher replay
speed but requires novel hardware to do so.

2. RERUN
Wisconsin Rerun6 exploits the concept of episodic race
recording to achieve efficient logging with only small modifi-
cations to existing memory system architectures. The Rerun
race recorder does not interfere with a running program in
any way; it is an impartial observer of a running execution,
and as such avoids artificially perturbing the execution
under observation.

2.1. Episodic memory race recording
This section develops insights behind Rerun. It motivates
Rerun with an example, gives key definitions, and explains
how Rerun establishes and orders episodes.
Motivating Example and Key Ideas: Consider the execution
in Figure 2 that highlights two threads i and j executing on a
multicore system. Dynamic instructions 1–4 of thread i hap-
pen to execute without interacting with instructions running
concurrently on thread j. We call these instructions, collec-
tively labeled E1, an episode in thread i’s execution. Similarly,
instructions 1–3 of thread j execute without interaction and
constitute an episode E2 for thread j. As soon as a thread’s
episode ends, a new episode begins. Thus, every instruction
execution is contained in an episode, and episodes cover the
entire execution (right side of Figure 2).

Rerun must solve two subproblems in order to ensure that
enough episodic information is recorded to enable deter-
ministic replay of all memory races. First, it must determine
when an episode ends, and, by extension, when the next
one begins. To remain independent, an episode E must end
when another thread issues a memory reference that conflicts
with references made in episode E. Two memory accesses
conflict if they reference the same memory block, are from
different threads, and at least one is a write. For example,
episode E1 in Figure 2 ends because thread j accesses the
variable F that was previously written (i.e., F is in the write
set of E1). Formally, for all combinations of episodes E and F

Figure 1: An example of efficient race recording using (a) an explicit
transitive reduction and (b) independent regions. In (a), solid lines
between threads are races written to the log, while dashed lines are
those races implied through transitivity.

F = 1

A = 5
r1 = F

r1 = F

r1 = F

r2 = A

r3 = B

B = 6

F = 0

F = 1

r1 = F
r1 = F

A = 5
B = 6

F = 0

r1 = F
r2 = A
r3 = B

(a) (b)

Figure 2: An example of episodic recording. Dashed lines indicate
episode boundaries. In the blown up diagram of threads i and j, the
shaded boxes show the state of the episode as it ends, including the
read and write sets, memory reference counter, and the timestamp.
The shaded box in the last episode of thread i shows the initial epi-
sode state.

r5 := X
r4 := Q
S := r3
r5 := X

F := 1
r1 := A
B:= 23
F := 0

r6 := E
D := r7
S := r4
C := r3

W := r10

Y := 54
T := r3
W := r4
r4 := U
r3 := P
r2 := I
H := r4
r8 := X
r9 := Y
Q := r8

D := r7
r1 := F
r2 := B

Z := 34
r3 := 54

...

1: F = 1
2: r1 = A
3: B = 23
4: F = 0

Initial State:
1: D = r7
2: r1 = F
3: r2 = B

R: {A} W: {B,F}
REFS: 4

Timestamp: 43

R: {...} W: {...}
REFS: 97

Timestamp: 5

R: {B,F} W: {D}
REFS: 3

Timestamp: 44

R: W :
REFS: 0

Timestamp: 44
E2

E1

Ti

Ti
Tj

Tj

june 2009 | vol. 52 | no. 6 | communications of the acm 95

and, thus, can be replayed in any alternative order with
affecting replay fidelity.

A replayer (not shown) uses information about episode
duration and ordering to reconstruct an execution with the
same behavior. If episodes are replayed in timestamp order,
then the replayed execution will be logically equivalent to
the recorded execution. Unfortunately, the use of Lamport
scalar clocks make Rerun’s replay (mostly) sequential.

2.2. Rerun implementation
Here we develop a Rerun implementation for a system based
on a cache-coherent multicore chip, with key parameters
shown in Table 1. Though we describe Rerun in terms of
a specific base system, the mechanism can be extended to
other systems, including those with a TSO memory consis-
tency model, out-of-order cores, multithreaded cores, alter-
nate cache designs, and snooping coherence. Details of the
changes needed to accommodate these alternate architec-
tures can be found in the original paper.6

Rerun Hardware: As Figure 3 depicts, Rerun adds modest
hardware state to the base system. To each core, Rerun adds:

•	 Read and Write Bloom filters, WF and RF, to track the
current episode’s write and read sets (e.g., 32B and
128B, respectively).

•	 A Timestamp Register, TS, to hold the Lamport Clock
of the current episode executing on the core (e.g., 4B).

•	 A Memory Reference Counter, REFS, to record the cur-
rent episode’s references (e.g., 2B).

in an execution, the no-conflict condition of Equation 1 must
hold. Let RE(WE) denote episode E’s read (write) set:

	 [WE ∩ (RF ∪ WF) = Æ] ∧ [RE ∩ WF = Æ]	 (1)

Importantly, while an episode must end to avoid conflicts,
episodes may end early for any or no reason. In Section 2.2,
we will ease implementation cost by ending some episodes
early.

Second, an episodic recorder must establish an ordering
of episodes among threads. Rerun does so using Lamport
scalar clocks,7 which is a technique that guarantees the
timestamp of any episode E executing on thread i has a sca-
lar value that is greater than the timestamp of any episode
on which E is dependent and less than the timestamp of any
episode dependent on E. In our example, since the episode
E1 ends with a timestamp of 43, the subsequent episode
executing on thread j (E2), which uses block F after thread i,
must be assigned a timestamp of (at least) 44.

The specific Rerun mechanism meets three conditions
sufficient for a Lamport scalar clock implementation:

When an episode 1.	 E on threadE begins, its timestampE
begins with a value one greater than the timestamp
of the previous episode executed by threadE (or 0 if
episode E is threadE’s first episode).
When an episode 2.	 E adds a block to its read set RE that
was most-recently in the write set WD of completed
episode D, it sets its timestampE to

	 maximum[timestampE, timestampD+1].
When an episode E adds a block to its write set 3.	 WE that
was most-recently in the write set WD0

 of completed
episode D0 or in the read set of any episode D1 . . . DN,
it sets its timestampE to

	 maximum[timestampE, timestampD0
 + 1,

	 timestampD1
 + 1, . . . , timestampDN

 + 1].

When each episode E ends, Rerun logs both timestampE
and referencesE in a per-thread log. referencesE is a count of
memory references completed in E, and is used to record the
episode length. The Lamport clock algorithm ensures that
the execution order of all conflicting episodes corresponds
to monotonically increasing timestamps. Two episodes can
only be assigned the same timestamp if they do not conflict

Table 1: Base system configuration.

Cores 16, in-order, 3 GHz

L1 Caches

Split I&D, private, 32K four-way set associative,
write-back, 64B lines, LRU replacement, three
cycle hit

L2 Caches Unified, shared, inclusive, 8M 8-way set associative,
write-back, 16 banks, LRU replacement, 37 cycle hit

Directory Full bit vector in L2

Memory 4G DRAM, 300 cycle access

Coherence MESI directory, silent replacements

Consistency Model Sequential consistency (SC)

Figure 3: Rerun hardware.

L2
Bank

0 ...

L2
Bank

14

L2
Bank

15

Interconnect

Core
0

Core
1

Core
14

Core
15

...

D
R

A
M

2-
3

D
R

A
M

0
-1

L2
Bank

1

Data
array

Directory

Coherence
controller

Tags

MTS

Pipeline

Rerun
state

Rerun state
Coherence
controller

L1 I L1D

Write filter (WF)

Read filter (RF)

Timestamp (TS)

References (REFS)

96 communications of the acm | may 2009 | vol. 52 | no. 6

research highlights

3. DELOREAN
Illinois DeLorean11 is a new approach to deterministic replay
that exploits the opportunities afforded by a new execution
substrate: one where processors continuously execute large
blocks of instructions atomically, separated by register
checkpoints.3, 5, 9, 15 In this environment, to capture a multi-
threaded execution for deterministic replay, DeLorean only
needs to log the total order in which blocks from different
processors commit.

This approach has several advantages. First, it results
in a substantial reduction in log size compared to previous
schemes—at least about one order of magnitude. Second,
DeLorean can replay at a speed comparable to that of the
initial execution. Finally, in an aggressive operation mode,
where DeLorean predefines the commit order of the blocks

To each L2 cache bank, Rerun also adds a “memory”
timestamp register, MTS (e.g., 4B). This register holds the
maximum of all timestamps for victimized blocks that map
to its bank. A victimized block is one replaced from an L1
cache, and its timestamp is the timestamp of the core at the
time of victimization.

Finally, coherence response messages—data, acknowl-
edgements, and writebacks—carry logical timestamps.
Book-keeping state, such as a per-core pointer to the end of
its log, is not shown.
Rerun Operation: During execution, Rerun monitors the no-
conflict equation by comparing the addresses of incoming
coherence requests to those in RF and WF. When a conflict is
detected, Rerun writes the tuple <TS, REFS> to a per-thread
log, then begins a new episode by resetting REFS, WF, and
RF, and by incrementing the local timestamp TS according
to the algorithm in Section 2.1.

By gracefully handling virtualization events, Rerun
allows programmers to view logs as per thread, rather
than per core. At a context switch, the OS ends the core’s
current episode by writing REFS and TS state to the log.
When the thread is rescheduled, it begins a new episode
with reset WF, RF, and REFS, and a timestamp equal to the
max of the last logged TS for that thread and the TS of the
core on which the thread is rescheduled. Similarly, Rerun
can handle paging by ensuring that TLB shootdowns end
episodes.

Rerun also ends episodes when implementation resources
are about to be exhausted. Ending episodes just before 64K
memory references, for example, allows REFS to be logged
in 2B.

2.3. Evaluation
Methods: We evaluate the Rerun recording system using the
Wisconsin GEMS10 full system simulation infrastructure.
The simulator configuration matches the baseline shown
in Table 1 with the addition of Rerun hardware support.
Experiments were run using the Wisconsin Commercial
Workload Suite.1 We tested Rerun with these workloads
and a microbenchmark, racey, that uses number theory
to produce an execution whose outcome is highly sensi-
tive to memory race ordering (available at www.cs.wisc.
edu/∼markhill/racey.html).
Rerun Performance: Figure 4 shows the performance of
Rerun on all four commercial workloads. Rerun achieves an
uncompressed log size of about 4B logged per 1000 instruc-
tions. Importantly, we notice modest variation among
the log size of each workload, leading us to believe that
Rerun can perform well under a variety of memory access
patterns.

We show the relative performance of Rerun in compari-
son to the prior state of the art in memory race recording in
Figure 5. Rerun achieves a log size comparable to the most
efficient prior recorder (RTR17), but does so with a fraction of
the hardware cost (∼0.2KB per core vs. 24KB per core). Like
RTR, and unlike Strata,12 Rerun scales well as the number of
cores in the system increases, due, in part, to the fact that
Rerun and RTR both write thread-local log entries rather
than a global entry with a component from each thread.

Figure 4: Rerun absolute log size.

0

2

4

6

B
yt

es
/k

ilo
-in

st
ru

ct
io

n

apache jbb oltp zeus avg

Figure 5: Hardware cost comparison to RTR and Strata.

0

10

20

30

B
yt

es
/k

ilo
-in

st
ru

ct
io

n

Rerun

RTR

Strata

2p 4p 8p 16p

58 108

june 2009 | vol. 52 | no. 6 | communications of the acm 97

all the dependences between the accesses in the chunks
executed by processors P1 and P2 (shown with arrows in
the figure) are combined into a single entry in the log. The
figure also shows that such log entry is simply P1’s ID. In a
second example shown in Figure 6b, multiple dependences
across several processors are summarized in a single log
entry. Specifically, the single log entry inserted when the
chunk from P2 commits is enough to summarize the three
dependences.

3.2. DeLorean execution modes
DeLorean provides two main execution modes, namely
OrderOnly and PicoLog. To understand them, we start by
describing a naive, third execution mode called Order&Size. In
Order&Size, each log entry contains the ID of the processor com-
mitting the chunk and the chunk size—measured in number
of retired instructions. During execution, an arbiter module
(a simple state machine that enforces chunk commit order3)
logs the sequence of committing processor IDs in a Processor
Interleaving (PI) log. At the same time, processors record the
size of the chunk they commit in a per-processor Chunk Size
(CS) log. The combination of a single PI log and per-processor
CS logs constitutes the Memory Interleaving Log.

Figure 7 shows DeLorean’s operation in Order&Size mode.
During the initial execution, when a processor such as P0 or P1
finishes a chunk, it sends a request-to-commit message to the
arbiter (steps 1 and 2). Such messages contain the processor
IDs plus Bloom-filter signatures that summarize the memory
footprint of the chunks3 (sig in the figure). Suppose that the
arbiter grants permission to P0 first (step 3). In this case, the
arbiter logs P0’s ID (4) and propagates the commit operation
to the rest of the machine (5). While this is in progress, if the
arbiter determines that both chunks can commit in parallel,
it sends a commit grant message to P1 (6), logs P1’s ID (7), and
propagates the commit (8). As each processor receives com-
mit permission, it logs the chunk size (9 and 10).

Our first DeLorean execution mode, called OrderOnly,
omits logging chunk sizes by making “chunking”—i.e.,
the decision of when to finish a chunk—deterministic.
DeLorean accomplishes this by finishing chunks when a
fixed number of instructions have been committed. In real-
ity, certain events truncate a currently running chunk and
force it to commit before it has reached its “expected” size.
This is fine as long as the event reappears deterministically
in the replay. For example, consider an uncached load to an
I/O port. The chunk is truncated but its log entry does not

from different processors, DeLorean generates only a very
tiny log—although there is a performance cost. While
DeLorean’s execution substrate is not standard in today’s
hardware systems, the required changes are mostly concen-
trated in the memory system.

3.1. The DeLorean idea
There have been several proposals for multiprocessors
where processors continuously execute blocks of consecu
tive dynamic instructions atomically and in isolation.3, 5, 9, 15
In this environment, the updates made by a block of instruc-
tions (or Chunk) only become visible when the chunk commits.
When two chunks running concurrently on two different pro-
cessors conflict—there is a data dependence across the two
chunks—the hardware typically squashes and retries one the
chunks. Moreover, after a chunk completes execution, there
is an optimized global commit step in an arbiter module that
informs the relevant processors that the chunk is committed.
The net effect is that the interleaving between the memory
accesses of different processors appears to occur only at chunk
boundaries.

In such environment, recording the execution for replay
simply involves logging the total sequence of chunk com-
mits. This has two very important consequences for replay
systems. The first one is that the memory ordering log is
now very small. Indeed, rather than recording individual
dependences or groups of them like in all past proposals,
the log in a chunk-based system only needs to record the
total order in which chunks from different processors com-
mit. This means that each log entry is short (the ID of the
committing processor, if all chunks have the same size),
and that the log is updated infrequently (chunks are thou-
sands of instructions long).

The second consequence is that, because the memory
accesses issued by a processor inside a chunk are not visible
to the rest of the processors until the chunk commits, such
accesses can be fully reordered and overlapped. This means
that both execution and replay under DeLorean proceed at
a high speed.

DeLorean naturally combines multiple data dependences
between two or more processors into a single entry in the
log that records the memory interleaving—the Memory
Interleaving Log. An example is shown in Figure 6a, where

Figure 6: Combining multiple dependences into a single log entry.

Time

P1 P2

(a) (b)

P1 ID

P4P3P1 P2

Chunk Dependence

Memory
interleaving

Log

P2 ID

Memory
interleaving

Log

Figure 7: DeLorean’s operation.

Proc P0

CS log

Chunk
size

9

Arbiter
1sig, P0's ID

ok3

P0's ID
P1's ID

Proc P1

CS log

Chunk
size

10
6ok

sig, P1's ID2

PI log

4

7

5 8

Commit Directory + all caches

98 communications of the acm | may 2009 | vol. 52 | no. 6

research highlights

Interrupt log stores, for each interrupt, the time it is received,
its type, and its data. Time is recorded as the processor-local
chunkID of the chunk that initiates execution of the inter-
rupt handler. The per-processor I/O log records the values
obtained by I/O loads. Like in previous replay schemes,
DeLorean includes system checkpointing support.

3.4. DeLorean replay
During replay, processors must execute the same chunks
and commit them in the same order. In Order&Size, each
processor generates chunks that are sized according to its
CS log, while in OrderOnly and PicoLog, processors use the
CS log only to recreate the chunks that were truncated non-
deterministically. In Order&Size and OrderOnly, the arbiter
enforces the commit order present in the PI log.

As an example, consider the log generated during initial
execution as shown in Figure 7. During replay, suppose that
P1 finishes its chunk before P0, and the arbiter receives mes-
sage 2 before 1. The arbiter checks its PI log (or its predefined
order policy in PicoLog) and does not grant permission to
commit to P1. Instead, it waits until it receives the request
from P0 (message 1). At that point, it grants permission to
commit to P0 (3) and propagates its commit (5). The rest of
the operation is as in the initial execution but without log-
ging. In addition, processors use their CS log to decide when
to finish each chunk (Order&Size) or those chunks truncated
nondeterministically during the initial execution (OrderOnly
and PicoLog).

Thanks to our chunk-based substrate, during replay all
processors execute concurrently. Moreover, each processor
fully reorders and overlaps its memory accesses within a
chunk. Chunk commit involves a fast check with the arbi-
ter.3 The processor overlaps such check with the computa-
tion of its next chunk.

3.5. Exceptional events
In DeLorean, the same instruction in the initial and the
replayed execution must see exactly the same full-system
architectural state. On the other hand, it is likely that struc-
tures that are not visible to the software such as the cache and
branch predictor will contain different state in the two runs.

Unfortunately, chunk construction is affected by the
cache state—through cache overflow that requires finishing
the chunk—and by the branch predictor—through wrong-
path speculative loads that may cause spurious dependences

need to record its actual size because the uncached load
will reappear in the replay and truncate the chunk at the
same place. There are, however, a few events that truncate
a currently running chunk and are not deterministic. When
one such event occurs, the CS log adds an entry with: (1)
what chunk gets truncated (its position in the sequence of
chunks committed by the processor) and (2) its size. With
this information, the exact chunking can be reproduced
during replay.

Consequently, OrderOnly generates a PI log with only pro-
cessor IDs and very small per-processor CS logs. For the large
majority of chunks, steps 9 and 10 in Figure 7 are skipped.

Our second DeLorean execution mode, called PicoLog,
builds on OrderOnly and additionally eliminates the need for
a PI log by “predefining” the chunk commit interleaving dur-
ing both initial execution and replay. This is accomplished by
enforcing a given commit policy—e.g., pick processors round-
robin, allowing them to commit one chunk at a time. It needs
only the tiny per-processor CS log discussed for OrderOnly.
Thus, the Memory Interleaving Log is largely eliminated. The
drawback is that, by delaying the commit of completed chunks
until their turn, PicoLog may slow down execution and replay.

Looking at Figure 7, PicoLog skips steps 4, 7 and, typically,
9 and 10. The arbiter grants commit permission to proces-
sors according to a predefined order policy, irrespective of the
order in which it receives their commit requests. Note, how-
ever, that a processor does not stall when requesting commit
permission; it continues executing its next chunk(s).3

Table 2 shows the PI and CS logs in each of the two execu-
tion modes and Order&Size.

3.3. DeLorean implementation
Our DeLorean implementation uses a machine that sup-
ports a chunk-based execution environment with a generic
network and an arbiter. It augments it with the three typi-
cal mechanisms for replay: the Memory Interleaving Log
(consisting of the PI and CS logs), the input logs, and system
checkpointing (Figure 8).

The input logs are similar to those in previous replay
schemes. As shown in Figure 8, they include one shared
log (DMA log) and two per-processor logs (Interrupt and I/O
logs). The DMA acts like another processor in that, before it
updates memory, it needs to get commit permission from
the arbiter. Once permission is granted, the DMA log logs
the data that the DMA writes to memory. The per-processor

Table 2: PI and CS logs in each execution mode.

Execution
Mode

PI Log CS Log

Log Entry
Format

When
Updated

Log Entry
Format

When
Updated

Order&Size procID Chunk
commit

size Chunk
commit

OrderOnly procID Chunk
commit

chunkID,
size

Chunk
truncation

PicoLog – – chunkID,
size

Chunk
truncation

Figure 8: Overall DeLorean system implementation.

Baseline
DeLorean-only structures
Structures also found in other multiprocessor replay proposals

DIR + MEM

 Network

Interrupt
log

I/O
log

Node 0

Proc + Caches

Chunk size
(CS)
log

Chunk size
(CS)
log

Node N-1

I/O
log

Interrupt
log

S
ys

te
m

C
kp

oi
n

ti
n

g

Proc + Caches

DMA
log

DMA

Processor
interleaving

(PI) log

Arbiter

june 2009 | vol. 52 | no. 6 | communications of the acm 99

and induce chunk squashes. Consequently, we need to be
careful that chunks are still replayed deterministically.

Table 3 lists the exceptional events that might affect
chunk construction during the initial execution. A full
description of these events and the actions taken when they
occur is presented in Montesinos et al.11 At a high level, there
are events that do not truncate the chunk, events that trun-
cate it deterministically, and events that truncate it nonde-
terministically. The latter are the only ones that induce the
logging of an entry in the CS log. Such events are the attempt
to overflow the cache and repeated chunk collision. Overall,
as described in Montesinos et al.,11 even in the presence of
all these types of exceptional events, DeLorean’s replay is
deterministic.

3.6. Evaluation
We used the SESC simulator14 to evaluate DeLorean. We
simulated a chip multiprocessor with eight cores clocked
at 5 GHz. We ran the SPLASH-2 applications as well as
SPECjbb2000 and SPECweb2005. In our evaluation, we
estimated DeLorean’s log size and its performance during
recording and replay. In this section, we show a summary of
the evaluation presented in Montesinos et al.11

Figure 9 shows the size of the PI and CS logs in OrderOnly
in bits per kilo-instruction. We evaluate DeLorean configu-
rations with standard chunk sizes of 1,000, 2,000, and 3,000
instructions. For each of them, we report the size of both
logs with and without compression. In the figure, the CS log
contribution is stacked atop the PI log’s. The SP2-G.M. bars
correspond to the geometric mean of SPLASH-2.

The figure shows that our preferred 2,000-inst. OrderOnly
configuration uses on average only 2.1b (or 1.3b if com-
pressed) per kilo-instruction to store both the PI and CS
logs. For comparison purposes, the estimated average size of
the compressed Memory Races Log in RTR under Sequential

Figure 9: Size of the PI and CS logs in OrderOnly. The numbers under
the bars are the standard chunk sizes in instructions.

1000 2000 3000 1000 2000 3000 1000 2000 3000

CS Log (uncompressed)
PI Log (uncompressed)

CS Log (compressed)
PI Log (compressed)

SP2-G.M sjbb2k sweb2005
0

1

2

3

4

5

Lo
g

si
ze

 (b
its

/k
ilo

-in
st

)

Consistency (SC) from Xu et al.17 is 8b per kilo-instruction.
We call this system Basic RTR and use it as a reference,
although we note that the set of applications measured here
and in Xu et al.17 are different. This means that these com-
pressed logs use only 16% of the space that we estimate is
needed by the compressed Memory Races Log in Basic RTR.

Figure 10 shows the size of the CS log in PicoLog. Recall
that PicoLog has no PI log. We see that the CS log needs
0.37b or fewer per kilo-instruction in all cases—even with-
out compression. Our preferred 1,000-instruction PicoLog
configuration generates a compressed log with an average
of only 0.05b per kilo-instruction. To put this in perspective,
it implies that, if we assume an IPC of 1, the combined effect
of all eight 5GHz processors is to produce a log of only about
20GB per day.

Finally, we consider the speed of DeLorean during record-
ing and replay. It can be shown that OrderOnly introduces
negligible overhead during recording, and that it enables
replay, on average, at 82% of the recording speed. Under
PicoLog, recording and replay speeds decrease, on average,
to 86% and 72%, respectively, of the recording speed under
OrderOnly.

4. CONCLUSION
This paper presented two novel hardware-based approach-
es for deterministic replay of multiprocessor executions,
namely Wisconsin Rerun and Illinois DeLorean. Both ap
proaches seek to enable deterministic replay by focusing
on recording how long threads execute without interacting.
Rerun makes few changes to standard multicore hardware,
while DeLorean promises much smaller log sizes and higher
replay speeds. Future work includes improving Rerun’s re-
play speed, generalizing DeLorean’s hardware design alter-
natives, and making the original multithreaded executions
more deterministic.

Acknowledgments
We thank Norman Jouppi and David Patterson for suggesting
this article and Norman Jouppi for writing the Perspective.
Hower and Hill thank those acknowledged in the Rerun
paper, including NSF grants CCR-0324878, CNS-0551401,
and CNS-0720565. Hill has a significant financial inter-
est in Sun Microsystems. Montesinos, Ceze, and Torrellas
acknowledge the support provided by NSF under grants
CCR-0325603 and CNS-0720593 and Intel and Microsoft for
funding this work under the Universal Parallel Computing
Research Center.�

Figure 10: Size of the CS log in PicoLog. Recall that PicoLog has no
PI log. The numbers under the bars are the standard chunk sizes in
instructions.

1000 2000 3000 1000 2000 3000 1000 2000 3000

CS Log (uncompressed) CS Log (compressed)

SP2-G.M sjbb2k sweb2005
0

0.1

0.2

0.3

0.4

0.5

Lo
g

si
ze

 (b
its

/k
ilo

-in
st

)

Table 3: Exceptional events that may affect chunk construction.

Do Not Truncate
a Chunk

Truncate a Chunk

Deterministically Nondeterministically

1. Interrupts
2. Traps

1. �Reach limit number of
instructions

2. �Uncached accesses
(e.g., I/O initiation)

3. �Special system
instructions

1. �Cache overflow
attempt

2. �Repeated chunk
collision

100 communications of the acm | may 2009 | vol. 52 | no. 6

research highlights

	 1.	A lameldeen, A.R., Mauer, C.J., Xu, M.,
Harper, P.J., Martin, M.M.K.,
Sorin, D.J., Hill, M.D., Wood, D.A.
Evaluating non-deterministic multi-
threaded commercial workloads. In
Proceedings of the 5th Workshop on
Computer Architecture Evaluation
Using Commercial Workloads
(February 2002), 30–38

	 2.	B acon, D.F., Goldstein, S.C.
Hardware-assisted replay of
multiprocessor programs.
Proceedings of the ACM/ONR
Workshop on Parallel and Distributed
Debugging, published in ACM
SIGPLAN Notices (1991), 194–206.

	 3.	C eze, L., Tuck, J.M., Montesinos, P.,
Torrellas, J. BulkSC: Bulk
Enforcement of Sequential
Consistency. In Proceedings of the
34th International Symposium on
Computer Architecture (San Diego,
CA, USA, June 2007).

	 4.	 Dunlap, G.W., Lucchetti, D., Chen,
P.M., Fetterman, M. Execution replay
on multiprocessor virtual machines.
In International Conference on
Virtual Execution Environments
(VEE) (2008).

	 5.	H ammond, L., Wong, V., Chen, M.,
Carlstrom, B.D., Davis, J.D.,
Hertzberg, B., Prabhu, M.K.,
Wijaya, H., Kozyrakis, C., Olukotun, K.
Transactional memory coherence
and consistency. In Proceedings of
the 34th International Symposium
on Computer Architecture (June
2004).

	 6.	H ower, D.R., Hill, M.D. Rerun:
Exploiting episodes for lightweight

race recording. In Proceedings
of the 35th Annual International.
Symposium on Computer
Architecture (June 2008).

	 7.	 Lamport, L. Time, clocks and the
ordering of events in a distributed
system. Commun. ACM 21, 7 (July
1978), 558–565.

	 8.	 Leblanc, T.J., Mellor-Crummey, J.M.
Debugging parallel programs
with instant replay. IEEE Trans.
Comp. C-36, 4 (April 1987),
471–482.

	 9.	 Lucia, B., Devietti, J., Strauss, K.,
Ceze, L. Atom-aid: Detecting and
surviving atomicity violations.
In Proceedings of the 35th
International Symposium on
Computer Architecture (June 2008).

	10.	M artin, M.M.K., Sorin, D.J.,
Beckmann, B.M., Marty, M.R.,
Xu, M., Alameldeen, A.R.,
Moore, K.E., Hill, M.D., Wood, D.A.
Multifacet’s general execution-
driven multiprocessor simulator
(GEMS) toolset. Comp. Arch. News
(September 2005), 92–99.

	11.	M ontesinos, P., Ceze, L., Torrellas, J.
DeLorean: Recording and
deterministically replaying shared-
memory multiprocessor execution
efficiently. In Proceedings of the
35th International Symposium on
Computer Architecture (June
2008).

	12.	N arayanasamy, S., Pereira, C.,
Calder, B. Recording shared
memory dependencies using
strata. In Proceedings of the
12th International Conference

References
on Architectural Support for
Programming Languages and
Operating Systems (New York,
NY, USA, October 2006), 229–240.

	13.	N etzer, R.H.B. Optimal tracing and
replay for debugging shared-memory
parallel programs. In Workshop on
Parallel and Distributed Debugging
(San Diego, California, May 1993),
1–11.

	14.	R enau, J., Fraguela, B., Tuck, J., Liu,
W.,
Prvulovic, M., Ceze, L., Sarangi, S.,
Sack, P., Strauss, K., Montesinos, P.
SESC Simulator (January 2005),
http://sesc.sourceforge.net.

	15.	 Vallejo, E., Galluzzi, M., Cristal, A.,
Vallejo, F., Beivide, R., Stenstrom, P.,
Smith, J.E., Valero, M. Implementing
kilo-instruction multiprocessors.
In Proceedings of the 2005
International Conference on
Pervasive Systems (July 2005).

	16.	X u, M., Bodik, R., Hill, M.D. A “flight

data recorder” for enabling full-
system multiprocessor deterministic
replay. In Proceedings of the 30th
Annual International Symposium on
Computer Architecture (June 2003),
122–133.

	17.	X u, M., Bodik, R., Hill, M.D. A
regulated transitive reduction (RTR)
for longer memory race recording. In
Proceedings of the 12th International
Conference on Architectural Support
for Programming Languages and
Operating Systems (October 2006),
49–60.

	18.	X u, M., Malyugin, V., Sheldon, J.,
Venkitachalam, G., Weissman, B.
Retrace: Collecting execution trace
with virtual machine deterministic
replay. In Proceedings of the 3rd
Annual Workshop on Modeling,
Benchmarking and Simulation
(June 2007).

© 2009 ACM 0001-0782/09/0600 $10.00

Derek R. Hower (drh5@cs.wisc.edu)
Computer Sciences Department
University of Wisconsin-Madison.

Pablo Montesinos (pmontesi@cs.uiuc.edu)
Computer Science Department
University of Illinois
Urbana-Champaign.

Luis Ceze (luisceze@cs.washington.edu)
Department of Computer Science
and Engineering
University of Washington.

Mark D. Hill (markhill@cs.wisc.edu)
Computer Sciences Department
University of Wisconsin-Madison.

Josep Torrellas (torrellas@cs.uiuc.edu)
Computer Science Department
University of Illinois
at Urbana-Champaign.

�ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACMMember, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

�ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

�Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s LifetimeMembership Plan!

