Colorama: Architectural Support for Data-Centric Synchronization *

Luis Ceze Pablo Montesinos Christoph von Praunt andJosep Torrellas

University of lllinois at Urbana-Champaign
{luisceze, pmontesi, torrellp@cs.uiuc.edu
http://fiacoma.cs.uiuc.edu

fIBM T.J. Watson Research Center
praun@us.ibm.com

ABSTRACT mer inserts a transaction annotation, he also needs to think about
what other parts of the program may be accessing this same or re-
With the advent of ubiquitous multi-core architectures, a majollated shared data, and potentially insert transaction annotations there
challenge is to simplify parallel programming. One way to tameas well. Intuitively, like inserting lock and unlock operations, insert-
one of the main sources of programming complexity, namely syning transaction annotations involves takingae-centriapproach.
chronization, is transactional memory (TM). However, we argue that To improve programmability further, we needlata-centricap-
TM does not go far enough, since the programmer still needs norproach [20]. WithData-Centric SynchronizatiofDCS), the pro-
local reasoning to decide where to place transactions in the codgrammer associates synchronization constraints with the program’s
A significant improvement to the art Bata-CentricSynchroniza- data structures. Such constraints indicate which sets of data struc-
tion (DCS), where the programmer uses local reasoning to assigares should remain consistent with each other and, therefore, be
synchronization constraints to data. Based on these, the system aitcessed in the same critical section. From these constraints, the
tomatically infers critical sections and inserts synchronization opersystem automatically infers the critical sections and inserts thread
ations. synchronization operations in the code. DCS simplifies parallel pro-
This paper proposes novel architectural support to make DC§ramming because the programmer readonally, focusing only
feasible, and describes its programming model and interface. Thgn what structures should be consistent with each other.
proposal, calle€Colorama needs only modest hardware extensions, Existing DCS proposals [20] take user-provided, data-centric
supports general-purpose, pointer-based languages such as C/Gsyhchronization constraints and decide where to insert critical sec-
and, in our opinion, can substantially simplify the task of writing tions using software-only support. In particular, the compiler needs
new parallel programs. to analyze all the accesses in the code. This is unrealistic in
most C/C++ environments, where pointer aliasing is common and,
most importantly, dynamic linking denies the compiler access to the
whole program.
As chip multiprocessors become widespread, there is growing pres- To make DCS practical, this paper proposes the first design for
sure to substantially broaden their parallel application base. Unfoi-lardware DCS (H-DCS). Our proposal, callédlorama relies on
tunately, the vast majority of current application programmers findwo hardware primitives: one that monitors all memory accesses to
parallel programming too complex. To effectively utilize the upcom-decide when to start a critical section, and one that flexibly trig-
ing hardware, we need major breakthroughs that simplify parallejers the exit of a critical section. Colorama is independent of the
programming. underlying synchronization mechanism. In this paper, we present
Developing a parallel application consists of four steps [15]: dea transaction-based implementation and also discuss the issues that
composing the problem, assigning the work to threads, orchestratirappear in a lock-based implementation.
the threads, and mapping them to the machine. Orchestration is ar- We describe Colorama’s architecture, a simple implementation
guably the most challenging step, as it involves synchronizing théhat extends a Mondrian Memory Protection (MMP) [22] system, its
threads. It is in this area that innovations to simplify parallel pro-programming model and API, and its capacity to help debug conven-
gramming are most urgently sought. tional codes. We show that Colorama needs few hardware resources
One such innovation is Transactional Memory (TM) [1, 7, 10, 16,and has small overhead. It supports general-purpose, pointer-based
18]. In TM, the programmer specifies sequences of operations th&nguages such as C/C++ and, in our opinion, can substantially sim-
should be executed atomically. TM simplifies parallel programmingplify the task of writing new parallel programs.
in two ways. First, the programmer does not need to worry about In the following, Section 2 introduces DCS; Sections 3, 4, 5 and 6
the intricacies of managing locks. Second, he does not need to finpresent Colorama’s architecture, implementation, programming en-
tune critical sections as much, since concurrency is only limited byironment, and debugging issues respectively; Sections 7 and 8 eval-
dependences — not critical section length. uate Colorama; and Section 9 discusses related work.
We claim, however, that TM is still complicated: it requires the
programmer to reasamon-locally. Specifically, when the program- 2. Data-Centric Synchronization (DCS)

1. Introduction

*This work was supported in part by the National Science Foundationun2.1. Basic ldea

der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603; . o
DARPA under grant NBCH30390004; DOE under grant B347886; and gifta? Data-Centric Synchronization (DCS) [20], the programmer asso-

from IBM and Intel. Luis Ceze was supported by an IBM PhD Fellowship. Ciates synchronization constraints with data structures — typically

when they are declared or allocated. These constraints specify whiclally exited when the work is completed. Therefore, a single method
data structures are in the same “data consistency domain” and, theieeludes both the entry and the exit points of a critical section.

fore, should be kept consistent with each other. This means that

when one structure is being modified, all the other structures in thd.3. Proposal for Hardware DCS (H-DCS): Colorama

same domain need to be protected from access by other threads. ggbcs is unsuitable for popular languages such as C/C++, which

support this model, when a thread accesses a structure of a domalfy,, nointer arithmetic and aliasing. Since the compiler cannot
the thread automatically enters a critical section for that domain. N‘ﬂjlly analyze the code due to lack of pointer information, it can only
other thread can now access structures of that domain. When theeate conservative critical section approximations of very lim-

thread finishes working on structures of that domain, the thread aygy e Alternatively, if it inserts instructions to check the address
tomatically exits the critical section. _ . ofevery pointer access dynamically, it induces intolerable overhead.
DCS s in contrast to conventional Code-Centric Synchronlza’[loq\/lore fundamentally, in environments with dynamic linking, deploy-

(CCS), where synchronization constraints are associated with COdﬁTent of S-DCS is impractical because the compiler may lack access
In CCS, the programmer marks what code is inside which critica{O the whole program.

section. o . Therefore, this paper proposes a novel architecture to support
We argue that DCS has a significant advantage over CCS IBcg in hardware. The resultingardware DCS (H-DCSycheme

programmability CCS requires the programmer to reasn- g cajiedColorama It supports any type of access pattern, has low
locally [20]: every time he inserts a transaction begin/end or a lock) o -haad and is usable in any language

acquire/release annotation in the code, he also needs to think abOUtCoIorama has two primitives, corresponding to the need to iden-

what other locations in the program may be accessing this same gf, critical section entry and exit points. The first one is hardware
rel_ated data structures, and poter_ltlally insert synchronization anngs’ monitor all addresses issued by the processor with very low over-
tations there as well. Instead, with DCS, the programmer reasofg, g |f 4 thread accesses a structure belonging to a consistency

locally, focusing only on what data structures should be consister,main from outside of a critical section for that domain, Colorama
with each other. The system automatically infers the critical S€Ctarts a critical section

tions. , o The second primitive is hardware to support the exit of a critical
The shortcoming of DCS stems from limited program knowl- 5 cion Such primitive is very fleible and is driven by the compiler,
edge. The system has to automatically infer when the code entegy , gifferent exit policies can be supported. At all times, however,
and e.xns.a critical ;ectlon, so that it can insert the appropriate syRr ho< to be clear to the programmer what exit policy will be used by
chronization operations around the section. _ _ the compiler as it generates the executable. In this first paper, how-
Identifying entry points to critical sections largely involves iden- ever, we simply use the exit policy used by Vagitial. [20]. We use
tifying accesses to data structures belonging to a domain. 1dentifys pe.qise it is very intuitive. For example, Wang and Stoller [21]

ing exit points is harder. It is typically impossible for the system,se e heuristic that methods execute atomically to identify poten-
to know when a thread has stopped working on structures of a givery, atomicity violations in Java programs

domain and, therefore, the critical section for that domain should ter- Note that the support for Colorama does not replicate (and is

minate. Consequently, DCS schemes hav&xsinPolicy, which is |34y independent of) the support that the machine provides for

a s?mple, clear algorithm fpr terminati_ng a critical section. The eXit_synchronization. In this paper, we propose a Colorama implemen-
policy used by the system is communicated to the programmer. Thi;i, that relies on transactions as the underlying synchronization

1S _becal_lse’ to write corr(_act code, _the programmds _to knovthe_ mechanism. We also discuss the issues that appear in an implemen-
exit policy used, and write code in agreement with it. We be“evetation based on locks

that having a simple exit policy is an acceptable burden given the
improvement in programmability provided by DCS. 2.4. Examples of Colorama Programming

2.2. Software DCS (S-DCS) In Colorama, a data consistency domain is callgdodor, while a
)) L ‘memory region with structures belonging to a consistency domain

DCS has only been implemented in software, under limited enViig referred to aolored In this section, we show three motivating
ronments. The main example of what we strictly consider Softwareéxamples_
DCS (S-DCS) is Vaziret al's Atomic Sets [20]. This system in-
cludes a compiler and language extensions to Java. The programmkifiked List. Consider a linked list that is manipulated by functions
when declaring Java classes, can group several fields into an Atorriigat insert a node, delete a node, and traverse the list (Figure 1). The
Set. The elements of an Atomic Set are supposed to be manipulategpgrammer can color all the nodes in the list with the same color.
atomically inside critical sections that are automatically created by his is done with theolor andcolorpropsystem calls showrColor
the compiler. takes a starting address, a size, and a color ID; it colors the address

The entry points of critical sections of an Atomic Set are inferredrange with color IDColorproptakes a starting address, a size, and a
by the compiler by statically analyzing the code and identifyingcolored address; it propagates the color of the colored address to the
likely accesses to data belonging to the Set. Since Java is relativedgdress range.
analyzable due to type safety and the lack of pointer arithmetic, if the With Colorama’s support, the list manipulation functions in the
compiler has access to the whole program, then it can conservativefigure are written without any transaction or lock annotation. The
identify when data from Atomic Sets are accessed [20]. result is code as simple as in a sequential program.

f Thg .exi;[poligy u;eg b@/]}/aziri;t al. isto ifnshert the exit EOigth Task Queue. Consider a task queue where each entry points to a
ota C.”t'ci section rig (tj efore the r(_aturnTc;]_ the I‘?avalla mét 0 thaf)ucket of shared data (Figure 2). A thread accesses the task queue to
contains the corresponding entry point. Is policy builds on t Getrieve a bucket. Then, the thread operates on the bucket. Finally, it

intuition that a method is a natural unit of work — a method is typi-

Functions to manipulate the linked list: 3. High-Level Architecture of Colorama

insert node(), delete node(), traverse_list()

=T~ X [T

node3 node2 node1 node4

3.1. Overview

Colorama’s architecture consists of a structure shared by all threads
and a per-thread structure. The shared structure contains the current
list of colored regions, while the per-thread one specifies what col-
ors are currently owned by the thread. The per-thread structure also
includes the mechanism to support the exit of a critical section.

At every load and store, Colorama leverages efficient hardware
(Section 4) to check with very low overhead whether both the ad-

accesses the task queue again to deposit new buckets. There are 5SS is colored and the thread does not own the color. If so, Col-
eral variables associated with the task queue: head and tail pointef§@ma triggers the entry to the color's critical section. Later, when
aflag to check if the queue is empty, and a count of threads waitingerain events specified by the exit policy are detected, Colorama
on an empty task queue. The programmer can color the task quedB99ers the exit from the color’s critical section. ,

head, tail, empty andumwaitersstructures with a single color, and _1he shared structure is called Color Map Radette(Figure 4).
each of the data buckets with a different color. Then, all thefunction_£I is a software structure in shared memory that is partially cached

listed in the figure are written with no transaction or lock annotationin SPecial hardware at each processor. The Palette lists, for each
currently colored address region, the start and end addresses and its

color (ColorID). Multiple address regions — and therefore multi-
ple Palette entries — can have the same ColorID. However, a given
address can only have a single ColorID and, therefore, appear in a

color(&nodel, sizeof(nodel), RED)
colorprop(&node2, sizeof(node2), &nodel)

Figure 1. Example of linked-list manipulation.

Functions to manipulate the task queue:

get_task(), put_task(), is_empty(),
add_to waiters(), is_everyone waiting()

single entry.
(=0T 12 [N N T R AR
Start End H ColorID;
. I
Ohead taskqueue Address ~ Address ColorlD ;| | | |
Otail i Owned Colors Array

OOnum_waiters

: ,—l Color Acquire Bitmap
. Register (CAB) H
: Color Rell Bitmap
H Register (CRB) .

Palette Thread Color Status

color(&taskl, sizeof(taskl), GREEN)
color(&task2, sizeof(task2), BLUE)
color(&taskqueue, sizeof (taskqueue), RED) e
colorprop(&empty, sizeof(empty), &taskqueue) Shared Per Thread

Figure 4. Architectural support for Colorama. While the
Palette is conceptually a table, it has a hardware-software

Figure 2. Example of task queue handling. distributed implementation (Section 4.1).

Sample MySQL Structure. Figure 3 shows a data structure from The per-thread structure is tidread Color Statuslt contains

the MySQL database that is composed of many records. Each recaltte set of ColorIDs currently owned by the thread. These are the
has thdocksin_memfield and thenfo set of fields. A single global colors whose critical sections are currently being executed by the
lock protects théocksin_memfield in all records. Such lock is ac- thread. They are listed in the Owned Colors Array.

cessed from 29 sites in the MySQL code. Each recandsis pro- The Thread Color Status also provides an efficient hardware
tected by a per-record lock. Such lock is accessed from 14 sites. primitive for the software to implement the exit policy. The primitive
Colorama programmer can colticksin_memin all records with is built around the two Color Bitmap Registers: the read/write Color
the same color, and the per-recamtb fields with a per-record color. Acquire Bitmap (CAB) register and the write-only Color Release
The records can now be accessed with no transaction or lock annBitmap (CRB) register (Figure 4). These registers have as many bits
tation. as entries in the Owned Colors Array (e.g., 64). Every time that
a ColorlID is inserted in locationof the Owned Colors Array, the
corresponding bit in the CAB register is automatically set in hard-
ware. In addition, when the software setsihiif the CRB register,

the hardware triggers a critical section exit for the ColorID in the
info corresponding entry of the Owned Colors Array.

array of *record

I

locks_in_mem

3.2. Chosen Critical Section Exit Policy

for(i=0; i < MAXREC, i++) {
color(&record[i]->locks_in_mem, ptrsize, RED)
color(&record[i]->info, infosize, RED+i+l)

}
Figure 3. Sample structure from MySQL.

As indicated in Section 2.3, in this paper we choose the exit policy
used by Vaziriet al.[20]: trigger the exit of a color’s critical section
when the thread returns from the subroutine where the critical sec-
tion was entered. We choose it because it is simple and intuitive: a
subroutine is a natural unit of work; when the subroutine returns, the
thread is likely to have finished the operation it was doing and, there-
fore, stopped working on that color’s structures. Some evidence that
programmers already follow this convention informally is presented

void fool()

{

A= ... T

foo2(); ColoriD,
void fool() e critical
{ section
void fool() e } - subroutine
g A= ... —————=- prologue:
void foo2() stack ¢+ CAB
. . ColorlDp { CAB « 0
A = - B= ... —=—~— critical ..
Tt section .
ColoriDp, e ColoriDg B= ... 7~ subroutine
critical o critical ColoriDg epilogue:
“ee section e section critigal CRB « CAB
} == Yy -L---1. } _y_section CAB « stack

(@) (b) (c) (d)
Figure 5. lllustration of the policy chosen in this paper to exit critical sections in Colorama and its implementation.

later (Section 8.1). Note, however, that in DCS, writing correct codehe CRB register, if the same-offset entry in the Owned Colors Array
requiresthat the programmer be aware of the exit policy supportedhas a valid ColorID, the hardware triggers a critical section exit for
by the system and follows it. that ColorID.

Figure 5 illustrates the policy. The figure assumes that variables A section exit for a set of ColorIDs starts with the automatic invo-
A andB are colored withColorI D 4 andColorI Dg, respectively. cation of a Colorama user-level software handler. For each ColorID,
Figure 5(a) shows an accessApand how the resulting critical sec- the handler performs the following operations. First, the handler re-
tion runs until the end of the subroutine. Figures 5(b) and 5(c) shownoves that ColorID from the Owned Colors Array. Then, if this
how critical sections nest. In both cases, a thread accésaasl, was the last color in the structure, the handler initiates a transac-
before it returns from the subroutine, it accesBeas a result, the tion commit. If this was not the last color and the machine supports
ColorIDp critical section is nested inside ti&lorI D4 one. The nested transactions, the handler initiates an inner-transaction commit
two figures, however, show different cases. In Figure 5(b), the ador that ColorID. What an inner-transaction commit does is indepen-
cesses té\ andB are in the same subroutine; as a result, both criticablent of Colorama. It could, for example, create a new checkpoint
sections finish at the same time. In Figure 5(c), the accesss towhile keeping the thread speculative, in order to minimize the roll-
andB are in different subroutines, and the sections finish at differenback distance in case of a collision. Finally, the handler returns.
times. When a transaction is squashed, its ColorID(s) are removed from

This policy is implemented with theompiler-insertednstruc- the Owned Colors Array and its bit(s) in the CAB register are
tions shown in Figure 5(d). At every subroutine entry, the compilercleared.
saves the CAB register in the stack and then clears it. This does not
affect the Owned Colors Array (Figure 4). As the subroutine exe3.4. Pointers as Subroutine Arguments

cutes, if anew color becomes owned, the corresponding bit in theg,metimes; a critical section performs multiple operations on a

CAB regl_ster get_s automatically set. Before_ the subroutlne_ retu_m§’tructure, and invokes one subroutine per operation — passing as ar-
the compiler copies the CAB to the CRB register, thereby triggering,; yent t each subroutine a pointer to the structure. This is common
the exit of all the critical sections entered in this subroutine. Thenwhen handling complex structures such as hash tables. Figure 6()

it restores the CAB register from the stack, leaving it in the state iEhows a lock-based example of a read and a write to a hash table.
had before the subroutine was called. This algorithm works with anY¥iptris a pointer to the hash table.

nesting. Figure 6(b) shows the corresponding Colorama code, where we

assume that the hash table is colored. Colorama’s hardware will de-
tect accesses to the hash table only inside subrouteseiHash()
Based on the previous discussion, we now describe the operation afidwriteHash() As a result, it will create two separate critical sec-
Colorama in detail. At every load and store, the cached Palette anibns, one inside each subroutine. This is not what the programmer
the Thread Color Status are checked in hardware. If the address hiatended.
longs to a colored region and the thread does not own that ColorID, a Since we believe that this is a common style of programming, we
Colorama user-level software handler is automatically invoked wittwould like Colorama to enclose the two subroutines inside a single
low overhead. critical section. Interestingly, Colorama would automatically do so
The handler adds ColorID to the Owned Colors Array. Then, ifif we accessed the hash table in subroutiti¢pdate()before the call
nested transactions are supported, the handler starts a new trangaxeadHash() the exit policy would extend the critical section from
tion for that color; if only flat transactions are supported, it starts ahat point till the end ohtUpdate()
new transaction only if this is the only color owned by the thread. To support this case, we extend Colorama with a primitive to po-
The handler then returns to the program. While these simple opetentially start a critical section. The mechanism is a welorcheck
ations could be done in hardware, using a software handler is moiestruction that performs a run-time address check. Colorcheck takes
flexible. an address and checks whether it is colored and the color is not
As per our exit policy, before every subroutine return, an instrucowned by the thread. If so, Colorama automatically triggers a criti-
tion stores to the CRB register. For each set bit that gets written to

3.3. Detailed Colorama Operation

void htUpdate() void htUpdate() void htUpdate()

{ { {
lock (L) value = readHash(htPtr,key) colorcheck htPtr A
value = readHash(htPtr, key) value++ value = readHash(htPtr, key)
value++ writeHash(htPtr, key, value) value++ "
writeHash(htPtr, key, value) e colorcheck htPtr cnn;:al
unlock(L) } writeHash(htPtr, key, value) section
} } _Y_
(a) Lock-based code (b) Colorama code (c) Colorama code with colorcheck

Figure 6. Using the colorcheck instruction.

cal section entry as usual (Section 3.3). Colorcheck does not read tams associate protection information with pages. Consequently, to
write the address, and cannot raise protection exceptions. accommodate the Palette, we would need to redesign current TLB
To use this primitive for our purposes, we extend the Coloramatructures. In practice, there is already an efficient design that man-
compiler to identify subroutine calls with arguments that are pointages per-word protection information, namely the Mondrian Mem-
ers. For every such argument, the compiler inserts a colorcheck imry Protection (MMP) system [22]. Therefore, we implement the
struction with that argument, right before the call — in the examplePalette as extra bits to be stored in the MMP structures.
the argument ifitPtr. The resulting code is shown in Figure 6(c). The implementation of an MMP system is shown as the white
This change accomplishes what we need. At run time, colorchecstructures of Figure 7(a). The Multilevel Permissions Table is a soft-
checks the contents btPtr beforereadHash(Jand triggers the start ware table in shared memory that holds all the protection informa-

of the critical section. tion. The table is hierarchically organized for space efficiency, with
ranges of addresses expanded enough to keep the protection informa-
3.5. Why Use Multiple Colors tion at the available grain size (word, page, etc.). Processors trans-

[garently cache on demand sections of the table in a hardware buffer

If the system supports nested transactions, having multiple colo ’ : @
provides an intuitive way to build transaction nests [17]: every timec@lled Protection Lookaside Buffer (PLB). In addition, for faster

a new color is accessed inside a transaction, a new nesting |eve|q§cess.to prote.ctlon information, archltectur.al r'eglsters.have side-
created car registers, with recently-accessed protection information. Loads

Irrespective of whether or not the system supports nested trang_nd stores automatically access the sidecars and PLB in hardware to
actions, having multiple colors is also useful in three ways. FirstC€ck permissions. APLB miss is like a TLB miss, and brings in the
it can help debug the code. Specifically, every time a processor gpermissions transparently. OS-initiated PLB/sidecar updates propa-

tempts to commit a transaction, as it broadcasts the addresses tg3f€ 10 memory and invalidate relevant entries in other processors’s
it wrote, we propose that it also broadcast the colors that the tran§.-BS and sidecars.

action owned. If a second processor that is executing a different- Processor Memory
color transaction detects a collision with the committing one, the
programmer is warned that a bug is likely — different-color transac- Sidecars Protection .
tions should not have collisions. % Lookaside poutlovel

The second use is to help optimize the cross-thread dependence ?;‘['g)r Table
disambiguation that takes place at thread commit. If we are certain
that the code has no bugs, we may decide to reduce overheads by not
checking for collisions between concurrent transactions of different (a) MMP with the Palette extensions
colors. This may save inter-processor traffic. . o

The final advantage of supporting multiple colors is that it en- Thigad Vinuefddress Permseions Color ID
ables the programmer to embed more information in the program on | [[267 - i2o[120} 1207 .. (120
how shared data are used.

(b) PLB entry

If the system uses locks, instead, supporting multiple colors di-

rectly translates into enabling more concurrency (Section 4.3). Figure 7. Implementation of the Palette on top of an MMP
system. The shaded fields constitute the Palette.

4. Implementation of Colorama

The shaded fields in Figure 7(a) constitute the Palette. They sim-
ply add the ColorID bits to the three MMP structures. Figure 7(b)
The Colorama structures are the Palette and the Thread Color Statétsows a PLB entry in detail. A PLB entry may correspond to a cache
(Figure 4). The Palette is a distributed structure implemented partifine. The Palette adds a ColorID (e.g., 12 bits) to every word con-
hardware and part in software. It is accessed with a pattern similagined in the PLB entry — e.g., 1& 12 bits for a 16-word line.
to that of structures that contain address protection information —A |oad or store automatically checks the ColorID of the address ac-
i.e., which address can be read or written by which thread. Indeedessed, which is typically in a sidecar register or in the PLB. When
protection information is also shared by all threads and is accessedg@thread changes the color of a range of addresses, the OS updates
every memory request. Consequently, both types of information caghe PLB and the other structures as in the MMP system.
share the same implementation. One difference is that the Palette The Thread Color Status consists of three structures accessible in
contains per-word information, while current virtual memory sys-yser mode: the read/write Owned Colors Array, the read/write CAB

4.1. Colorama Structures

void fool() void foo2() void fool() void foo2()

{ { { {
lock(LA) lock(LB) A= ... B= ...
A= ... B=...
unlock(LA) unlock(LB)
lock(LB) lock(LA) B = ...4 |C00rDA A= ...p |ColriDg
_ _ critical critical
B=... A= ... ColorlDg section ColorID section
unlock(LB) unlock(LA) critical critical
} } } section } section
(a) Lock-based version (b) Colorama version

Figure 8. Example of how the chosen exit policy may cause a deadlock. Implementations with transactions do not have this
problem.

register, and the write-only CRB register (Figure 4). They hold anccomplex for the software, since the color of the data structures would
manage the colors owned by the currently-running thread. Thesafect the memory layout.

three structures all have the same number of entries (e.g., 64), al-

though each entry is one bit in the registers and a ColorID in th&.3. Using Locks as the Underlying Synchronization

Owned Colors Array. The Owned Colors Array and the CAB reg- Mechanism

ister are saved on a contegt switc.h. If a thread temporarily needs this paper proposes an implementation of Colorama on a machine
own more colors than entries avallal_ole, Colorama traps to sOﬂ\"""“’ﬁﬂat uses transactions as the underlying synchronization mechanism.
which manages the extra state required. It is also possible to build Colorama on a system that uses locks. In

The other key Colorama features are the colorcheck instructionpis case. each distinct color is associated with a different implicit
a related instruction callegetcolorid (whose purpose is discussed lock

later), and the low-overhead invocation of user-level handlers. The T.he Colorama user-level handler invoked at the entry point of
colorcheck and getcolorid instructions take an address. They are ify- ¢ isica| section, instead of starting a transaction, attempts to ac-
plemented like a Ic_)ad_, in that the hardware accesses the sidecar, P_ ire the lock corresponding to the color. When it succeeds, it adds
entry, or the Permissions Table entry for the address. The getcolorifg cojoriD to the Owned Colors Array and returns. Similarly, the
instruction simply returns the ColorlD (if any) of the address. The,pqjer invoked at the exit of a critical section releases the corre-
colorcheck instruction, again like a load, if it finds that the addres?;ponding lock, removes the ColorID from the Owned Colors Array

is colored and that the ColorID is not in the Owned Colors Array, ity g reyrns, Note also that it is not possible to hash multiple colors
triggers a critical section entry. However, unlike a load, colorcheclfnto one because deadlocks may happen

stops right there, and does not access memory. Neither colorcheck In a lock-based implementation, the specific exit policy that we

nor getcolorid raises protection exceptions. _ have chosen in this paper may have two effects. The first one is
When a thread needs to enter or exit a critical section, the harGe 5 gince critical sections now run until the end of subroutines, they

ware invokes a Colorama user-level software handler. Using a soffa\4 15 have larger sizes and, therefore, may cause an increase in

ware handler adds flexibility and simplicity, but it must be trlggered|ock contention. In practice, we show in Section 8.2 that the average

with low overhead. Fortunately, the handler does not require any, wrease in critical section size is likely to be modest.

change in privilege mode. We can use support such as that of In- 10 second effect is that, depending on how the code is written,

forming Memory Operations [12]. the exit policy chosen may cause deadlocks. As an example, Fig-

The maximum number of colors supported is hardwired in sevye g(4) shows a lock-based code and Figure 8(b) shows its corre-

eral struc_tures. While most programs need about 1K or fewer Coléponding Colorama code. In Figure 8(@p1lacquires and releases
ors (Section 8.3), we size Colorama for a large number (4K). If th§q . | A and then acquires and releases IbBxwhile foo2performs
program peeds more colors, Colorama hashes multlpl_e_ colors_lnme same operations in opposite order. Suppose that, under Col-
one. In this casg, performa_nce may be affected. Specnflcally, g"’e@rama, variables andB have colorsColorI D4 andColorI Dy,
the uses of multiple colors in q s_ystem that useg transactions (S%spectively. Because of the exit poliégpLwill nest ColorIDy's
tion 3.5), we may end up combining two transactions that should bgyitica| section insideolor 1D 4s, andfoo2will do the opposite. If
nested (and therefore squashing more work than necessary on a cgli, threads executinfpol andfoo2, respectively, perform the first
lision), potentially missing bug warnings, or generating more raffiC,sqignment ifioo1 andfoo2at the same time, they will deadlock.
than necessary to check for collisions. This scenario must be rare in practice, since our experiments of
Section 8.2 on conventional code have been unable to detect even a
single instance of subroutine pairs ticaulddeadlock in Colorama.
An alternative implementation involves restricting color assignmenConsequently, it may be acceptable to use this exit policy and, rather
such that all the structures in the same page share the same colivan trying to avoid deadlocks, detect them and break them if they
This policy can be enforced by specifying colors at memory allo-occur. Alternatively, we can use a different exit policy that is not
cation time and extending the memory allocator algorithm to keegubject to this problem. We are currently working on this issue.
pools of colored memory. Deadlocks can be detected with a software table in memory
Such approach would need a simpler Palette implementationhat lists, for each color, the current owner thread and the spinning
since we could extend TLB and page table entries to include coldhreads. When the Colorama user-level handler that attempts to ac-
information — the MMP system would not be needed. However, thejuire the lock for a color fails to do so, it registers its thread ID as
resulting coloring support would be less flexible and possibly morespinning on the lock. It then checks for a cycle in owner and spin-
ning thread IDs across multiple locks in the table. If it finds one, a

4.2. Coloring at Page Granularity

deadlock has occurred. Then, the handler informs the user of wheleop where a consumer thread reads data from a shared buffer that
the deadlock happened. is filled by a producer thread. If programmed with transactions, ev-
We consider this support to be a debugging aid. We expeatry access to the buffer would be a transaction. In Colorama, if the
that, as programmers become familiar with Colorama’s programshared buffer is colored, the whole infinite loop would become a
ming model and whatever exit policy is used, they will write codesingle critical section. To avoid this case, the programmer (or com-
that executes fast and reliably. piler) has to explicitly release the buffer’'s color at every iteration.
Note that deadlocks do not exist in a transaction-based impleAs another example, to implement a wait on condition variables, the
mentation of Colorama. Transactions are known to be susceptible frogrammer (or compiler) will want to be able to temporarily release

livelocks, but they are easily avoided. a color and then re-acquire it.
These operations are available through a Colorama library as fol-
5. Programming with Colorama lows. First, consider releasing the color associated with an address.

The library first uses a Colorama instruction caltgicolorid(Sec-
. . . L tion 4.1). Such instruction simply returns the ColorID of the address.
the ways in which Transactional Memory (TM) simplifies the pro- Then, the library searches the Owned Colors Array (Figure 4) to find

grammers job is by not requiring so much fine-tuning of th‘TJ.Cr'tlcalthe array offset where that ColorID is stored. If found, the library
sections — concurrency is limited by dependences, not critical sec-

. . L -~ = writes to the CRB register a set bit at the same offset, which triggers

tion length. With Colorama, the programmer’s job is further simpli-

. - the release of ColorID. Note also that we can release all colors by

fied beyond TM because he does not even need to mark critical sec-
Wwriting all ones to the CRB register.

tions — the system automatically infers them. The result is highly Releasing a colaemporarilyinvolves releasing the color as be-

programmable and maintainable code. In this section, we exami - o) .
o - ore and saving the address. Re-acquiring a color involves using the
several programming issues in Colorama. X .
colorcheck instruction on the saved address.

The goal of Colorama is to simplify parallel programming. One of

5.1. Correctness 5.3. Colorama’s Complete API

At a minimum, Colorama guarantees that all executions of criticab

.) - olorama’s complete API is shown in Table 1. It contains five in-
sections of the same color by different threads are serializable. Con:
sequently if the programmer colors all the shared data structuresstrucuons’ three system calls, and four library calls. The instructions

d Y program . are colorcheck, getcolorid, and moves to/from CAB or CRB. The
that should be accessed in an exclusive manner, Colorama produces

o : System calls color or decolor addresses. The reason why these oper-
a data-race free program. All conflicting accesses will be separated. . .
. . . ations are system calls is that they update the PLB, which also con-
by transaction boundaries or lock operations.

. . . . tains protection information (Section 4.1). These system calls are

The extent and granularity of coloring typically matter relatively , . .
L) . ‘ : typically issued when data structures are allocated or deallocated —
little in a transaction-based implementation of Colorama, since con;
currency is only limited by data dependences — althouah lon transhey are rarely issued otherwise. Possibly, the two coloring system
rencyl yin y P 9 9 calls could be inserted directly by the compiler, based on language
actions with resulting cache overflow are slow. However, they matter

. ntax extensions that specify colors when data structures are de-
substantially more in a lock-based implementation. In this case, ﬁy pecify

the programmer colors structures for which the accesses do not neclgred. Moreover, the decolor system call could be infiee(). Fi-
prog q Ily, the rationale for the four library calls in Table 1 was presented

to be constrained (e.g., thread-private variables), the resulting su- . -)

. ; .~Tn Section 5.2. Typically, only experienced programmers would use

perfluous critical sections or longer-than-necessary ones may Ilmgﬁe library calls

concurrency and lower performance. Conversely, a programmer can '

epable more concurrency |f_var|ablgs that do not haye mutL_JaI cons 4. Example: Prevention of an Atomicity Violation

sistency constraints are assigned different colors. This may improve

performance. Finally, to showcase the advantages of Colorama’s programming
If the programmer fails to color a structure that should be acSimplicity, we show one example where Colorama helps prevent a

cessed in an exclusive manner, the program may have data racggbtle synchronization defect. Figure 9 shows Java medppend

Likewise, if he assigns different colors to structures that have mutua¥hich appends one string to another. It calls metHedsgthto get

consistency constraints, or if he does not respect the exit policy dhe length of a string angetCharsio copy the string. The figure also

the system — in our case, by continuing to manipulate an exclusivéhows a call to append strirsfpto stringsa

structure past the corresponding subroutine return — the program Methodappendis annotated asynchronizedwhich means that

may function incorrectly. it executes under mutual exclusion with otlsgnchronizednethods
invoked onsa MethodslengthandgetCharsare alscsynchronized
5.2. Code Compatibility Issues However, when they are called from withappendin the exam-

ple, they aresynchronizedvith other methods invoked osh. As a

A program written for Colorama may be linked with libraries that result, although the individual interactions lehgth and getChars

do not use Colorama’s Application Binary Interface (ABI) — for on sbare atomic, the sequence of interactions is not: it can happen

example, they use explicit transactions or locks. In this case, ng . . ;
. .)] at stringsbis altered by another thread in-between lgmgthand
special action needs to be taken. The legacy library will use trans- 9 Y

: . etCharscalls — resulting in a stale value t#h at the point of call-
actions or locks to protect its own data structures, not program dat%].g getChars g P

qu_llbrary-gccessgd program data, quoram_a will continue to trigger In Colorama, defects such as this one are prevented. If sthing
critical section entries on access and (if the library executes program

- . . . IS colored, as soon as it is first accessed inajgfgend a critical sec-
code through a callback) critical section exits on subroutine returnstion starts. With the exit policy used, the critical section extends to
In certain exceptional cases, applications may require the absenﬁqe '

of Colorama’s default exit policy. For example, consider an infinite € end of the method — therefore encompassing the calisigih

[Instructions (Typically inserted by the compiler) 1]

colorcheck Addr Check if (Addr is colored and its color is not owned by the thread).
If true, enter critical section
getcolorid Addr, reg Save the ColorID of Addr in a register
mov reg, CAB Update the CAB register
mov CAB, reg Read the CAB register
mov reg, CRB Update the CRB register
I System Calls(They change the Palette. Inserted by the programmer or the compiler) 1]
color (StartAddr, Size, ColorID) Color this address range with ColorID
colorprop(StartAddr,Size,ColoredAddr) Propagate the color of ColoredAddr to this address range
decolor (Addr) Remove the color from the structure at Addr
I Library Calls (They change the Thread Color Status. Used in exceptional circumstances) 1]
color _release () Thread releases ownership of all its colors
color _release (Addr) Thread releases ownership of the color of the structure at Addr
color _temp _release (Addr) Threadtemporarilyreleases ownership of the color of the structure at Addr
color _reacquire () Thread re-acquires ownership of all the colors that it temporarily released

Table 1. Colorama’s complete API.

class StringBuffer { . . instances of these bugs. The procedure is to record the colors of the
F{’“bllc synchroni zed stringBuffer append(StringBuffer sb) critica| sections that exit at a given subroutine returriThen, we
. check if the thread accesses any of these colors again before the next
int len = sb.length(); N dynamic subroutine returns — whelkecan be 1. If it does, the
e programmer is warned, as he may have expected that the color’s crit-
sb.getChars(len,...); // len nay be stale .) .
ical section had extended beyond the returNote that this proce-
} _ dure only relies on single-thread information — not on information
public synchronized int length() { ...} dependent on the access interleaving of multiple threads. As a result,
public synchroni zed void getChars(...) { ... } . L
' the bug manifests deterministically.
StringBuffer sa; 6.2. Debugging CCS Code with Colorama Hardware

StringBuffer sb;
A programmer who writes conventional CCS code on a machine

with Colorama hardware can benefit from additionally annotating
Figure 9. Example where Colorama prevents an atomicity the data structures with colors as in DCS. Such annotations, if they
violation. drive the Colorama hardware without actually starting critical sec-

and getCharsand avoiding the problem. No code annotations are“ons’ can help debug the CCS code. As an illustration, assume that

necessary beyond coloring. Also, note thastifis not shared, we the programmer has written the CCS code with transactl_ons. In this
. o . L case, the Colorama hardware can detect when the following rules are
avoid any synchronization overhead by simply not coloring it.

violated, which is a strong indication of a bug.

1. Colored data should only be accessed inside transactions. Ac-
cesses from outside are typically bugs.
While we argue that programming in Colorama is simpler and less 2. As indicated in Section 3.5, transactions of different colors
error-prone than in the conventional CCS approach, itis still possiblehould not collide. The Colorama hardware records the colors ac-
to have bugs. In this section, we examine how to debug Colorameessed by each transaction. A collision between two transactions of
code. In addition, we also consider a related question, namely levedifferent colors likely suggests that the programmer was unaware of
aging the Colorama hardware to debug conventional CCS code. some data sharing.

3. A non-nested transaction should typically access only one

6.1. Debugging Colorama Code color. If a transaction accesses multiple colors, there may be an

We classify Colorama bugs into three classes: (i) failing to color £PPOrtunity for transaction nesting that could be flagged to the pro-

structure that should be colored; (ii) coloring two structures fromdrammer. More than a bug, this is possibly a missed optimization
the same consistency domain with two different colors; and (i) vi-OPPOMUNIty. _ _)
olating the exit policy. The bugs in class (i) can lead to data races, 4 A subroutine should not typically contain two transactions of
which can be detected with conventional data-race detection toolth® Same color. As pointed out in [21], functions that manipulate
They can also lead to collisions between critical sections of different2'€d data in paraliel programs are often intended to be atomic.
colors, which are easily detected by Colorama (Section 3.5). Therefo_re, having two transactions of the same color in the same
The bugs in classes (i) and (jii) cause atomicity violations. TheySubroutine rather than one may be a bug.
can be debugged with conventional tools that use heuristics to detect .
atomicity violations [6, 21]. 7. Experimental Setup
The bugs in class (iii) are unique to DCS. For the exit policy usedsince there are no programs written for Colorama, our evaluation
in this paper, they occur when the programmer assumes that a Cronsists of analyzing existing lock-based applications and estimat-
ical section extends past its corresponding subroutine return. Theg Colorama’s potential and overheads. We analyze a variety of

exit policy, of course, triggers a critical section exit at that particulanarge, open-source, realistic multithreaded applications written in C
return. Fortunately, we can use simple heuristics to identify possible

sa.append(sb);

6. Code Debugging Issues

or C++. Among them are the AOL web server, the Firefox web

. 100 =
browser, the MySQL database server, and others. Table 2 lists the "o | B 1 1 B
applications along with their number of dynamic instructions, criti- « 8o B Unmatched
cal sections (static and dynamic) and peak memory footprint, as theyg 70 O Matched
run natively on a Xeon-based multiprocessor with 8 hardware con- gg:
texts. S
— O 30
#Inst| # Critical Sec| Peak 50
Name Description (109) | Sta | Dyn | Footp 10
(10°) | (MB) 0~ bls Pl DIS DS DS DIS DS DS
aolservef| Web server (v4.0.10) | 19.5 | 116 |1169.4] 11.2 g, %f,?e f/r%* iy, 9y '%Q/%Qo Ay
barnes || SPLASH-2 application 11.8 | 22 | 69.1 | 34.8 Yoo 9 Sr
firefox Browser (v1.5.0.1) 7.1 | 485 | 832.8|172.2
gaim Instant msg (v2.0.0b2) 3.2 6 9.9 |138.5 . . . -,
gftp FTP client (v2.0.18) 14 | 173 | 882.0| 52.9 F|gu.re 10. Percentage of dynamic (D) and static (S) critical
mysq| MySQL DB (v5.0.18) | 32.7 | 147 | 3302.7| 545.5 sections that are matched or unmatched.
tuxracer || Game (v0.5a) 105)| 74 | 157 | 91.7 Figure 11 shows a representative unmatched critical section from
Avg — 12.3]146.1| 897.4] 1495 GTK. Inthe figure, subrouting.maindispatchassumes that it holds
Table 2. Multithreaded applications evaluated. lock context Inside the subroutine, before the invocation of callback

functiondispatch the code releases the lock; after the invocation, the
We developed a Pin-based [14] tool that profiles our application§ode acquires the lock back. This structure would not be compati-
running natively with multiple threads. The tool tracks synchronizable with our exit policy. In this particular case, however, Colorama
tion operations and collects information such as lock acquire and r&an handle this code without any changes because it is library code
lease sites, lock addresses, and critical section executions and sizesgction 5.2).
It also collects other events such as instruction counts and memory
allocations and deallocations. The tool is also connected to a simu-
lator that models a Multilevel Permissions Table for MMP [22] with
Palette extensions (Figure 7(a)). .
Synchronization operations are typically calls to multithreading UNLOCK (context);
libraries such as Pthreads. Many times, however, applications syn- .
chronize with indirections to pthread functions or with actual appli- need_destroy=!dispatch(src,callback,usr_data);
cation code. An example is TdllutexLock and TclMutexUnlock,
part of the TCL library used bgolserver Our profiler can handle
such cases as well. }

/* thread holds "context" lock */
g_main_dispatch (GMainContext *context)

{

LOCK (context);

Figure 11. Example of code from the GTK library with an
unmatched critical section.

8. Evaluation

We evaluate the suitability and impact of our chosen Colorama exit

policy, and then examine Colorama’s structure sizes and overheads.]]
8.2. Impact of Colorama’s Exit Policy

8.1. Suitability of Colorama’s Exit Policy The exit policy that we have chosen has two potential implications:

This section presents experimental evidence showing that the exlte critical section size increases and independent critical sections
policy that we choose for Colorama in this paper is already an inmay get combined in a nest. These issues typically have little or no
formal convention largely followed by programmers of CCS codelimpact in our proposed transaction-based implementation of Col-
Consequently, requiring its compliance for correct DCS code woul@rama. However, in a lock-based implementation, the first issue
likely be a light burden. For this experiment, we determine, for eacigould increase lock contention and the second one could, under cer-
critical section executed by the applications, whether the lock adain conditions, cause deadlock (Section 4.3).
quire and release are in the same subroutine. If they are, the section To assess the first issue, we measure the avetpgamicsize
is matched otherwise, it isunmatched of each critical section in its lock version (from acquire to release)
Figure 10 shows the percentage of dynamic (D) and static (S3nd in what would be its Colorama version (from acquire to sub-
critical sections that are matched or unmatched. Recall from Table®utine return). The resulting cumulative distribution is shown in
that individual applications have 10K-3303K dynamic critical sec-Figures 12(a) and (b), respectively.
tions and 6-485 static ones. From the figure, we see that matched While the dynamic sizes of critical sections do increase, the av-
critical sections account for practically all the dynamic sections, an@rage increase is not excessive. In some applications, there are a
for 95% of the static ones. This supports our choice of exit policyfew critical sections that increase in size substantially. For example,
It shows that programmers already tend to initiate and conclude ®is occurs for the sound threadtimxracer The thread acquires and
critical section in the same subroutine. releases a lock at the beginning of the game, and then runs for the
The few unmatched cases are either special cases or are in cddi¢ration of the game without returning from the subroutine. How-
that is very fine-tuned for concurrency, especially in libraries. Fo€Vver, we believe that, since the Colorama programmer is required to
example, infirefox, gaim andgftp, all unmatched critical sections know the system’s exit policy, he will write the code to avoid lengthy
are inside the fine-tuned GTK library. critical sections.

= 1007 = 1007
2 S
*g 90 g 907
»n 807 »n 80
.S 70 .S 707
5 607 -*-aolserver £ 607
% 50 -+barnes 3 507
2 40 -firefox 2 40
< 30 ~>-gaim o 301
£ +4gftp £
3 207 ~mysq| 3 207
< 10 -a-tuxracer < 10 3
0 2 3 { 4 { 5 { 6 ‘ 7 0 N { 2 { 3 { 4 { 5 { 6 ‘ 7
1 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10
of Instructions # of Instructions
(a) Acquire to release (b) Acquire to return

Figure 12. Cumulative distribution of dynamic critical section size from acquire to release (a) and from acquire to subroutine
return (b).

To assess the case of independent critical sections being coro the number of rows in the Palette. Such number ranges from 100
bined into a nest of critical sections, we measure how often multipleto nearly 1M.
independent critical sections have their entry points inside the same

subroutine. These are the ones that would be combined into a nest. Colorama Structure Sizes _ || Colorama Overheads
K h h i . . . #of # of # of # of # of Inst
_Flgure 1_3 shows the percentage o dynamlc_(D) gnd static (S) crit- App Palette| #of | ColoriD| OCA || Subr | perCol
ical sections that, because of Colorama’s exit policy, would end up Rows | Colors| Bits | Entries|| Calls | Syscall
.. . . " . . . 3 3
combining with an independent second critical section, by nesting it (10%) (elnsh] (107
nai ; i aolservef| 0.6 | 141 8 39 19 | 2834638
inside. Such instances are callédmbined botnos o1 | 1%8 8 b 07 | sgrr7ea
firefox || 960.1 | 3992 | 12 11 1.2 36
1004 o gaim 743.0| 1151 | 11 4 1.9 1.9
ol T MR ™™ gitp 152 | 874 | 10 6 25 19
80+ . mysq| 407 | 1936 | 11 10 2.7 129.5
o E ﬁO{“b'nebd g tuxracer || 10.3 | 73 7 6 0.3 160.6
;07 ot combine Choice || — | 4096 | 12 4 — -

Table 3. Characterization of Colorama.

% Critical Sections
o
2

We also measure the number of distinct lock addresses in each

104 program. Such number estimates the number of different colors
0 b5 Dbls bls DS bls DS DS DS needed. The number is shown in Column 3. We see that programs
sy, %”7@3 "ot Sty Mo sy, Yy, g need 100-4000 colors. From this number, we compute the number

©r NS of bits in ColorID. As shown in Column 4, we need 7-12 bits in the

ColorlD field.

Figure 13. Percentage of dynamic (D) or static (S) critical Finally, to determine the number of entries in the Owned Col-

sections that end up nesting a second critical section inside ors Array (OCA) in Figure 4 (or the number of bits in the CAB and
them. CRB registers), we need to measure the maximum number of locks

held by a thread at a time. To be conservative, we measure the max-
From the figure, we see that on average only about 1% of thfnum number of locks held at a time layl threads combined. Such

dynamic critical sections and 4% of the static ones end up nestingumber is shown in Column 5, and ranges from 4 to 39.
a second critical section in. A detailed analysis of these (few) cases The last row of Table 3 shows the parameters we choose for Col-
shows that the resulting order of any pair of nested locks is alwaysrama: 4K colors, 12-bit ColoriDs, and a maximum of 64 owned
the same — which eliminates the possibility of getting a deadlockeolors per thread. Moreover, following [22], we set the PLB to 128
Consequently, we conjecture that the possibility of deadlock will beantries, where each entry maps 16 words.
rare.

8.4. Colorama Overheads

8.3. Colorama Structure Sizes))
Finally, we measure the two main Colorama overheads, namely ad-

To estimate the sizes of the Colorama structures in Figure 4, we pegiitional instructions and additional memory space. One more over-
form several measurements on the applications. We conservativeliead is the extra references to memory due to PLB misses, but these
assume that every time an application allocates or deallocates megye largely the same as in the base MMP design (without Colorama)
ory, it adds or deletes, respectively, a colored region. Consequently. around 8%, as quantified in [22].

the number of "live” allocated regions plus the number of static data) o

objects in the binary gives the total number of colored regions at Additional Instructions. For every subroutine invoked, the com-

time. This number is shown in Column 2 of Table 3. and correspond@”er inserts about six instructions to perform the operations shown
' in Figure 5(d). In addition, for each pointer that the subroutine takes

as argument, the compiler adds one colorcheck instruction. Overall,
we could assume that, on average, Colorama adds about seven in- 30

. Do : 8 bit colorID
structions per subroutine invocation. As a reference, Column 6 of$ p5- [16 bit colorlD
Table 3 shows that, on average, about 1.6% of the dynamic instruc—o }Pa'eﬁe ﬁ:g 24 bit colorlD

. . T 50— [Z1 32 bit colorID

tions are subroutine calls. 220
In reality, the resulting overhead is likely to be very small. First, § 15

the added instructions are mostly register moves and loads/stores th& WP

hit in the cache — since they access the stack; they can easily fill thes 107 ﬁigﬂission

many unused execution slots in superscalars. Moreover, the compileg - W

does not need to add these additional instructions for the subroutines W mﬂ

that it can prove do not access colored data. Finally, applications 0 \ = ‘ ‘ rffﬁ ‘ ‘

often execute library code, which is not subject to this overhead. S 6,3,,7 f/r% QQ/})] Iy My Uy, 4,,9
A second source of overhead is the execution of the user-level N S8 * % g,

handlers to enter and exit critical sections. However, the contribution
of these instructions is very small, given the low frequency of critical
section entry and exit. Such frequency is given by two times the
numbers in Column 5 of Table 2 over the numbers in Column 3 of
the same table. procedures execute in a mutually exclusive way. The key difference
Finally, Colorama also executes coloring system calls. We conis that, in Colorama, the programmer does not have to specify the
servatively assume that every time the application allocates or deddrocedures that touch the shared data structure. Synchronization is
locates memory, it issues one such call to add or delete a coloréaferred dynamically by the hardware — an approach that is effi-
region, respectively. Column 7 of Table 3 shows the frequency o€ient, flexible, and often the only alternative when the code is hard
these system calls. For four applications, they are issued on averatfeanalyze statically or simply not available to the compiler.
only once every 129K-288M instructions. In this case, the overhead Several works have associated data objects to synchronization in-
is negligible. In three other applications, they are issued once eveffiprmation for a variety of purposes. For example, in Entry Consis-
2K-4K instructions. In these applications, the frequent memory allotency (EC) [4], the association is done to enforce memory consis-
cation/deallocation is already very costly in itself. We can eliminateency in a distributed shared-memory system. The programmer ex-
most of the additional cost of coloring by having the memory allo-plicitly associates shared locations with locks. When a processor
cator keep pools of colored memory. As a result, there is no need @nters a critical section by acquiring a lock, the associated shared lo-
issue a system call at each of these operations. cations are made consistent. An important difference with Colorama

. . . isthat in EC, the programmer explicitly marks the critical sections
Additional Memory' Space. The large majority of Colorama’s in the code. This makes EC code-centric, with some data-centric
memory overhead is due to the Palette. To compute the Palett%notations

overhead, we model in detail the MMP’s Multilevel Permissions Ta-
ble of Figure 7(a) in our sin_1u|ator. We use the Mini-SST format Ofsection is a burden to the programmer. As a result, Scope Consis-
the entrles., as suggested in [22]. We measure two memory Spagg, ., [13] improves on EC by having the software system automat-
overheads: the one for the base MMP with permissions informatiof. .y infer the shared data accessed in the scope of each critical
(white part of the Permissions Tablg In Flgure 7(a)), afnd the one fo§ection. Still, the programmer has to mark the critical sections.

the Palette state only (shaded part in Figure 7(a)). Figure 14 shows | ;o Colorama, Xuet al. [23] try to infer critical sections, al-

these two memory space overheads as a fraction of the applicati?tqough the approach and environment is very different. They exam-
footprint. For a given bar, both these two overheads and the applfhe a post-mortem trace of memory references after a bug has been
cation footprint are the peak values for the whole application exegetected, and propose heuristics to infer the code that should be in
cution. For additional information, the figure models ColorID fields . jii-al sections. They use this information to estimate if a synchro-

that range from 8 to 32 bits. nization was missing. The Colorama hardware cannot directly use

The figure shows that the Palette adds only a very modest ovefpeir heyristics to decide when to enter/exit a critical section because
head over that of the base MMP. On average, for the range of Cc_’{heir scheme requires access to future references and to references
orlDs useq, th? Palette only adds 1-2.5% more space to the fOOtp”ﬂbm other processors. Moreover, their heuristics can have false pos-
of the application. itives and false negatives. However, their scheme could be usable in

other DCS designs.
9. Related Work Other related works include: (i) programmer-specified associ-
Section 2.2 described the work that we strictly consider S-DCSation between code and data for static or dynamic validation of
and how it differs from Colorama. To that discussion, we add thaparallel programs (e.g., [19]); (ii) programmer-specified “transac-
Atomic Sets [20] are what we call colors, and that Vaetral. also tional” variables in composable memory transactions [9] that pro-
allow the programmer to explicitly associate external methods to aide stronger atomicity guarantees; and (ii) the lock bits associated
Atomic Set, which arguably breaks the pure data-centric approachWith memory regions in the IBM 801 [5], used to support transac-

Other systems that support a less flexible form of DCS are lantions on memory-mapped I/O.
guages [2, 3, 8] with concurrency control based on Monitors [11].

In such languages, it is possible to specify a shared data structul®). Conclusions and Future Work

a|_1d the set of procedures that are aII_owgd to access it. The compileg Laquce the complexity of parallel programming, this paper has
will then add the necessary synchronization operations to make theﬁ?oposedColorama the first design of Hardware DCS (H-DCS).

Figure 14. Space overhead of the base MMP and of the
Palette for different ColorID sizes.

Having to explicitly list the shared data associated with a critical

Colorama relies on two nimble hardware primitives to make DCS [8] P. B. Hansen, “The Programming Language Concurrent Pas-

practical: one that monitors all memory accesses and one that can

cal,” IEEE Transactions on Software Engineerid@75.

flexibly trigger the exit of a critical section based on a mechanism [9] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Com-

programmed in software. We have described Colorama’s opera-
tion with transactions as the underlying synchronization mechanism.
Moreover, we have presented Colorama’s simple implementation
based on MMP, its programming model and API, and its capacity10]
to help debug conventional CCS codes. Finally, we have discussed

the issues that appear in a lock-based implementation.

The evaluation assessed the policy chosen in this paper to exit[al]

critical section at the return from the subroutine where the critical

section was entered. We showed that this exit policy is already afi2]

informal convention largely followed by programmers of CCS code.
Consequently, requiring its compliance for correct DCS code will
likely be a light burden at most. We also showed that the policy

increases critical sections modestly on average, and rarely combinfs3]
critical sections — issues largely relevant to a lock-based implemen-
tation. The evaluation also showed that, by building on top of an
MMP system, Colorama requires only modest hardware resourc¢$4]

and induces small overheads.

Overall, Colorama effectively supports general-purpose, pointer-
based languages such as C/C++ and, in our opinion, can substantially

simplify writing newparallel programs beyond transactions. Our fu-

ture work involves: (i) developing and evaluating new exit policies,[15]

(i) writing and evaluating large Colorama programs and (iii) com-

bining S-DCS and H-DCS into a hybrid system.

Acknowledgments

We thank the anonymous reviewers and the members of the
ACOMA group at the University of lllinois for their invaluable
comments. Special thanks go to Karin Strauss, Paul Sack, Brian
Greskamp, Calin Cascaval and Mark Oskin for their feedback on the
paper.

References

[1] C.S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,[19]

(2]

(3]
(4]

[5] A. Chang and M. F. Mergen, “801 Storage: Architecture and[22]

(6]

(7]

and S. Lie, “Unbounded Transactional Memory,” liiterna-
tional Symposium on High Performance Computer Architec-
ture, February 2005.

H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, “Orca: A[20]

Language for Parallel Programming of Distributed Systems,”
IEEE Transactions on Software Engineeringl. 18, no. 3,
1992.

J. Barnes, “Introducing Ada 9XACM Ada Letters1993.

B. Bershad, M. Zekauskas, and W. Sawdon, “The Midway
Distributed Shared Memory System,” iBEE Int'| Computer
Conference (COMPCONJebruary 1993.

Programming,”ACM Transactions Computer Systemsl. 6,
no. 1, 1988.
C. Flanagan and S. Qadeer, “A Type and Effect System for

Atomicity,” in Conference on Programming Language Design[23]

and Implementationiune 2003.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun, “Transactional Memory Coherence and Consis-
tency,” inInternational Symposium on Computer Architecture
June 2004.

(16]

fi7)

(18]

(21]

posable Memory Transactions,” imternational Symposium
on Principles and Practice of Parallel Programmingune
2005.

M. Herlihy and J. E. B. Moss, “Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures [riterna-
tional Symposium on Computer Architectut893.

C. Hoare, “Monitors - An Operating System Structuring Con-
cept,”Communications of ACM/ol. 17(10), 1974.

M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith,
“Informing Memory Operations: Providing Memory Perfor-
mance Feedback in Modern Processors|hternational Sym-
posium on Computer Architectyrdune 1996.

L. Iftode, J. Singh, and K. Li, “Scope Consistency: A Bridge
between Release Consistency and Entry Consistencgyin-
posium on Parallel Algorithms and Architecturdsine 1996.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation,” in Conference on Programming Language Design and
ImplementationJune 2005.

T. G. Mattson, B. A. Sanders, and B. L. Massingihtterns
for Parallel Programming Addison Wesley, 2005.

K. Moore, J. Bobba, M. J. Moravan, M. Hill, and D. Wood,
“LogTM: Log-Based Transactional Memory,” international
Symposium on High Performance Computer Architecture
February 2006.

E. Moss and T. Hosking, “Nested Transactional Memory:
Model and Preliminary Architecture Sketches,”\IMorkshop
on Synchronization and Concurrency in Object-Oriented Lan-
guagesOctober 2005.

R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional
Memory,” in International Symposium on Computer Architec-
ture, June 2005.

D. F. Sutherland, A. Greenhouse, and W. L. Scherlis, “The
Code of Many Colors: Relating Threads to Code and Shared
State,” inWorkshop on Program Analysis for Software Tools
and EngineeringNovember 2002.

M. Vaziri, F. Tip, and J. Dolby, “Associating Synchroniza-
tion Constraints with Data in an Object-Oriented Language,” in
Symposium on Principles of Programming Languadrebru-
ary 2006.

L. Wang and S. D. Stoller, “Accurate and Efficient Runtime
Detection of Atomicity Errors in Concurrent Programs,in
ternational Symposium on Principles and Practice of Parallel
Programming March 2006.

E. Witchel, J. Cates, and K. Asanéyi“Mondrian Memory
Protection,” inInternational Conference on Architectural Sup-
port for Programming Languages and Operating Systebts
tober 2002.

M. Xu, R. Bodik, and M. D. Hill, “A Serializability Violation
Detector for Shared-Memory Server Programs Cionference

on Programming Language Design and Implementatihme
2005.

