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Abstract
Many shared-memory multithreaded executions behave 
nondeterministically when run on multiprocessor hardware 
such as emerging multicore systems. Recording nondeter-
ministic events in such executions can enable deterministic 
replay—e.g., for debugging. Most challenging to record are 
memory races that can potentially occur on almost all mem-
ory references. For this reason, researchers have previously 
proposed hardware to record key memory race interactions 
among threads.

The two research groups coauthoring this paper inde-
pendently uncovered a dual approach: focus on recording 
how long threads execute without interacting. From this 
common insight, the groups developed two significantly 
different hardware proposals. Wisconsin Rerun makes few 
changes to standard multicore hardware, while Illinois 
DeLorean promises much smaller log sizes and higher 
replay speeds. By presenting both proposals in one paper, 
we seek to illuminate the promise of the joint insight and 
inspire future designs.

1. INTRODUCTION
Modern computer systems are inherently nondeterminis-
tic due to a variety of events that occur during an execution, 
including I/O, interrupts, and DMA fills. The lack of repeat-
ability that arises from this nondeterminism can make it diffi-
cult to develop and maintain correct software. Furthermore, it 
is likely that the impact of nondeterminism will only increase 
in the coming years, as commodity systems are now shared-
memory multiprocessors. Such systems are not only impacted 
by the sources of nondeterminism in uniprocessors, but also 
by the outcome of memory races among concurrent threads.

In an effort to help ease the pain of developing software 
in a nondeterministic environment, researchers have pro-
posed adding deterministic replay capabilities to computer 
systems. A system with a deterministic replay capability can 
record sufficient information during an execution to enable 
a replayer to (later) create an equivalent execution despite 
the inherent sources of nondeterminism that exist. With the 
ability to replay an execution verbatim, many new applica-
tions may be possible:

Debugging: Deterministic replay could be used to provide 
the illusion of a time-travel debugger that has the ability 
to  selectively execute both forward and backward in 
time.

Security: Deterministic replay could also be used to enhance 
the security of software by providing the means for an in-
depth analysis of an attack, hopefully leading to rapid 
patch deployment and a reduction in the economic 
impact of new threats.

Fault Tolerance: With the ability to replay an execution, it 
may also be possible to develop hot-standby systems for 
critical service providers using commodity hardware. A 
virtual machine (VM) could, for example, be fed, in real 
time, the replay log of a primary server running on a phys-
ically separate machine. The standby VM could use the 
replay log to mimic the primary’s execution, so that in the 
event that the primary fails, the backup can take over 
operation with almost zero downtime.

As existing commercial products have already shown, 
deterministic replay can be achieved with a software-only 
solution when executing in a uniprocessor environment.18 
This is due, in part, to the fact that sources of nondetermin-
ism in a uniprocessor, such as interrupts or I/O, are relatively 
rare events that take a long time to complete. However, when 
executing in a shared-memory multiprocessor environment, 
memory races, which can potentially occur on every memory 
access, are another source of nondeterminism. All-software 
solutions exist,4, 8 but results show that they do not perform 
well on workloads that interact frequently. Thus, it is likely 
that a general solution will require hardware support. To 
this end, Bacon and Goldstein2 originally proposed record-
ing all snooping coherence transactions, which, while fast, 
produced a serial and voluminous log (see Figure 1).

Xu et al.16 modernized hardware support for multiproces-
sor deterministic replay in general and memory race record-
ing in particular. A memory race recorder is responsible for 
logging enough information to reconstruct the order of all 
fine-grained memory interleavings that occur during an exe-
cution. To reduce the amount of information that needs to 
be logged (so that longer periods can be recorded for a fixed 
hardware cost), the system proposed by Xu et al. implemented 
in hardware an enhancement to Netzer’s transitive reduc-
tion optimization.13 The idea is to skip the logging of those 
races that can be implied through transitivity, i.e., those races 

The original Wisconsin Rerun6 paper as well as the origi-
nal Illinois DeLorean11 paper were published in the Pro-
ceedings of the 35th Annual International Symposium on 
Computer Architecture (June 2008).
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implied through the combination of previously logged races 
and sequential program semantics. Figure 1a illustrates a 
transitive reduction. Inter-thread races between instructions 
accessing locations A and B, respectively, are not logged since 
they are implied by the recorded race for location F.

While both the original16 and follow-on17 work by Xu 
et al. were successful in achieving efficient log compres
sion (∼1B/1000 instructions executed), they required a large 
amount of hardware state, on the order of an additional 
L1 cache per core, in order to do so. Subsequent work by 
Narayanasamy et al.12 on the Strata race recorder reduced this 
hardware requirement but, as results in Hower and Hill6 show, 
may not scale well as the number of hardware contexts in a 
system increases. This is largely because Strata writes global 
information to its log entries that contains a component 
from each hardware thread context in the system.

A key observation, discovered independently by the 
authors  of this paper at the Universities of Illinois and 
Wisconsin, is that by focusing on regions of independence, 
rather than on individual dependencies, an efficient and 
scalable memory race recorder can be made without sacri
ficing  logging efficiency. Figure 1b illustrates this notion by 
breaking the execution of Figure 1a into an ordered series of 
independent execution regions. Because intra-thread depen-
dencies are implicit and do not need to be recorded, the exe-
cution in Figure 1b can be completely described by the three 
inter-thread dependencies, which is the same amount of 
information required after a transitivity reduction shown in 
Figure 1a.

The authors of this paper have developed two different 
systems, called Rerun6 and DeLorean,11 that both exploit the 
same independence observation described above. These 
systems, presented in the same session of ISCA 2008, exem-
plify different trade-offs in terms of logging efficiency and 
implementation complexity. Rerun can be implemented 
with small modifications to existing memory system archi-
tectures but writes a larger log than DeLorean. DeLorean 
can achieve a greater log size reduction and a higher replay 
speed but requires novel hardware to do so.

2. RERUN
Wisconsin Rerun6 exploits the concept of episodic race 
recording to achieve efficient logging with only small modifi-
cations to existing memory system architectures. The Rerun 
race recorder does not interfere with a running program in 
any way; it is an impartial observer of a running execution, 
and as such avoids artificially perturbing the execution 
under observation.

2.1. Episodic memory race recording
This section develops insights behind Rerun. It motivates 
Rerun with an example, gives key definitions, and explains 
how Rerun establishes and orders episodes.
Motivating Example and Key Ideas: Consider the execution 
in Figure 2 that highlights two threads i and j executing on a 
multicore system. Dynamic instructions 1–4 of thread i hap-
pen to execute without interacting with instructions running 
concurrently on thread j. We call these instructions, collec-
tively labeled E1, an episode in thread i’s execution. Similarly, 
instructions 1–3 of thread j execute without interaction and 
constitute an episode E2 for thread j. As soon as a thread’s 
episode ends, a new episode begins. Thus, every instruction 
execution is contained in an episode, and episodes cover the 
entire execution (right side of Figure 2).

Rerun must solve two subproblems in order to ensure that 
enough episodic information is recorded to enable deter-
ministic replay of all memory races. First, it must determine 
when an episode ends, and, by extension, when the next 
one begins. To remain independent, an episode E must end 
when another thread issues a memory reference that conflicts 
with references made in episode E. Two memory accesses 
conflict if they reference the same memory block, are from 
different threads, and at least one is a write. For example, 
episode E1 in Figure 2 ends because thread j accesses the 
variable F that was previously written (i.e., F is in the write 
set of E1). Formally, for all combinations of episodes E and F 

Figure 1: An example of efficient race recording using (a) an explicit 
transitive reduction and (b) independent regions. In (a), solid lines 
between threads are races written to the log, while dashed lines are 
those races implied through transitivity.
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Figure 2: An example of episodic recording. Dashed lines indicate 
episode boundaries. In the blown up diagram of threads i and j, the 
shaded boxes show the state of the episode as it ends, including the 
read and write sets, memory reference counter, and the timestamp. 
The shaded box in the last episode of thread i shows the initial epi-
sode state.
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and, thus, can be replayed in any alternative order with 
affecting replay fidelity.

A replayer (not shown) uses information about episode 
duration and ordering to reconstruct an execution with the 
same behavior. If episodes are replayed in timestamp order, 
then the replayed execution will be logically equivalent to 
the recorded execution. Unfortunately, the use of Lamport 
scalar clocks make Rerun’s replay (mostly) sequential.

2.2. Rerun implementation
Here we develop a Rerun implementation for a system based 
on a cache-coherent multicore chip, with key parameters 
shown in Table 1. Though we describe Rerun in terms of 
a specific base system, the mechanism can be extended to 
other systems, including those with a TSO memory consis-
tency model, out-of-order cores, multithreaded cores, alter-
nate cache designs, and snooping coherence. Details of the 
changes needed to accommodate these alternate architec-
tures can be found in the original paper.6

Rerun Hardware: As Figure 3 depicts, Rerun adds modest 
hardware state to the base system. To each core, Rerun adds:

•	 Read and Write Bloom filters, WF and RF, to track the 
current episode’s write and read sets (e.g., 32B and 
128B, respectively).

•	 A Timestamp Register, TS, to hold the Lamport Clock 
of the current episode executing on the core (e.g., 4B).

•	 A Memory Reference Counter, REFS, to record the cur-
rent episode’s references (e.g., 2B).

in an execution, the no-conflict condition of Equation 1 must 
hold. Let RE(WE) denote episode E’s read (write) set:

	 [WE ∩ (RF ∪ WF) = Æ] ∧ [RE ∩ WF = Æ]	 (1)

Importantly, while an episode must end to avoid conflicts, 
episodes may end early for any or no reason. In Section 2.2, 
we will ease implementation cost by ending some episodes 
early.

Second, an episodic recorder must establish an ordering 
of episodes among threads. Rerun does so using Lamport 
scalar clocks,7 which is a technique that guarantees the 
timestamp of any episode E executing on thread i has a sca-
lar value that is greater than the timestamp of any episode 
on which E is dependent and less than the timestamp of any 
episode dependent on E. In our example, since the episode 
E1 ends with a timestamp of 43, the subsequent episode 
executing on thread j (E2), which uses block F after thread i, 
must be assigned a timestamp of (at least) 44.

The specific Rerun mechanism meets three conditions 
sufficient for a Lamport scalar clock implementation:

When an episode 1.	 E on threadE begins, its timestampE 
begins with a value one greater than the timestamp 
of  the previous episode executed by threadE (or 0 if 
episode E is threadE’s first episode).
When an episode 2.	 E adds a block to its read set RE that 
was most-recently in the write set WD of completed 
episode D, it sets its timestampE to 

	 maximum[timestampE, timestampD+1].
When an episode E adds a block to its write set 3.	 WE that 
was most-recently in the write set WD0

 of completed 
episode D0 or in the read set of any episode D1 . . . DN, 
it sets its timestampE to 

	 maximum[timestampE, timestampD0
 + 1, 

	 timestampD1
 + 1, . . . , timestampDN

 + 1].

When each episode E ends, Rerun logs both timestampE 
and referencesE in a per-thread log. referencesE is a count of 
memory references completed in E, and is used to record the 
episode length. The Lamport clock algorithm ensures that 
the execution order of all conflicting episodes corresponds 
to monotonically increasing timestamps. Two episodes can 
only be assigned the same timestamp if they do not conflict 

Table 1: Base system configuration.

Cores 16, in-order, 3 GHz

L1 Caches 
 

Split I&D, private, 32K four-way set associative, 
write-back, 64B lines, LRU replacement, three  
cycle hit

L2 Caches Unified, shared, inclusive, 8M 8-way set associative, 
write-back, 16 banks, LRU replacement, 37 cycle hit

Directory Full bit vector in L2

Memory 4G DRAM, 300 cycle access

Coherence MESI directory, silent replacements

Consistency Model Sequential consistency (SC)

Figure 3: Rerun hardware.
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3. DELOREAN
Illinois DeLorean11 is a new approach to deterministic replay 
that exploits the opportunities afforded by a new execution 
substrate: one where processors continuously execute large 
blocks of instructions atomically, separated by register 
checkpoints.3, 5, 9, 15 In this environment, to capture a multi-
threaded execution for deterministic replay, DeLorean only 
needs to log the total order in which blocks from different 
processors commit.

This approach has several advantages. First, it results 
in a substantial reduction in log size compared to previous 
schemes—at least about one order of magnitude. Second, 
DeLorean can replay at a speed comparable to that of the 
initial execution. Finally, in an aggressive operation mode, 
where DeLorean predefines the commit order of the blocks 

To each L2 cache bank, Rerun also adds a “memory” 
timestamp register, MTS (e.g., 4B). This register holds the 
maximum of all timestamps for victimized blocks that map 
to its bank. A victimized block is one replaced from an L1 
cache, and its timestamp is the timestamp of the core at the 
time of victimization.

Finally, coherence response messages—data, acknowl-
edgements, and writebacks—carry logical timestamps. 
Book-keeping state, such as a per-core pointer to the end of 
its log, is not shown.
Rerun Operation: During execution, Rerun monitors the no-
conflict equation by comparing the addresses of incoming 
coherence requests to those in RF and WF. When a conflict is 
detected, Rerun writes the tuple <TS, REFS> to a per-thread 
log, then begins a new episode by resetting REFS, WF, and 
RF, and by incrementing the local timestamp TS according 
to the algorithm in Section 2.1.

By gracefully handling virtualization events, Rerun 
allows programmers to view logs as per thread, rather 
than per core. At a context switch, the OS ends the core’s 
current episode by writing REFS and TS state to the log. 
When the thread is rescheduled, it begins a new episode 
with reset WF, RF, and REFS, and a timestamp equal to the 
max of the last logged TS for that thread and the TS of the 
core on which the thread is rescheduled. Similarly, Rerun 
can handle paging by ensuring that TLB shootdowns end 
episodes.

Rerun also ends episodes when implementation resources 
are about to be exhausted. Ending episodes just before 64K 
memory references, for example, allows REFS to be logged 
in 2B.

2.3. Evaluation
Methods: We evaluate the Rerun recording system using the 
Wisconsin GEMS10 full system simulation infrastructure. 
The simulator configuration matches the baseline shown 
in Table 1 with the addition of Rerun hardware support. 
Experiments were run using the Wisconsin Commercial 
Workload Suite.1 We tested Rerun with these workloads 
and a microbenchmark, racey, that uses number theory 
to produce an execution whose outcome is highly sensi-
tive to memory race ordering (available at www.cs.wisc.
edu/∼markhill/racey.html).
Rerun Performance: Figure 4 shows the performance of 
Rerun on all four commercial workloads. Rerun achieves an 
uncompressed log size of about 4B logged per 1000 instruc-
tions. Importantly, we notice modest variation among 
the log size of each workload, leading us to believe that 
Rerun can perform well under a variety of memory access 
patterns.

We show the relative performance of Rerun in compari-
son to the prior state of the art in memory race recording in 
Figure 5. Rerun achieves a log size comparable to the most 
efficient prior recorder (RTR17), but does so with a fraction of 
the hardware cost (∼0.2KB per core vs. 24KB per core). Like 
RTR, and unlike Strata,12 Rerun scales well as the number of 
cores in the system increases, due, in part, to the fact that 
Rerun and RTR both write thread-local log entries rather 
than a global entry with a component from each thread.

Figure 4: Rerun absolute log size.
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all the dependences between the accesses in the chunks 
executed by processors P1 and P2 (shown with arrows in 
the figure) are combined into a single entry in the log. The 
figure also shows that such log entry is simply P1’s ID. In a 
second example shown in Figure 6b, multiple dependences 
across several processors are summarized in a single log  
entry. Specifically, the single log entry inserted when the 
chunk from P2 commits is enough to summarize the three 
dependences.

3.2. DeLorean execution modes
DeLorean provides two main execution modes, namely 
OrderOnly and PicoLog. To understand them, we start by 
describing a naive, third execution mode called Order&Size. In 
Order&Size, each log entry contains the ID of the processor com-
mitting the chunk and the chunk size—measured in number 
of retired instructions. During execution, an arbiter module 
(a simple state machine that enforces chunk commit order3) 
logs the sequence of committing processor IDs in a Processor 
Interleaving (PI) log. At the same time, processors record the 
size of the chunk they commit in a per-processor Chunk Size 
(CS) log. The combination of a single PI log and per-processor 
CS logs constitutes the Memory Interleaving Log.

Figure 7 shows DeLorean’s operation in Order&Size mode. 
During the initial execution, when a processor such as P0 or P1 
finishes a chunk, it sends a request-to-commit message to the 
arbiter (steps 1 and 2). Such messages contain the processor 
IDs plus Bloom-filter signatures that summarize the memory 
footprint of the chunks3 (sig in the figure). Suppose that the 
arbiter grants permission to P0 first (step 3). In this case, the 
arbiter logs P0’s ID (4) and propagates the commit operation 
to the rest of the machine (5). While this is in progress, if the 
arbiter determines that both chunks can commit in parallel, 
it sends a commit grant message to P1 (6), logs P1’s ID (7), and 
propagates the commit (8). As each processor receives com-
mit permission, it logs the chunk size  (9 and 10).

Our first DeLorean execution mode, called OrderOnly, 
omits logging chunk sizes by making “chunking”—i.e., 
the decision of when to finish a chunk—deterministic. 
DeLorean accomplishes this by finishing chunks when a 
fixed number of instructions have been committed. In real-
ity, certain events truncate a currently running chunk and 
force it to commit before it has reached its “expected” size. 
This is fine as long as the event reappears deterministically 
in the replay. For example, consider an uncached load to an 
I/O port. The chunk is truncated but its log entry does not 

from different processors, DeLorean generates only a very 
tiny log—although there is a performance cost. While 
DeLorean’s execution substrate is not standard in today’s 
hardware systems, the required changes are mostly concen-
trated in the memory system.

3.1. The DeLorean idea
There have been several proposals for multiprocessors 
where  processors continuously execute blocks of consecu
tive dynamic instructions atomically and in isolation.3,  5, 9,  15  
In this environment, the updates made by a block of instruc-
tions (or Chunk) only become visible when the chunk commits. 
When two chunks running concurrently on two different pro-
cessors conflict—there is a data dependence across the two 
chunks—the hardware typically squashes and retries one the 
chunks. Moreover, after a chunk completes execution, there 
is an optimized global commit step in an arbiter module that 
informs the relevant processors that the chunk is committed. 
The net effect is that the interleaving between the memory 
accesses of different processors appears to occur only at chunk 
boundaries.

In such environment, recording the execution for replay 
simply involves logging the total sequence of chunk com-
mits. This has two very important consequences for replay 
systems. The first one is that the memory ordering log is 
now very small. Indeed, rather than recording individual 
dependences or groups of them like in all past proposals, 
the log in a chunk-based system only needs to record the 
total order in which chunks from different processors com-
mit. This means that each log entry is short (the ID of the 
committing processor, if all chunks have the same size), 
and that the log is updated infrequently (chunks are thou-
sands of instructions long).

The second consequence is that, because the memory 
accesses issued by a processor inside a chunk are not visible 
to the rest of the processors until the chunk commits, such 
accesses can be fully reordered and overlapped. This means 
that both execution and replay under DeLorean proceed at 
a high speed.

DeLorean naturally combines multiple data dependences 
between two or more processors into a single entry in the 
log that records the memory interleaving—the Memory 
Interleaving Log. An example is shown in Figure 6a, where 

Figure 6: Combining multiple dependences into a single log entry.
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Figure 7: DeLorean’s operation.
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Interrupt log stores, for each interrupt, the time it is received, 
its type, and its data. Time is recorded as the processor-local 
chunkID of the chunk that initiates execution of the inter-
rupt handler. The per-processor I/O log records the values 
obtained by I/O loads. Like in previous replay schemes, 
DeLorean includes system checkpointing support.

3.4. DeLorean replay
During replay, processors must execute the same chunks 
and commit them in the same order. In Order&Size, each 
processor generates chunks that are sized according to its 
CS log, while in OrderOnly and PicoLog, processors use the 
CS log only to recreate the chunks that were truncated non-
deterministically. In Order&Size and OrderOnly, the arbiter 
enforces the commit order present in the PI log.

As an example, consider the log generated during initial 
execution as shown in Figure 7. During replay, suppose that 
P1 finishes its chunk before P0, and the arbiter receives mes-
sage 2 before 1. The arbiter checks its PI log (or its predefined 
order policy in PicoLog) and does not grant permission to 
commit to P1. Instead, it waits until it receives the request 
from P0 (message 1). At that point, it grants permission to 
commit to P0 (3) and propagates its commit (5). The rest of 
the operation is as in the initial execution but without log-
ging. In addition, processors use their CS log to decide when 
to finish each chunk (Order&Size) or those chunks truncated 
nondeterministically during the initial execution (OrderOnly 
and PicoLog).

Thanks to our chunk-based substrate, during replay all 
processors execute concurrently. Moreover, each processor 
fully reorders and overlaps its memory accesses within a 
chunk. Chunk commit involves a fast check with the arbi-
ter.3 The processor overlaps such check with the computa-
tion of its next chunk.

3.5. Exceptional events
In DeLorean, the same instruction in the initial and the 
replayed execution must see exactly the same full-system 
architectural state. On the other hand, it is likely that struc-
tures that are not visible to the software such as the cache and 
branch predictor will contain different state in the two runs.

Unfortunately, chunk construction is affected by the 
cache state—through cache overflow that requires finishing 
the chunk—and by the branch predictor—through wrong-
path speculative loads that may cause spurious dependences 

need to record its actual size because the uncached load 
will reappear in the replay and truncate the chunk at the 
same place. There are, however, a few events that truncate 
a currently running chunk and are not deterministic. When 
one such event occurs, the CS log adds an entry with: (1) 
what chunk gets truncated (its position in the sequence of 
chunks committed by the processor) and (2) its size. With 
this information, the exact chunking can be reproduced 
during replay.

Consequently, OrderOnly generates a PI log with only pro-
cessor IDs and very small per-processor CS logs. For the large 
majority of chunks, steps 9 and 10 in Figure 7 are skipped.

Our second DeLorean execution mode, called PicoLog, 
builds on OrderOnly and additionally eliminates the need for 
a PI log by “predefining” the chunk commit interleaving dur-
ing both initial execution and replay. This is accomplished by 
enforcing a given commit policy—e.g., pick processors round-
robin, allowing them to commit one chunk at a time. It needs 
only the tiny per-processor CS log discussed for OrderOnly. 
Thus, the Memory Interleaving Log is largely eliminated. The 
drawback is that, by delaying the commit of completed chunks 
until their turn, PicoLog may slow down execution and replay.

Looking at Figure 7, PicoLog skips steps 4, 7 and, typically, 
9 and 10. The arbiter grants commit permission to proces-
sors according to a predefined order policy, irrespective of the 
order in which it receives their commit requests. Note, how-
ever, that a processor does not stall when requesting commit 
permission; it continues executing its next chunk(s).3

Table 2 shows the PI and CS logs in each of the two execu-
tion modes and Order&Size.

3.3. DeLorean implementation
Our DeLorean implementation uses a machine that sup-
ports a chunk-based execution environment with a generic 
network and an arbiter. It augments it with the three typi-
cal mechanisms for replay: the Memory Interleaving Log 
(consisting of the PI and CS logs), the input logs, and system 
checkpointing (Figure 8).

The input logs are similar to those in previous replay 
schemes. As shown in Figure 8, they include one shared 
log (DMA log) and two per-processor logs (Interrupt and I/O 
logs). The DMA acts like another processor in that, before it 
updates memory, it needs to get commit permission from 
the arbiter. Once permission is granted, the DMA log logs 
the data that the DMA writes to memory. The per-processor 

Table 2: PI and CS logs in each execution mode.

Execution 
Mode

PI Log CS Log

Log Entry 
Format

When 
Updated

Log Entry 
Format

When 
Updated

Order&Size procID   Chunk 
commit

size Chunk 
commit

OrderOnly procID Chunk 
commit

chunkID, 
size

Chunk 
truncation

PicoLog – – chunkID, 
size

Chunk 
truncation

Figure 8: Overall DeLorean system implementation.
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and induce chunk squashes. Consequently, we need to be 
careful that chunks are still replayed deterministically.

Table 3 lists the exceptional events that might affect 
chunk construction during the initial execution. A full 
description of these events and the actions taken when they 
occur is presented in Montesinos et al.11 At a high level, there 
are events that do not truncate the chunk, events that trun-
cate it deterministically, and events that truncate it nonde-
terministically. The latter are the only ones that induce the 
logging of an entry in the CS log. Such events are the attempt 
to overflow the cache and repeated chunk collision. Overall, 
as described in Montesinos et al.,11 even in the presence of 
all these types of exceptional events, DeLorean’s replay is 
deterministic.

3.6. Evaluation
We used the SESC simulator14 to evaluate DeLorean. We 
simulated a chip multiprocessor with eight cores clocked 
at 5 GHz. We ran the SPLASH-2 applications as well as 
SPECjbb2000 and SPECweb2005. In our evaluation, we 
estimated DeLorean’s log size and its performance during 
recording and replay. In this section, we show a summary of 
the evaluation presented in Montesinos et al.11

Figure 9 shows the size of the PI and CS logs in OrderOnly 
in bits per kilo-instruction. We evaluate DeLorean configu-
rations with standard chunk sizes of 1,000, 2,000, and 3,000 
instructions. For each of them, we report the size of both 
logs with and without compression. In the figure, the CS log 
contribution is stacked atop the PI log’s. The SP2-G.M. bars 
correspond to the geometric mean of SPLASH-2.

The figure shows that our preferred 2,000-inst. OrderOnly 
configuration uses on average only 2.1b (or 1.3b if com-
pressed) per kilo-instruction to store both the PI and CS 
logs. For comparison purposes, the estimated average size of  
the compressed Memory Races Log in RTR under Sequential 

Figure 9: Size of the PI and CS logs in OrderOnly. The numbers under 
the bars are the standard chunk sizes in instructions.
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Consistency (SC) from Xu et al.17 is 8b per kilo-instruction. 
We call this system Basic RTR and use it as a reference, 
although we note that the set of applications measured here 
and in Xu et al.17 are different. This means that these com-
pressed logs use only 16% of the space that we estimate is 
needed by the compressed Memory Races Log in Basic RTR.

Figure 10 shows the size of the CS log in PicoLog. Recall 
that PicoLog has no PI log. We see that the CS log needs 
0.37b or fewer per kilo-instruction in all cases—even with-
out compression. Our preferred 1,000-instruction PicoLog 
configuration generates a compressed log with an average 
of only 0.05b per kilo-instruction. To put this in perspective, 
it implies that, if we assume an IPC of 1, the combined effect 
of all eight 5GHz processors is to produce a log of only about 
20GB per day.

Finally, we consider the speed of DeLorean during record-
ing and replay. It can be shown that OrderOnly introduces 
negligible overhead during recording, and that it enables 
replay, on average, at 82% of the recording speed. Under 
PicoLog, recording and replay speeds decrease, on average, 
to 86% and 72%, respectively, of the recording speed under 
OrderOnly.

4. CONCLUSION
This paper presented two novel hardware-based approach-
es for deterministic replay of multiprocessor executions, 
namely Wisconsin Rerun and Illinois DeLorean. Both ap
proaches seek to enable deterministic replay by focusing 
on recording how long threads execute without interacting. 
Rerun makes few changes to standard multicore hardware, 
while DeLorean promises much smaller log sizes and higher 
replay speeds. Future work includes improving Rerun’s re-
play speed, generalizing DeLorean’s hardware design alter-
natives, and making the original multithreaded executions 
more deterministic.
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Figure 10: Size of the CS log in PicoLog. Recall that PicoLog has no 
PI log. The numbers under the bars are the standard chunk sizes in 
instructions.
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Table 3: Exceptional events that may affect chunk construction.

Do Not Truncate 
a Chunk

Truncate a Chunk

Deterministically Nondeterministically

1. Interrupts
2. Traps

1. �Reach limit number of 
instructions

2. �Uncached accesses 
(e.g., I/O initiation)

3. �Special system 
instructions

1. �Cache overflow 
attempt

2. �Repeated chunk 
collision
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