
Colorama: Architectural Support for Data-Centric Synchronization ∗

Luis Ceze, Pablo Montesinos, Christoph von Praun† andJosep Torrellas

University of Illinois at Urbana-Champaign
{luisceze, pmontesi, torrellas}@cs.uiuc.edu

http://iacoma.cs.uiuc.edu

†IBM T.J. Watson Research Center
praun@us.ibm.com

ABSTRACT

With the advent of ubiquitous multi-core architectures, a major
challenge is to simplify parallel programming. One way to tame
one of the main sources of programming complexity, namely syn-
chronization, is transactional memory (TM). However, we argue that
TM does not go far enough, since the programmer still needs non-
local reasoning to decide where to place transactions in the code.
A significant improvement to the art isData-CentricSynchroniza-
tion (DCS), where the programmer uses local reasoning to assign
synchronization constraints to data. Based on these, the system au-
tomatically infers critical sections and inserts synchronization oper-
ations.

This paper proposes novel architectural support to make DCS
feasible, and describes its programming model and interface. The
proposal, calledColorama, needs only modest hardware extensions,
supports general-purpose, pointer-based languages such as C/C++
and, in our opinion, can substantially simplify the task of writing
new parallel programs.

1. Introduction

As chip multiprocessors become widespread, there is growing pres-
sure to substantially broaden their parallel application base. Unfor-
tunately, the vast majority of current application programmers find
parallel programming too complex. To effectively utilize the upcom-
ing hardware, we need major breakthroughs that simplify parallel
programming.

Developing a parallel application consists of four steps [15]: de-
composing the problem, assigning the work to threads, orchestrating
the threads, and mapping them to the machine. Orchestration is ar-
guably the most challenging step, as it involves synchronizing the
threads. It is in this area that innovations to simplify parallel pro-
gramming are most urgently sought.

One such innovation is Transactional Memory (TM) [1, 7, 10, 16,
18]. In TM, the programmer specifies sequences of operations that
should be executed atomically. TM simplifies parallel programming
in two ways. First, the programmer does not need to worry about
the intricacies of managing locks. Second, he does not need to fine-
tune critical sections as much, since concurrency is only limited by
dependences — not critical section length.

We claim, however, that TM is still complicated: it requires the
programmer to reasonnon-locally. Specifically, when the program-

∗This work was supported in part by the National Science Foundation un-
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;
DARPA under grant NBCH30390004; DOE under grant B347886; and gifts
from IBM and Intel. Luis Ceze was supported by an IBM PhD Fellowship.

mer inserts a transaction annotation, he also needs to think about
what other parts of the program may be accessing this same or re-
lated shared data, and potentially insert transaction annotations there
as well. Intuitively, like inserting lock and unlock operations, insert-
ing transaction annotations involves taking acode-centricapproach.

To improve programmability further, we need adata-centricap-
proach [20]. WithData-Centric Synchronization(DCS), the pro-
grammer associates synchronization constraints with the program’s
data structures. Such constraints indicate which sets of data struc-
tures should remain consistent with each other and, therefore, be
accessed in the same critical section. From these constraints, the
system automatically infers the critical sections and inserts thread
synchronization operations in the code. DCS simplifies parallel pro-
gramming because the programmer reasonslocally, focusing only
on what structures should be consistent with each other.

Existing DCS proposals [20] take user-provided, data-centric
synchronization constraints and decide where to insert critical sec-
tions using software-only support. In particular, the compiler needs
to analyze all the accesses in the code. This is unrealistic in
most C/C++ environments, where pointer aliasing is common and,
most importantly, dynamic linking denies the compiler access to the
whole program.

To make DCS practical, this paper proposes the first design for
Hardware DCS (H-DCS). Our proposal, calledColorama, relies on
two hardware primitives: one that monitors all memory accesses to
decide when to start a critical section, and one that flexibly trig-
gers the exit of a critical section. Colorama is independent of the
underlying synchronization mechanism. In this paper, we present
a transaction-based implementation and also discuss the issues that
appear in a lock-based implementation.

We describe Colorama’s architecture, a simple implementation
that extends a Mondrian Memory Protection (MMP) [22] system, its
programming model and API, and its capacity to help debug conven-
tional codes. We show that Colorama needs few hardware resources
and has small overhead. It supports general-purpose, pointer-based
languages such as C/C++ and, in our opinion, can substantially sim-
plify the task of writing new parallel programs.

In the following, Section 2 introduces DCS; Sections 3, 4, 5 and 6
present Colorama’s architecture, implementation, programming en-
vironment, and debugging issues respectively; Sections 7 and 8 eval-
uate Colorama; and Section 9 discusses related work.

2. Data-Centric Synchronization (DCS)

2.1. Basic Idea

In Data-Centric Synchronization (DCS) [20], the programmer asso-
ciates synchronization constraints with data structures — typically

1

when they are declared or allocated. These constraints specify which
data structures are in the same “data consistency domain” and, there-
fore, should be kept consistent with each other. This means that
when one structure is being modified, all the other structures in the
same domain need to be protected from access by other threads. To
support this model, when a thread accesses a structure of a domain,
the thread automatically enters a critical section for that domain. No
other thread can now access structures of that domain. When the
thread finishes working on structures of that domain, the thread au-
tomatically exits the critical section.

DCS is in contrast to conventional Code-Centric Synchronization
(CCS), where synchronization constraints are associated with code.
In CCS, the programmer marks what code is inside which critical
section.

We argue that DCS has a significant advantage over CCS in
programmability. CCS requires the programmer to reasonnon-
locally [20]: every time he inserts a transaction begin/end or a lock
acquire/release annotation in the code, he also needs to think about
what other locations in the program may be accessing this same or
related data structures, and potentially insert synchronization anno-
tations there as well. Instead, with DCS, the programmer reasons
locally, focusing only on what data structures should be consistent
with each other. The system automatically infers the critical sec-
tions.

The shortcoming of DCS stems from limited program knowl-
edge. The system has to automatically infer when the code enters
and exits a critical section, so that it can insert the appropriate syn-
chronization operations around the section.

Identifying entry points to critical sections largely involves iden-
tifying accesses to data structures belonging to a domain. Identify-
ing exit points is harder. It is typically impossible for the system
to know when a thread has stopped working on structures of a given
domain and, therefore, the critical section for that domain should ter-
minate. Consequently, DCS schemes have anExit Policy, which is
a simple, clear algorithm for terminating a critical section. The exit
policy used by the system is communicated to the programmer. This
is because, to write correct code, the programmerneeds to knowthe
exit policy used, and write code in agreement with it. We believe
that having a simple exit policy is an acceptable burden given the
improvement in programmability provided by DCS.

2.2. Software DCS (S-DCS)

DCS has only been implemented in software, under limited envi-
ronments. The main example of what we strictly consider Software
DCS (S-DCS) is Vaziriet al.’s Atomic Sets [20]. This system in-
cludes a compiler and language extensions to Java. The programmer,
when declaring Java classes, can group several fields into an Atomic
Set. The elements of an Atomic Set are supposed to be manipulated
atomically inside critical sections that are automatically created by
the compiler.

The entry points of critical sections of an Atomic Set are inferred
by the compiler by statically analyzing the code and identifying
likely accesses to data belonging to the Set. Since Java is relatively
analyzable due to type safety and the lack of pointer arithmetic, if the
compiler has access to the whole program, then it can conservatively
identify when data from Atomic Sets are accessed [20].

The exit policy used by Vaziriet al. is to insert the exit point
of a critical section right before the return of the Java method that
contains the corresponding entry point. This policy builds on the
intuition that a method is a natural unit of work — a method is typi-

cally exited when the work is completed. Therefore, a single method
includes both the entry and the exit points of a critical section.

2.3. Proposal for Hardware DCS (H-DCS): Colorama

S-DCS is unsuitable for popular languages such as C/C++, which
allow pointer arithmetic and aliasing. Since the compiler cannot
fully analyze the code due to lack of pointer information, it can only
generate conservative critical section approximations of very lim-
ited use. Alternatively, if it inserts instructions to check the address
of every pointer access dynamically, it induces intolerable overhead.
More fundamentally, in environments with dynamic linking, deploy-
ment of S-DCS is impractical because the compiler may lack access
to the whole program.

Therefore, this paper proposes a novel architecture to support
DCS in hardware. The resultingHardware DCS (H-DCS)scheme
is calledColorama. It supports any type of access pattern, has low
overhead, and is usable in any language.

Colorama has two primitives, corresponding to the need to iden-
tify critical section entry and exit points. The first one is hardware
to monitor all addresses issued by the processor with very low over-
head. If a thread accesses a structure belonging to a consistency
domain from outside of a critical section for that domain, Colorama
starts a critical section.

The second primitive is hardware to support the exit of a critical
section. Such primitive is very flexible and is driven by the compiler,
so that different exit policies can be supported. At all times, however,
it has to be clear to the programmer what exit policy will be used by
the compiler as it generates the executable. In this first paper, how-
ever, we simply use the exit policy used by Vaziriet al. [20]. We use
it because it is very intuitive. For example, Wang and Stoller [21]
use the heuristic that methods execute atomically to identify poten-
tial atomicity violations in Java programs.

Note that the support for Colorama does not replicate (and is
largely independent of) the support that the machine provides for
synchronization. In this paper, we propose a Colorama implemen-
tation that relies on transactions as the underlying synchronization
mechanism. We also discuss the issues that appear in an implemen-
tation based on locks.

2.4. Examples of Colorama Programming

In Colorama, a data consistency domain is called aColor, while a
memory region with structures belonging to a consistency domain
is referred to asColored. In this section, we show three motivating
examples.

Linked List. Consider a linked list that is manipulated by functions
that insert a node, delete a node, and traverse the list (Figure 1). The
programmer can color all the nodes in the list with the same color.
This is done with thecolor andcolorpropsystem calls shown.Color
takes a starting address, a size, and a color ID; it colors the address
range with color ID.Colorproptakes a starting address, a size, and a
colored address; it propagates the color of the colored address to the
address range.

With Colorama’s support, the list manipulation functions in the
figure are written without any transaction or lock annotation. The
result is code as simple as in a sequential program.

Task Queue. Consider a task queue where each entry points to a
bucket of shared data (Figure 2). A thread accesses the task queue to
retrieve a bucket. Then, the thread operates on the bucket. Finally, it

node4node1node2

color(&node1, sizeof(node1), RED)
colorprop(&node2, sizeof(node2), &node1)
...

Functions to manipulate the linked list:
insert_node(), delete_node(), traverse_list()

node3

Figure 1. Example of linked-list manipulation.

accesses the task queue again to deposit new buckets. There are sev-
eral variables associated with the task queue: head and tail pointers,
a flag to check if the queue is empty, and a count of threads waiting
on an empty task queue. The programmer can color the task queue,
head, tail, empty andnumwaitersstructures with a single color, and
each of the data buckets with a different color. Then, all the functions
listed in the figure are written with no transaction or lock annotation.

get_task(), put_task(), is_empty(),
add_to_waiters(), is_everyone_waiting()

Functions to manipulate the task queue:

color(&task1, sizeof(task1), GREEN)
color(&task2, sizeof(task2), BLUE)
color(&taskqueue, sizeof(taskqueue), RED)
colorprop(&empty, sizeof(empty), &taskqueue)
...

taskqueue

empty

num_waiters

head
tail

task1

task2

Figure 2. Example of task queue handling.

Sample MySQL Structure. Figure 3 shows a data structure from
the MySQL database that is composed of many records. Each record
has thelocks in memfield and theinfo set of fields. A single global
lock protects thelocks in memfield in all records. Such lock is ac-
cessed from 29 sites in the MySQL code. Each record’sinfo is pro-
tected by a per-record lock. Such lock is accessed from 14 sites. A
Colorama programmer can colorlocks in memin all records with
the same color, and the per-recordinfo fields with a per-record color.
The records can now be accessed with no transaction or lock anno-
tation.

array of *record

locks_in_mem

info

for(i=0; i < MAXREC, i++) {
 color(&record[i]->locks_in_mem, ptrsize, RED)
 color(&record[i]->info, infosize, RED+i+1)
}

Figure 3. Sample structure from MySQL.

3. High-Level Architecture of Colorama

3.1. Overview

Colorama’s architecture consists of a structure shared by all threads
and a per-thread structure. The shared structure contains the current
list of colored regions, while the per-thread one specifies what col-
ors are currently owned by the thread. The per-thread structure also
includes the mechanism to support the exit of a critical section.

At every load and store, Colorama leverages efficient hardware
(Section 4) to check with very low overhead whether both the ad-
dress is colored and the thread does not own the color. If so, Col-
orama triggers the entry to the color’s critical section. Later, when
certain events specified by the exit policy are detected, Colorama
triggers the exit from the color’s critical section.

The shared structure is called Color Map, orPalette(Figure 4).
It is a software structure in shared memory that is partially cached
in special hardware at each processor. The Palette lists, for each
currently colored address region, the start and end addresses and its
color (ColorID). Multiple address regions — and therefore multi-
ple Palette entries — can have the same ColorID. However, a given
address can only have a single ColorID and, therefore, appear in a
single entry.

Start
Address

End
Address ColorID

Palette
Shared Per Thread

Owned Colors Array
Color Acquire Bitmap

Register (CAB)

Color Release Bitmap
Register (CRB)

Thread Color Status

ColorIDi

Figure 4. Architectural support for Colorama. While the
Palette is conceptually a table, it has a hardware-software
distributed implementation (Section 4.1).

The per-thread structure is theThread Color Status. It contains
the set of ColorIDs currently owned by the thread. These are the
colors whose critical sections are currently being executed by the
thread. They are listed in the Owned Colors Array.

The Thread Color Status also provides an efficient hardware
primitive for the software to implement the exit policy. The primitive
is built around the two Color Bitmap Registers: the read/write Color
Acquire Bitmap (CAB) register and the write-only Color Release
Bitmap (CRB) register (Figure 4). These registers have as many bits
as entries in the Owned Colors Array (e.g., 64). Every time that
a ColorID is inserted in locationi of the Owned Colors Array, the
corresponding bit in the CAB register is automatically set in hard-
ware. In addition, when the software sets biti of the CRB register,
the hardware triggers a critical section exit for the ColorID in the
corresponding entry of the Owned Colors Array.

3.2. Chosen Critical Section Exit Policy

As indicated in Section 2.3, in this paper we choose the exit policy
used by Vaziriet al. [20]: trigger the exit of a color’s critical section
when the thread returns from the subroutine where the critical sec-
tion was entered. We choose it because it is simple and intuitive: a
subroutine is a natural unit of work; when the subroutine returns, the
thread is likely to have finished the operation it was doing and, there-
fore, stopped working on that color’s structures. Some evidence that
programmers already follow this convention informally is presented

void foo1()
{
 ...
 ...
 A = ...
 ...
 ...
 ...
}

ColorIDA
critical

 section

(a)

void foo1()
{
 ...
 A = ...
 ...
 ...
 B = ...
 ...
 ...
 ...
}

ColorIDA
critical

 section
ColorIDB

critical
 section

(b)

void foo1()
{
 ...
 A = ...
 foo2();
 ...

}

void foo2()
{
 ...
 B = ...
 ...

}

ColorIDA
critical
section

ColorIDB
critical
section

(c)

subroutine
prologue:
 stack ← CAB
 CAB ← 0

subroutine
epilogue:
 CRB ← CAB
 CAB ← stack

(d)

Figure 5. Illustration of the policy chosen in this paper to exit critical sections in Colorama and its implementation.

later (Section 8.1). Note, however, that in DCS, writing correct code
requiresthat the programmer be aware of the exit policy supported
by the system and follows it.

Figure 5 illustrates the policy. The figure assumes that variables
A andB are colored withColorIDA andColorIDB , respectively.
Figure 5(a) shows an access toA, and how the resulting critical sec-
tion runs until the end of the subroutine. Figures 5(b) and 5(c) show
how critical sections nest. In both cases, a thread accessesA and,
before it returns from the subroutine, it accessesB. As a result, the
ColorIDB critical section is nested inside theColorIDA one. The
two figures, however, show different cases. In Figure 5(b), the ac-
cesses toA andB are in the same subroutine; as a result, both critical
sections finish at the same time. In Figure 5(c), the accesses toA
andB are in different subroutines, and the sections finish at different
times.

This policy is implemented with thecompiler-insertedinstruc-
tions shown in Figure 5(d). At every subroutine entry, the compiler
saves the CAB register in the stack and then clears it. This does not
affect the Owned Colors Array (Figure 4). As the subroutine exe-
cutes, if anewcolor becomes owned, the corresponding bit in the
CAB register gets automatically set. Before the subroutine returns,
the compiler copies the CAB to the CRB register, thereby triggering
the exit of all the critical sections entered in this subroutine. Then,
it restores the CAB register from the stack, leaving it in the state it
had before the subroutine was called. This algorithm works with any
nesting.

3.3. Detailed Colorama Operation

Based on the previous discussion, we now describe the operation of
Colorama in detail. At every load and store, the cached Palette and
the Thread Color Status are checked in hardware. If the address be-
longs to a colored region and the thread does not own that ColorID, a
Colorama user-level software handler is automatically invoked with
low overhead.

The handler adds ColorID to the Owned Colors Array. Then, if
nested transactions are supported, the handler starts a new transac-
tion for that color; if only flat transactions are supported, it starts a
new transaction only if this is the only color owned by the thread.
The handler then returns to the program. While these simple oper-
ations could be done in hardware, using a software handler is more
flexible.

As per our exit policy, before every subroutine return, an instruc-
tion stores to the CRB register. For each set bit that gets written to

the CRB register, if the same-offset entry in the Owned Colors Array
has a valid ColorID, the hardware triggers a critical section exit for
that ColorID.

A section exit for a set of ColorIDs starts with the automatic invo-
cation of a Colorama user-level software handler. For each ColorID,
the handler performs the following operations. First, the handler re-
moves that ColorID from the Owned Colors Array. Then, if this
was the last color in the structure, the handler initiates a transac-
tion commit. If this was not the last color and the machine supports
nested transactions, the handler initiates an inner-transaction commit
for that ColorID. What an inner-transaction commit does is indepen-
dent of Colorama. It could, for example, create a new checkpoint
while keeping the thread speculative, in order to minimize the roll-
back distance in case of a collision. Finally, the handler returns.

When a transaction is squashed, its ColorID(s) are removed from
the Owned Colors Array and its bit(s) in the CAB register are
cleared.

3.4. Pointers as Subroutine Arguments

Sometimes, a critical section performs multiple operations on a
structure, and invokes one subroutine per operation — passing as ar-
gument to each subroutine a pointer to the structure. This is common
when handling complex structures such as hash tables. Figure 6(a)
shows a lock-based example of a read and a write to a hash table.
htPtr is a pointer to the hash table.

Figure 6(b) shows the corresponding Colorama code, where we
assume that the hash table is colored. Colorama’s hardware will de-
tect accesses to the hash table only inside subroutinesreadHash()
andwriteHash(). As a result, it will create two separate critical sec-
tions, one inside each subroutine. This is not what the programmer
intended.

Since we believe that this is a common style of programming, we
would like Colorama to enclose the two subroutines inside a single
critical section. Interestingly, Colorama would automatically do so
if we accessed the hash table in subroutinehtUpdate()before the call
to readHash(): the exit policy would extend the critical section from
that point till the end ofhtUpdate().

To support this case, we extend Colorama with a primitive to po-
tentially start a critical section. The mechanism is a newcolorcheck
instruction that performs a run-time address check. Colorcheck takes
an address and checks whether it is colored and the color is not
owned by the thread. If so, Colorama automatically triggers a criti-

void htUpdate()
{
 ...
 value = readHash(htPtr,key)
 value++
 writeHash(htPtr, key, value)
 ...
}

(b) Colorama code (c) Colorama code with colorcheck

void htUpdate()
{
 ...
 colorcheck htPtr
 value = readHash(htPtr,key)
 value++
 colorcheck htPtr
 writeHash(htPtr, key, value)
 ...
}

critical
section

void htUpdate()
{
 ...
 lock(L)
 value = readHash(htPtr,key)
 value++
 writeHash(htPtr, key, value)
 unlock(L)
 ...
}

(a) Lock-based code

Figure 6. Using the colorcheck instruction.

cal section entry as usual (Section 3.3). Colorcheck does not read or
write the address, and cannot raise protection exceptions.

To use this primitive for our purposes, we extend the Colorama
compiler to identify subroutine calls with arguments that are point-
ers. For every such argument, the compiler inserts a colorcheck in-
struction with that argument, right before the call — in the example,
the argument ishtPtr. The resulting code is shown in Figure 6(c).
This change accomplishes what we need. At run time, colorcheck
checks the contents ofhtPtr beforereadHash()and triggers the start
of the critical section.

3.5. Why Use Multiple Colors

If the system supports nested transactions, having multiple colors
provides an intuitive way to build transaction nests [17]: every time
a new color is accessed inside a transaction, a new nesting level is
created.

Irrespective of whether or not the system supports nested trans-
actions, having multiple colors is also useful in three ways. First,
it can help debug the code. Specifically, every time a processor at-
tempts to commit a transaction, as it broadcasts the addresses that
it wrote, we propose that it also broadcast the colors that the trans-
action owned. If a second processor that is executing a different-
color transaction detects a collision with the committing one, the
programmer is warned that a bug is likely — different-color transac-
tions should not have collisions.

The second use is to help optimize the cross-thread dependence
disambiguation that takes place at thread commit. If we are certain
that the code has no bugs, we may decide to reduce overheads by not
checking for collisions between concurrent transactions of different
colors. This may save inter-processor traffic.

The final advantage of supporting multiple colors is that it en-
ables the programmer to embed more information in the program on
how shared data are used.

If the system uses locks, instead, supporting multiple colors di-
rectly translates into enabling more concurrency (Section 4.3).

4. Implementation of Colorama

4.1. Colorama Structures

The Colorama structures are the Palette and the Thread Color Status
(Figure 4). The Palette is a distributed structure implemented part in
hardware and part in software. It is accessed with a pattern similar
to that of structures that contain address protection information —
i.e., which address can be read or written by which thread. Indeed,
protection information is also shared by all threads and is accessed at
every memory request. Consequently, both types of information can
share the same implementation. One difference is that the Palette
contains per-word information, while current virtual memory sys-

tems associate protection information with pages. Consequently, to
accommodate the Palette, we would need to redesign current TLB
structures. In practice, there is already an efficient design that man-
ages per-word protection information, namely the Mondrian Mem-
ory Protection (MMP) system [22]. Therefore, we implement the
Palette as extra bits to be stored in the MMP structures.

The implementation of an MMP system is shown as the white
structures of Figure 7(a). The Multilevel Permissions Table is a soft-
ware table in shared memory that holds all the protection informa-
tion. The table is hierarchically organized for space efficiency, with
ranges of addresses expanded enough to keep the protection informa-
tion at the available grain size (word, page, etc.). Processors trans-
parently cache on demand sections of the table in a hardware buffer
called Protection Lookaside Buffer (PLB). In addition, for faster
access to protection information, architectural registers have side-
car registers, with recently-accessed protection information. Loads
and stores automatically access the sidecars and PLB in hardware to
check permissions. A PLB miss is like a TLB miss, and brings in the
permissions transparently. OS-initiated PLB/sidecar updates propa-
gate to memory and invalidate relevant entries in other processors’s
PLBs and sidecars.

Protection
Lookaside

Buffer
(PLB)

Sidecars

Processor

Multilevel
Permissions

Table

Memory

 (a) MMP with the Palette extensions

Thread
ID

Virtual Address
Tag

12b 12b 12b...2b 2b...

Permissions
Info

Color ID
Info

(b) PLB entry

Figure 7. Implementation of the Palette on top of an MMP
system. The shaded fields constitute the Palette.

The shaded fields in Figure 7(a) constitute the Palette. They sim-
ply add the ColorID bits to the three MMP structures. Figure 7(b)
shows a PLB entry in detail. A PLB entry may correspond to a cache
line. The Palette adds a ColorID (e.g., 12 bits) to every word con-
tained in the PLB entry — e.g., 16× 12 bits for a 16-word line.
A load or store automatically checks the ColorID of the address ac-
cessed, which is typically in a sidecar register or in the PLB. When
a thread changes the color of a range of addresses, the OS updates
the PLB and the other structures as in the MMP system.

The Thread Color Status consists of three structures accessible in
user mode: the read/write Owned Colors Array, the read/write CAB

void foo1()
{
 A = ...

 B = ...

}

(a) Lock-based version

void foo1()
{
 lock(LA)
 A = ...
 unlock(LA)
 lock(LB)
 B = ...
 unlock(LB)
}

void foo2()
{
 lock(LB)
 B = ...
 unlock(LB)
 lock(LA)
 A = ...
 unlock(LA)
}

ColorIDB
critical
section

ColorIDA
critical

 section

void foo2()
{
 B = ...

 A = ...

}

ColorIDA
critical
section

ColorIDB
critical
section

(b) Colorama version

Figure 8. Example of how the chosen exit policy may cause a deadlock. Implementations with transactions do not have this
problem.

register, and the write-only CRB register (Figure 4). They hold and
manage the colors owned by the currently-running thread. These
three structures all have the same number of entries (e.g., 64), al-
though each entry is one bit in the registers and a ColorID in the
Owned Colors Array. The Owned Colors Array and the CAB reg-
ister are saved on a context switch. If a thread temporarily needs to
own more colors than entries available, Colorama traps to software,
which manages the extra state required.

The other key Colorama features are the colorcheck instruction,
a related instruction calledgetcolorid (whose purpose is discussed
later), and the low-overhead invocation of user-level handlers. The
colorcheck and getcolorid instructions take an address. They are im-
plemented like a load, in that the hardware accesses the sidecar, PLB
entry, or the Permissions Table entry for the address. The getcolorid
instruction simply returns the ColorID (if any) of the address. The
colorcheck instruction, again like a load, if it finds that the address
is colored and that the ColorID is not in the Owned Colors Array, it
triggers a critical section entry. However, unlike a load, colorcheck
stops right there, and does not access memory. Neither colorcheck
nor getcolorid raises protection exceptions.

When a thread needs to enter or exit a critical section, the hard-
ware invokes a Colorama user-level software handler. Using a soft-
ware handler adds flexibility and simplicity, but it must be triggered
with low overhead. Fortunately, the handler does not require any
change in privilege mode. We can use support such as that of In-
forming Memory Operations [12].

The maximum number of colors supported is hardwired in sev-
eral structures. While most programs need about 1K or fewer col-
ors (Section 8.3), we size Colorama for a large number (4K). If the
program needs more colors, Colorama hashes multiple colors into
one. In this case, performance may be affected. Specifically, given
the uses of multiple colors in a system that uses transactions (Sec-
tion 3.5), we may end up combining two transactions that should be
nested (and therefore squashing more work than necessary on a col-
lision), potentially missing bug warnings, or generating more traffic
than necessary to check for collisions.

4.2. Coloring at Page Granularity

An alternative implementation involves restricting color assignment
such that all the structures in the same page share the same color.
This policy can be enforced by specifying colors at memory allo-
cation time and extending the memory allocator algorithm to keep
pools of colored memory.

Such approach would need a simpler Palette implementation,
since we could extend TLB and page table entries to include color
information — the MMP system would not be needed. However, the
resulting coloring support would be less flexible and possibly more

complex for the software, since the color of the data structures would
affect the memory layout.

4.3. Using Locks as the Underlying Synchronization
Mechanism

This paper proposes an implementation of Colorama on a machine
that uses transactions as the underlying synchronization mechanism.
It is also possible to build Colorama on a system that uses locks. In
this case, each distinct color is associated with a different implicit
lock.

The Colorama user-level handler invoked at the entry point of
a critical section, instead of starting a transaction, attempts to ac-
quire the lock corresponding to the color. When it succeeds, it adds
the ColorID to the Owned Colors Array and returns. Similarly, the
handler invoked at the exit of a critical section releases the corre-
sponding lock, removes the ColorID from the Owned Colors Array
and returns. Note also that it is not possible to hash multiple colors
into one because deadlocks may happen.

In a lock-based implementation, the specific exit policy that we
have chosen in this paper may have two effects. The first one is
that, since critical sections now run until the end of subroutines, they
tend to have larger sizes and, therefore, may cause an increase in
lock contention. In practice, we show in Section 8.2 that the average
increase in critical section size is likely to be modest.

The second effect is that, depending on how the code is written,
the exit policy chosen may cause deadlocks. As an example, Fig-
ure 8(a) shows a lock-based code and Figure 8(b) shows its corre-
sponding Colorama code. In Figure 8(a),foo1acquires and releases
lock LA and then acquires and releases lockLB, while foo2performs
the same operations in opposite order. Suppose that, under Col-
orama, variablesA andB have colorsColorIDA andColorIDB ,
respectively. Because of the exit policy,foo1will nestColorIDB ’s
critical section insideColorIDA’s, andfoo2will do the opposite. If
two threads executingfoo1andfoo2, respectively, perform the first
assignment infoo1andfoo2at the same time, they will deadlock.

This scenario must be rare in practice, since our experiments of
Section 8.2 on conventional code have been unable to detect even a
single instance of subroutine pairs thatcoulddeadlock in Colorama.
Consequently, it may be acceptable to use this exit policy and, rather
than trying to avoid deadlocks, detect them and break them if they
occur. Alternatively, we can use a different exit policy that is not
subject to this problem. We are currently working on this issue.

Deadlocks can be detected with a software table in memory
that lists, for each color, the current owner thread and the spinning
threads. When the Colorama user-level handler that attempts to ac-
quire the lock for a color fails to do so, it registers its thread ID as
spinning on the lock. It then checks for a cycle in owner and spin-
ning thread IDs across multiple locks in the table. If it finds one, a

deadlock has occurred. Then, the handler informs the user of where
the deadlock happened.

We consider this support to be a debugging aid. We expect
that, as programmers become familiar with Colorama’s program-
ming model and whatever exit policy is used, they will write code
that executes fast and reliably.

Note that deadlocks do not exist in a transaction-based imple-
mentation of Colorama. Transactions are known to be susceptible to
livelocks, but they are easily avoided.

5. Programming with Colorama

The goal of Colorama is to simplify parallel programming. One of
the ways in which Transactional Memory (TM) simplifies the pro-
grammer’s job is by not requiring so much fine-tuning of the critical
sections — concurrency is limited by dependences, not critical sec-
tion length. With Colorama, the programmer’s job is further simpli-
fied beyond TM because he does not even need to mark critical sec-
tions — the system automatically infers them. The result is highly
programmable and maintainable code. In this section, we examine
several programming issues in Colorama.

5.1. Correctness

At a minimum, Colorama guarantees that all executions of critical
sections of the same color by different threads are serializable. Con-
sequently, if the programmer colors all the shared data structures
that should be accessed in an exclusive manner, Colorama produces
a data-race free program. All conflicting accesses will be separated
by transaction boundaries or lock operations.

The extent and granularity of coloring typically matter relatively
little in a transaction-based implementation of Colorama, since con-
currency is only limited by data dependences — although long trans-
actions with resulting cache overflow are slow. However, they matter
substantially more in a lock-based implementation. In this case, if
the programmer colors structures for which the accesses do not need
to be constrained (e.g., thread-private variables), the resulting su-
perfluous critical sections or longer-than-necessary ones may limit
concurrency and lower performance. Conversely, a programmer can
enable more concurrency if variables that do not have mutual con-
sistency constraints are assigned different colors. This may improve
performance.

If the programmer fails to color a structure that should be ac-
cessed in an exclusive manner, the program may have data races.
Likewise, if he assigns different colors to structures that have mutual
consistency constraints, or if he does not respect the exit policy of
the system — in our case, by continuing to manipulate an exclusive
structure past the corresponding subroutine return — the program
may function incorrectly.

5.2. Code Compatibility Issues

A program written for Colorama may be linked with libraries that
do not use Colorama’s Application Binary Interface (ABI) — for
example, they use explicit transactions or locks. In this case, no
special action needs to be taken. The legacy library will use trans-
actions or locks to protect its own data structures, not program data.
For library-accessed program data, Colorama will continue to trigger
critical section entries on access and (if the library executes program
code through a callback) critical section exits on subroutine returns.

In certain exceptional cases, applications may require the absence
of Colorama’s default exit policy. For example, consider an infinite

loop where a consumer thread reads data from a shared buffer that
is filled by a producer thread. If programmed with transactions, ev-
ery access to the buffer would be a transaction. In Colorama, if the
shared buffer is colored, the whole infinite loop would become a
single critical section. To avoid this case, the programmer (or com-
piler) has to explicitly release the buffer’s color at every iteration.
As another example, to implement a wait on condition variables, the
programmer (or compiler) will want to be able to temporarily release
a color and then re-acquire it.

These operations are available through a Colorama library as fol-
lows. First, consider releasing the color associated with an address.
The library first uses a Colorama instruction calledgetcolorid(Sec-
tion 4.1). Such instruction simply returns the ColorID of the address.
Then, the library searches the Owned Colors Array (Figure 4) to find
the array offset where that ColorID is stored. If found, the library
writes to the CRB register a set bit at the same offset, which triggers
the release of ColorID. Note also that we can release all colors by
writing all ones to the CRB register.

Releasing a colortemporarilyinvolves releasing the color as be-
fore and saving the address. Re-acquiring a color involves using the
colorcheck instruction on the saved address.

5.3. Colorama’s Complete API

Colorama’s complete API is shown in Table 1. It contains five in-
structions, three system calls, and four library calls. The instructions
are colorcheck, getcolorid, and moves to/from CAB or CRB. The
system calls color or decolor addresses. The reason why these oper-
ations are system calls is that they update the PLB, which also con-
tains protection information (Section 4.1). These system calls are
typically issued when data structures are allocated or deallocated —
they are rarely issued otherwise. Possibly, the two coloring system
calls could be inserted directly by the compiler, based on language
syntax extensions that specify colors when data structures are de-
clared. Moreover, the decolor system call could be insidefree(). Fi-
nally, the rationale for the four library calls in Table 1 was presented
in Section 5.2. Typically, only experienced programmers would use
the library calls.

5.4. Example: Prevention of an Atomicity Violation

Finally, to showcase the advantages of Colorama’s programming
simplicity, we show one example where Colorama helps prevent a
subtle synchronization defect. Figure 9 shows Java methodappend,
which appends one string to another. It calls methodslengthto get
the length of a string andgetCharsto copy the string. The figure also
shows a call to append stringsbto stringsa.

Methodappendis annotated assynchronized, which means that
it executes under mutual exclusion with othersynchronizedmethods
invoked onsa. MethodslengthandgetCharsare alsosynchronized.
However, when they are called from withinappendin the exam-
ple, they aresynchronizedwith other methods invoked onsb. As a
result, although the individual interactions oflengthandgetChars
on sbare atomic, the sequence of interactions is not: it can happen
that stringsb is altered by another thread in-between thelengthand
getCharscalls — resulting in a stale value oflenat the point of call-
ing getChars.

In Colorama, defects such as this one are prevented. If stringsb
is colored, as soon as it is first accessed insideappend, a critical sec-
tion starts. With the exit policy used, the critical section extends to
the end of the method — therefore encompassing the calls tolength

Instructions (Typically inserted by the compiler)

colorcheck Addr Check if (Addr is colored and its color is not owned by the thread).
If true, enter critical section

getcolorid Addr, reg Save the ColorID of Addr in a register
mov reg, CAB Update the CAB register
mov CAB, reg Read the CAB register
mov reg, CRB Update the CRB register

System Calls(They change the Palette. Inserted by the programmer or the compiler)

color (StartAddr, Size, ColorID) Color this address range with ColorID
colorprop(StartAddr,Size,ColoredAddr) Propagate the color of ColoredAddr to this address range
decolor (Addr) Remove the color from the structure at Addr

Library Calls (They change the Thread Color Status. Used in exceptional circumstances)

color release () Thread releases ownership of all its colors
color release (Addr) Thread releases ownership of the color of the structure at Addr
color temp release (Addr) Threadtemporarilyreleases ownership of the color of the structure at Addr
color reacquire () Thread re-acquires ownership of all the colors that it temporarily released

Table 1. Colorama’s complete API.

class StringBuffer {
 public synchronized StringBuffer append(StringBuffer sb)
 {
 ...
 int len = sb.length();
 ...
 sb.getChars(len,...); // len may be stale
 ...
 }
 public synchronized int length() { ... }
 public synchronized void getChars(...) { ... }
}

StringBuffer sa;
StringBuffer sb;
...
sa.append(sb);

Figure 9. Example where Colorama prevents an atomicity
violation.

andgetCharsand avoiding the problem. No code annotations are
necessary beyond coloring. Also, note that, ifsb is not shared, we
avoid any synchronization overhead by simply not coloring it.

6. Code Debugging Issues

While we argue that programming in Colorama is simpler and less
error-prone than in the conventional CCS approach, it is still possible
to have bugs. In this section, we examine how to debug Colorama
code. In addition, we also consider a related question, namely lever-
aging the Colorama hardware to debug conventional CCS code.

6.1. Debugging Colorama Code

We classify Colorama bugs into three classes: (i) failing to color a
structure that should be colored; (ii) coloring two structures from
the same consistency domain with two different colors; and (iii) vi-
olating the exit policy. The bugs in class (i) can lead to data races,
which can be detected with conventional data-race detection tools.
They can also lead to collisions between critical sections of different
colors, which are easily detected by Colorama (Section 3.5).

The bugs in classes (ii) and (iii) cause atomicity violations. They
can be debugged with conventional tools that use heuristics to detect
atomicity violations [6, 21].

The bugs in class (iii) are unique to DCS. For the exit policy used
in this paper, they occur when the programmer assumes that a crit-
ical section extends past its corresponding subroutine return. The
exit policy, of course, triggers a critical section exit at that particular
return. Fortunately, we can use simple heuristics to identify possible

instances of these bugs. The procedure is to record the colors of the
critical sections that exit at a given subroutine returni. Then, we
check if the thread accesses any of these colors again before the next
N dynamic subroutine returns — whereN can be 1. If it does, the
programmer is warned, as he may have expected that the color’s crit-
ical section had extended beyond the returni. Note that this proce-
dure only relies on single-thread information — not on information
dependent on the access interleaving of multiple threads. As a result,
the bug manifests deterministically.

6.2. Debugging CCS Code with Colorama Hardware

A programmer who writes conventional CCS code on a machine
with Colorama hardware can benefit from additionally annotating
the data structures with colors as in DCS. Such annotations, if they
drive the Colorama hardware without actually starting critical sec-
tions, can help debug the CCS code. As an illustration, assume that
the programmer has written the CCS code with transactions. In this
case, the Colorama hardware can detect when the following rules are
violated, which is a strong indication of a bug.

1. Colored data should only be accessed inside transactions. Ac-
cesses from outside are typically bugs.

2. As indicated in Section 3.5, transactions of different colors
should not collide. The Colorama hardware records the colors ac-
cessed by each transaction. A collision between two transactions of
different colors likely suggests that the programmer was unaware of
some data sharing.

3. A non-nested transaction should typically access only one
color. If a transaction accesses multiple colors, there may be an
opportunity for transaction nesting that could be flagged to the pro-
grammer. More than a bug, this is possibly a missed optimization
opportunity.

4. A subroutine should not typically contain two transactions of
the same color. As pointed out in [21], functions that manipulate
shared data in parallel programs are often intended to be atomic.
Therefore, having two transactions of the same color in the same
subroutine rather than one may be a bug.

7. Experimental Setup

Since there are no programs written for Colorama, our evaluation
consists of analyzing existing lock-based applications and estimat-
ing Colorama’s potential and overheads. We analyze a variety of
large, open-source, realistic multithreaded applications written in C

or C++. Among them are the AOL web server, the Firefox web
browser, the MySQL database server, and others. Table 2 lists the
applications along with their number of dynamic instructions, criti-
cal sections (static and dynamic) and peak memory footprint, as they
run natively on a Xeon-based multiprocessor with 8 hardware con-
texts.

Inst # Critical Sec Peak
Name Description (109) Sta Dyn Footp

(103) (MB)

aolserver Web server (v4.0.10) 19.5 116 1169.4 11.2
barnes SPLASH-2 application 11.8 22 69.1 34.8
firefox Browser (v1.5.0.1) 7.1 485 832.8 172.2
gaim Instant msg (v2.0.0b2) 3.2 6 9.9 138.5
gftp FTP client (v2.0.18) 1.4 173 882.0 52.9
mysql MySQL DB (v5.0.18) 32.7 147 3302.7 545.5
tuxracer Game (v0.5a) 10.5 74 15.7 91.7
Avg — 12.3 146.1 897.4 149.5

Table 2. Multithreaded applications evaluated.

We developed a Pin-based [14] tool that profiles our applications
running natively with multiple threads. The tool tracks synchroniza-
tion operations and collects information such as lock acquire and re-
lease sites, lock addresses, and critical section executions and sizes.
It also collects other events such as instruction counts and memory
allocations and deallocations. The tool is also connected to a simu-
lator that models a Multilevel Permissions Table for MMP [22] with
Palette extensions (Figure 7(a)).

Synchronization operations are typically calls to multithreading
libraries such as Pthreads. Many times, however, applications syn-
chronize with indirections to pthread functions or with actual appli-
cation code. An example is TclMutexLock and TclMutexUnlock,
part of the TCL library used byaolserver. Our profiler can handle
such cases as well.

8. Evaluation

We evaluate the suitability and impact of our chosen Colorama exit
policy, and then examine Colorama’s structure sizes and overheads.

8.1. Suitability of Colorama’s Exit Policy

This section presents experimental evidence showing that the exit
policy that we choose for Colorama in this paper is already an in-
formal convention largely followed by programmers of CCS code.
Consequently, requiring its compliance for correct DCS code would
likely be a light burden. For this experiment, we determine, for each
critical section executed by the applications, whether the lock ac-
quire and release are in the same subroutine. If they are, the section
is matched; otherwise, it isunmatched.

Figure 10 shows the percentage of dynamic (D) and static (S)
critical sections that are matched or unmatched. Recall from Table 2
that individual applications have 10K-3303K dynamic critical sec-
tions and 6-485 static ones. From the figure, we see that matched
critical sections account for practically all the dynamic sections, and
for 95% of the static ones. This supports our choice of exit policy.
It shows that programmers already tend to initiate and conclude a
critical section in the same subroutine.

The few unmatched cases are either special cases or are in code
that is very fine-tuned for concurrency, especially in libraries. For
example, infirefox, gaim, andgftp, all unmatched critical sections
are inside the fine-tuned GTK library.

aolserver

barnes
firefox

gaim
gftp mysql

tuxracer

Avg

0
10
20
30
40
50
60
70
80
90

100

%
 C

rit
ic

al
 S

ec
tio

ns Unmatched
Matched

D S D S D S D S D S D S D S D S

Figure 10. Percentage of dynamic (D) and static (S) critical
sections that are matched or unmatched.

Figure 11 shows a representative unmatched critical section from
GTK. In the figure, subroutineg main dispatchassumes that it holds
lock context. Inside the subroutine, before the invocation of callback
functiondispatch, the code releases the lock; after the invocation, the
code acquires the lock back. This structure would not be compati-
ble with our exit policy. In this particular case, however, Colorama
can handle this code without any changes because it is library code
(Section 5.2).

/* thread holds "context" lock */
g_main_dispatch (GMainContext *context)
{
 ...
 UNLOCK (context);
 ...
 need_destroy=!dispatch(src,callback,usr_data);
 ...
 LOCK (context);
 ...
}

Figure 11. Example of code from the GTK library with an
unmatched critical section.

8.2. Impact of Colorama’s Exit Policy

The exit policy that we have chosen has two potential implications:
the critical section size increases and independent critical sections
may get combined in a nest. These issues typically have little or no
impact in our proposed transaction-based implementation of Col-
orama. However, in a lock-based implementation, the first issue
could increase lock contention and the second one could, under cer-
tain conditions, cause deadlock (Section 4.3).

To assess the first issue, we measure the averagedynamicsize
of each critical section in its lock version (from acquire to release)
and in what would be its Colorama version (from acquire to sub-
routine return). The resulting cumulative distribution is shown in
Figures 12(a) and (b), respectively.

While the dynamic sizes of critical sections do increase, the av-
erage increase is not excessive. In some applications, there are a
few critical sections that increase in size substantially. For example,
this occurs for the sound thread intuxracer. The thread acquires and
releases a lock at the beginning of the game, and then runs for the
duration of the game without returning from the subroutine. How-
ever, we believe that, since the Colorama programmer is required to
know the system’s exit policy, he will write the code to avoid lengthy
critical sections.

2 3 4 5 6 71 10 10 10 10 10 10 10

of Instructions

0
10
20
30
40
50
60
70
80
90

100
 %

 C
um

ul
at

iv
e

C
rit

ic
al

 S
ec

tio
n

aolserver
barnes
firefox
gaim
gftp
mysql
tuxracer

(a) Acquire to release

2 3 4 5 6 71 10 10 10 10 10 10 10

of Instructions

0
10
20
30
40
50
60
70
80
90

100

 %
 C

um
ul

at
iv

e
C

rit
ic

al
 S

ec
tio

n

(b) Acquire to return

Figure 12. Cumulative distribution of dynamic critical section size from acquire to release (a) and from acquire to subroutine
return (b).

To assess the case of independent critical sections being com-
bined into a nest of critical sections, we measure how often multiple,
independent critical sections have their entry points inside the same
subroutine. These are the ones that would be combined into a nest.
Figure 13 shows the percentage of dynamic (D) and static (S) crit-
ical sections that, because of Colorama’s exit policy, would end up
combining with an independent second critical section, by nesting it
inside. Such instances are calledCombined.

aolserver

barnes
firefox

gaim
gftp mysql

tuxracer

Avg

0
10
20
30
40
50
60
70
80
90

100

%
 C

rit
ic

al
 S

ec
tio

ns Combined
Not combined

D S D S D S D S D S D S D S D S

Figure 13. Percentage of dynamic (D) or static (S) critical
sections that end up nesting a second critical section inside
them.

From the figure, we see that on average only about 1% of the
dynamic critical sections and 4% of the static ones end up nesting
a second critical section in. A detailed analysis of these (few) cases
shows that the resulting order of any pair of nested locks is always
the same — which eliminates the possibility of getting a deadlock.
Consequently, we conjecture that the possibility of deadlock will be
rare.

8.3. Colorama Structure Sizes

To estimate the sizes of the Colorama structures in Figure 4, we per-
form several measurements on the applications. We conservatively
assume that every time an application allocates or deallocates mem-
ory, it adds or deletes, respectively, a colored region. Consequently,
the number of ”live” allocated regions plus the number of static data
objects in the binary gives the total number of colored regions at a
time. This number is shown in Column 2 of Table 3, and corresponds

to the number of rows in the Palette. Such number ranges from 100
to nearly 1M.

Colorama Structure Sizes Colorama Overheads
of # of # of # of # of Inst

App Palette # of ColorID OCA Subr per Col
Rows Colors Bits Entries Calls Syscall
(103) (% Inst) (103)

aolserver 0.6 141 8 39 1.9 28346.8
barnes 0.1 155 8 15 0.7 287775.4
firefox 960.1 3992 12 11 1.2 3.6
gaim 743.0 1151 11 4 1.9 1.9
gftp 15.2 874 10 6 2.5 1.9
mysql 40.7 1936 11 10 2.7 129.5
tuxracer 10.3 73 7 6 0.3 160.6
Choice — 4096 12 64 — —

Table 3. Characterization of Colorama.

We also measure the number of distinct lock addresses in each
program. Such number estimates the number of different colors
needed. The number is shown in Column 3. We see that programs
need 100-4000 colors. From this number, we compute the number
of bits in ColorID. As shown in Column 4, we need 7-12 bits in the
ColorID field.

Finally, to determine the number of entries in the Owned Col-
ors Array (OCA) in Figure 4 (or the number of bits in the CAB and
CRB registers), we need to measure the maximum number of locks
held by a thread at a time. To be conservative, we measure the max-
imum number of locks held at a time byall threads combined. Such
number is shown in Column 5, and ranges from 4 to 39.

The last row of Table 3 shows the parameters we choose for Col-
orama: 4K colors, 12-bit ColorIDs, and a maximum of 64 owned
colors per thread. Moreover, following [22], we set the PLB to 128
entries, where each entry maps 16 words.

8.4. Colorama Overheads

Finally, we measure the two main Colorama overheads, namely ad-
ditional instructions and additional memory space. One more over-
head is the extra references to memory due to PLB misses, but these
are largely the same as in the base MMP design (without Colorama)
— around 8%, as quantified in [22].

Additional Instructions. For every subroutine invoked, the com-
piler inserts about six instructions to perform the operations shown
in Figure 5(d). In addition, for each pointer that the subroutine takes

as argument, the compiler adds one colorcheck instruction. Overall,
we could assume that, on average, Colorama adds about seven in-
structions per subroutine invocation. As a reference, Column 6 of
Table 3 shows that, on average, about 1.6% of the dynamic instruc-
tions are subroutine calls.

In reality, the resulting overhead is likely to be very small. First,
the added instructions are mostly register moves and loads/stores that
hit in the cache — since they access the stack; they can easily fill the
many unused execution slots in superscalars. Moreover, the compiler
does not need to add these additional instructions for the subroutines
that it can prove do not access colored data. Finally, applications
often execute library code, which is not subject to this overhead.

A second source of overhead is the execution of the user-level
handlers to enter and exit critical sections. However, the contribution
of these instructions is very small, given the low frequency of critical
section entry and exit. Such frequency is given by two times the
numbers in Column 5 of Table 2 over the numbers in Column 3 of
the same table.

Finally, Colorama also executes coloring system calls. We con-
servatively assume that every time the application allocates or deal-
locates memory, it issues one such call to add or delete a colored
region, respectively. Column 7 of Table 3 shows the frequency of
these system calls. For four applications, they are issued on average
only once every 129K-288M instructions. In this case, the overhead
is negligible. In three other applications, they are issued once every
2K-4K instructions. In these applications, the frequent memory allo-
cation/deallocation is already very costly in itself. We can eliminate
most of the additional cost of coloring by having the memory allo-
cator keep pools of colored memory. As a result, there is no need to
issue a system call at each of these operations.

Additional Memory Space. The large majority of Colorama’s
memory overhead is due to the Palette. To compute the Palette’s
overhead, we model in detail the MMP’s Multilevel Permissions Ta-
ble of Figure 7(a) in our simulator. We use the Mini-SST format of
the entries, as suggested in [22]. We measure two memory space
overheads: the one for the base MMP with permissions information
(white part of the Permissions Table in Figure 7(a)), and the one for
the Palette state only (shaded part in Figure 7(a)). Figure 14 shows
these two memory space overheads as a fraction of the application
footprint. For a given bar, both these two overheads and the appli-
cation footprint are the peak values for the whole application exe-
cution. For additional information, the figure models ColorID fields
that range from 8 to 32 bits.

The figure shows that the Palette adds only a very modest over-
head over that of the base MMP. On average, for the range of Col-
orIDs used, the Palette only adds 1-2.5% more space to the footprint
of the application.

9. Related Work

Section 2.2 described the work that we strictly consider S-DCS,
and how it differs from Colorama. To that discussion, we add that
Atomic Sets [20] are what we call colors, and that Vaziriet al. also
allow the programmer to explicitly associate external methods to an
Atomic Set, which arguably breaks the pure data-centric approach.

Other systems that support a less flexible form of DCS are lan-
guages [2, 3, 8] with concurrency control based on Monitors [11].
In such languages, it is possible to specify a shared data structure
and the set of procedures that are allowed to access it. The compiler
will then add the necessary synchronization operations to make these

Palette

MMP
with
Permission
Info

aolserver

barnes
firefox

gaim
gftp mysql

tuxracer

Avg

0

5

10

15

20

25

30

M
em

or
y

O
ve

rh
ea

d
(%

) 8 bit colorID
16 bit colorID
24 bit colorID
32 bit colorID

Figure 14. Space overhead of the base MMP and of the
Palette for different ColorID sizes.

procedures execute in a mutually exclusive way. The key difference
is that, in Colorama, the programmer does not have to specify the
procedures that touch the shared data structure. Synchronization is
inferred dynamically by the hardware — an approach that is effi-
cient, flexible, and often the only alternative when the code is hard
to analyze statically or simply not available to the compiler.

Several works have associated data objects to synchronization in-
formation for a variety of purposes. For example, in Entry Consis-
tency (EC) [4], the association is done to enforce memory consis-
tency in a distributed shared-memory system. The programmer ex-
plicitly associates shared locations with locks. When a processor
enters a critical section by acquiring a lock, the associated shared lo-
cations are made consistent. An important difference with Colorama
is that in EC, the programmer explicitly marks the critical sections
in the code. This makes EC code-centric, with some data-centric
annotations.

Having to explicitly list the shared data associated with a critical
section is a burden to the programmer. As a result, Scope Consis-
tency [13] improves on EC by having the software system automat-
ically infer the shared data accessed in the scope of each critical
section. Still, the programmer has to mark the critical sections.

Like Colorama, Xuet al. [23] try to infer critical sections, al-
though the approach and environment is very different. They exam-
ine a post-mortem trace of memory references after a bug has been
detected, and propose heuristics to infer the code that should be in
critical sections. They use this information to estimate if a synchro-
nization was missing. The Colorama hardware cannot directly use
their heuristics to decide when to enter/exit a critical section because
their scheme requires access to future references and to references
from other processors. Moreover, their heuristics can have false pos-
itives and false negatives. However, their scheme could be usable in
other DCS designs.

Other related works include: (i) programmer-specified associ-
ation between code and data for static or dynamic validation of
parallel programs (e.g., [19]); (ii) programmer-specified “transac-
tional” variables in composable memory transactions [9] that pro-
vide stronger atomicity guarantees; and (iii) the lock bits associated
with memory regions in the IBM 801 [5], used to support transac-
tions on memory-mapped I/O.

10. Conclusions and Future Work

To reduce the complexity of parallel programming, this paper has
proposedColorama, the first design of Hardware DCS (H-DCS).

Colorama relies on two nimble hardware primitives to make DCS
practical: one that monitors all memory accesses and one that can
flexibly trigger the exit of a critical section based on a mechanism
programmed in software. We have described Colorama’s opera-
tion with transactions as the underlying synchronization mechanism.
Moreover, we have presented Colorama’s simple implementation
based on MMP, its programming model and API, and its capacity
to help debug conventional CCS codes. Finally, we have discussed
the issues that appear in a lock-based implementation.

The evaluation assessed the policy chosen in this paper to exit a
critical section at the return from the subroutine where the critical
section was entered. We showed that this exit policy is already an
informal convention largely followed by programmers of CCS code.
Consequently, requiring its compliance for correct DCS code will
likely be a light burden at most. We also showed that the policy
increases critical sections modestly on average, and rarely combines
critical sections — issues largely relevant to a lock-based implemen-
tation. The evaluation also showed that, by building on top of an
MMP system, Colorama requires only modest hardware resources
and induces small overheads.

Overall, Colorama effectively supports general-purpose, pointer-
based languages such as C/C++ and, in our opinion, can substantially
simplify writing newparallel programs beyond transactions. Our fu-
ture work involves: (i) developing and evaluating new exit policies,
(ii) writing and evaluating large Colorama programs and (iii) com-
bining S-DCS and H-DCS into a hybrid system.

Acknowledgments

We thank the anonymous reviewers and the members of the I-
ACOMA group at the University of Illinois for their invaluable
comments. Special thanks go to Karin Strauss, Paul Sack, Brian
Greskamp, Calin Cascaval and Mark Oskin for their feedback on the
paper.

References

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie, “Unbounded Transactional Memory,” inInterna-
tional Symposium on High Performance Computer Architec-
ture, February 2005.

[2] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, “Orca: A
Language for Parallel Programming of Distributed Systems,”
IEEE Transactions on Software Engineering, vol. 18, no. 3,
1992.

[3] J. Barnes, “Introducing Ada 9X,”ACM Ada Letters, 1993.
[4] B. Bershad, M. Zekauskas, and W. Sawdon, “The Midway

Distributed Shared Memory System,” inIEEE Int’l Computer
Conference (COMPCON), February 1993.

[5] A. Chang and M. F. Mergen, “801 Storage: Architecture and
Programming,”ACM Transactions Computer Systems, vol. 6,
no. 1, 1988.

[6] C. Flanagan and S. Qadeer, “A Type and Effect System for
Atomicity,” in Conference on Programming Language Design
and Implementation, June 2003.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun, “Transactional Memory Coherence and Consis-
tency,” in International Symposium on Computer Architecture,
June 2004.

[8] P. B. Hansen, “The Programming Language Concurrent Pas-
cal,” IEEE Transactions on Software Engineering, 1975.

[9] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Com-
posable Memory Transactions,” inInternational Symposium
on Principles and Practice of Parallel Programming, June
2005.

[10] M. Herlihy and J. E. B. Moss, “Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures,” inInterna-
tional Symposium on Computer Architecture, 1993.

[11] C. Hoare, “Monitors - An Operating System Structuring Con-
cept,”Communications of ACM, vol. 17(10), 1974.

[12] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith,
“Informing Memory Operations: Providing Memory Perfor-
mance Feedback in Modern Processors,” inInternational Sym-
posium on Computer Architecture, June 1996.

[13] L. Iftode, J. Singh, and K. Li, “Scope Consistency: A Bridge
between Release Consistency and Entry Consistency,” inSym-
posium on Parallel Algorithms and Architectures, June 1996.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation,” in Conference on Programming Language Design and
Implementation, June 2005.

[15] T. G. Mattson, B. A. Sanders, and B. L. Massingill,Patterns
for Parallel Programming. Addison Wesley, 2005.

[16] K. Moore, J. Bobba, M. J. Moravan, M. Hill, and D. Wood,
“LogTM: Log-Based Transactional Memory,” inInternational
Symposium on High Performance Computer Architecture,
February 2006.

[17] E. Moss and T. Hosking, “Nested Transactional Memory:
Model and Preliminary Architecture Sketches,” inWorkshop
on Synchronization and Concurrency in Object-Oriented Lan-
guages, October 2005.

[18] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional
Memory,” in International Symposium on Computer Architec-
ture, June 2005.

[19] D. F. Sutherland, A. Greenhouse, and W. L. Scherlis, “The
Code of Many Colors: Relating Threads to Code and Shared
State,” inWorkshop on Program Analysis for Software Tools
and Engineering, November 2002.

[20] M. Vaziri, F. Tip, and J. Dolby, “Associating Synchroniza-
tion Constraints with Data in an Object-Oriented Language,” in
Symposium on Principles of Programming Languages, Febru-
ary 2006.

[21] L. Wang and S. D. Stoller, “Accurate and Efficient Runtime
Detection of Atomicity Errors in Concurrent Programs,” inIn-
ternational Symposium on Principles and Practice of Parallel
Programming, March 2006.

[22] E. Witchel, J. Cates, and K. Asanović, “Mondrian Memory
Protection,” inInternational Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Oc-
tober 2002.

[23] M. Xu, R. Bodik, and M. D. Hill, “A Serializability Violation
Detector for Shared-Memory Server Programs,” inConference
on Programming Language Design and Implementation, June
2005.

