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Abstract

Transactional Memory (TM), Thread-Level Speculation (TLS),
and Checkpointed multiprocessors are three popular architectural
techniques based on the execution of multiple, cooperating specu-
lative threads. In these environments, correctly maintaining data de-
pendences across threads requires mechanisms for disambiguating
addresses across threads, invalidating stale cache state, and making
committed state visible. These mechanisms are both conceptually
involved and hard to implement.

In this paper, we presentBulk, a novel approach to simplify these
mechanisms. The idea is to hash-encode a thread’s access informa-
tion in a concise signature, and then support in hardware signature
operations that efficiently process sets of addresses. Such opera-
tions implement the mechanisms described. Bulk operations are
inexact but correct, and provide substantial conceptual and imple-
mentation simplicity. We evaluate Bulk in the context of TLS using
SPECint2000 codes and TM using multithreaded Java workloads.
Despite its simplicity, Bulk has competitive performance with more
complex schemes. We also find that signature configuration is a key
design parameter.

1. Introduction

In recent years, efforts to substantially improve the programma-
bility and performance of programs have resulted in techniques
based on the execution of multiple, cooperating speculative threads.
Such techniques include Transactional Memory (TM), Thread-
Level Speculation (TLS), and Checkpointed multiprocessors. In
TM (e.g., [2, 12, 13, 18, 20]), the speculative threads are obtained
from parallel programs, and the emphasis is typically on easing pro-
grammability. In TLS (e.g., [11, 15, 17, 22, 23, 24, 26, 27]), the
speculative threads are extracted from a sequential program, and
the goal is to speed-up the program. Finally, Checkpointed multi-
processors [5, 8, 14] provide primitives to enable aggressive thread
speculation in a multiprocessor environment.

With the long-anticipated arrival of ubiquitous chip multipro-
cessor (CMP) architectures, it would appear that these techniques
should have been architected into systems by now. The fact that
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they are not is, to some extent, the result of the conceptual and im-
plementation complexity of these techniques.

Multiprocessor designs that support speculative multithreading
need to address two broad functions: correctly maintaining the data
dependences across threads and buffering speculative state. While
the latter is arguably easier to understand (e.g., [9]), the former is
composed of several complicated operations that typically involve
distributed actions in a multiprocessor architecture — often tightly
coupled with the cache coherence protocol. Specifically, this func-
tion includes mechanisms for: disambiguating the addresses ac-
cessed by different threads, invalidating stale state in caches, mak-
ing the state of a committing thread visible to all other threads, dis-
carding incorrect state when a thread is squashed, and managing the
speculative state of multiple threads in a single processor.

The mechanisms that implement these five operations are hard-
ware intensive and often distributed. In current designs, the first
three piggy-back on the cache coherence protocol operations of the
machine, while the last two typically modify the primary caches.
Unfortunately, coherence protocols are complicated state machines
and primary caches are delicate components. Modifications to these
structures should minimize added complexity.

The goal of this paper is to simplify the conceptual and imple-
mentation complexity of these mechanisms. For that, we employ a
Bloom-filter-based [3] compact representation of a thread’s access
information that we call aSignature. A signature uses hashing to
encode the addresses accessed by a thread. It is, therefore, a su-
perset representation of the original addresses. We also define a
set of basic signature operations that efficiently operate on groups
of addresses. These operations are conceptually simple and easy to
implement in hardware. Finally, we use these operations as building
blocks to enforce the data dependences across speculative threads
and to correctly buffer speculative state.
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Figure 1. Example of an operation in Bulk.

Since signature operations operate on groups of addresses, we
call our schemeBulk Disambiguationor Bulk. Bulk operations are
inexact — although correct execution is guaranteed. However, they
are simple, as they often eliminate the need to record or operate on



individual addresses. As an example, Figure 1 shows two proces-
sors, each with its own signatures of addresses read (R) and written
(W ). As one thread commits, it sends its write signature to the
other processor, where it is bulk-disambiguated against the signa-
tures of the other thread. If no intersection is detected, there is no
dependence violation. This is in contrast to conventional schemes,
which have to disambiguate each address written by the first thread
individually.

In this paper, we make two contributions. First, we introduce the
concept and design of Bulk. Bulk is a novel approach to enforce
data dependences across multiple speculative threads. The main
characteristic of Bulk is that it operates on sets of addresses, provid-
ing substantial conceptual and implementation simplicity. Second,
we evaluate Bulk in the context of both TLS using SPECint2000
codes and TM using multithreaded Java workloads. We show that,
despite its simplicity, Bulk has competitive performance with more
complex schemes. We also find that signature configuration is a key
design parameter.

This paper is organized as follows: Section 2 is a brief back-
ground on speculative multithreading, Section 3 presents signatures
and basic operations on them, Section 4 details the Bulk architec-
ture, Section 5 demonstrates Bulk’s simplicity, Section 6 describes
implementation issues, Section 7 evaluates Bulk in the context of
TLS and TM, and Section 8 presents related work.

2. Operations in Speculative Multithreading
Both TLS and TM are environments with multiple speculative

threads. In TLS (e.g. [11, 15, 17, 22, 23, 24, 26, 27]), threads are
tasks from a sequential program. Therefore, they need to appear to
have executed in the same order as in the sequential execution. In
TM (e.g., [2, 12, 13, 18, 20]), threads are typically obtained from a
parallel program, and become speculative when they enter a trans-
action. While there is no predefined order of transactions, they have
to appear to be atomic. In both TLS and TM, these thread ordering
constraints impose an ordering of accesses to data across threads
that, typically, the hardware has to enforce. As indicated in Sec-
tion 1, enforcing these data dependences requires performing sev-
eral operations. We briefly outline them here.

Disambiguating the Addresses Accessed by Different Threads.
To ensure that data dependences required by thread ordering con-
straints are enforced, the hardware typically monitors the addresses
accessed by each thread and checks that no two accesses to the same
location may have occurred out of order. The process of comparing
the addresses of two accesses from two different threads is called
cross-thread address disambiguation. An access from a thread can
be disambiguatedEagerlyor Lazily. In Eager schemes, as soon as
the access is performed, the coherence protocol propagates the re-
quest to other processors, where address comparison is performed.
In Lazy schemes, the comparison occurs when the thread has com-
pleted and has broadcasted the addresses of all its accesses.

Making the State of a Committing Thread Visible to All Other
Threads. While a thread is speculative, the state that it generates
is typically kept buffered, and is made available to only a subset of
the other threads (in TLS) or to no other thread (in TM). When the
thread completes (and it is its turn in TLS), it commits. Committing
informs the rest of the system that the state generated by the thread
is now part of the safe program state. Committing often leverages

the cache coherence protocol to propagate the thread’s state to the
rest of the system.

Discarding Incorrect State When a Thread Is Squashed.As
addresses are disambiguated either eagerly or lazily, the hardware
may find that a data dependence has been violated. In this case,
the thread that is found to have potentially read or written a datum
prematurely is squashed — in TLS, that thread’s children are also
squashed. When a thread is squashed, the state that it generated
must be discarded. This involves accessing the cache tags and in-
validating the thread’s dirty lines or sometimes all the thread’s lines.

Invalidating Stale State in Caches.Threads typically make their
state visible at commit time. In addition, in some TLS systems, a
thread can make its updates visible to its children threads immedi-
ately. In both cases, the cache coherence protocol of the machine
ensures that the relevant caches in the system receive a coherence
action — typically an invalidation for each updated line.

Managing the Speculative State of Multiple Threads in a Sin-
gle Processor.A cache that can hold speculative state from multi-
ple threads is called multi-versioned. Among other reasons, these
caches are useful to be able to preempt and re-schedule a long-
running TM transaction while keeping its state in the cache, or to
avoid processor stall when TLS tasks are imbalanced. Specifically,
in TLS, if tasks have load imbalance, a processor may finish a task
and have to stall until the task becomes safe. If, instead, the cache
is multi-versioned, it can retain the state of the old task and allow
the processor to execute another task.

Multi-versioned caches are often implemented by extending the
tag of each cache line with a version ID. This ID records which task
the line belongs to.

Overall, implementing these operations requires significant
hardware. Such hardware is often distributed and not very mod-
ular. It typically extends the cache coherence protocol or the pri-
mary caches — two hardware structures that are already fairly com-
plicated or time-critical. The implementation of these operations
is most likely the main contributor to the hardware complexity of
speculative multithreading.

3. Signatures and Bulk Operations

To reduce the implementation complexity of the operations just
described, this paper proposes a novel, simpler way of supporting
them. Our goal is to simplify their hardware implementation while
retaining competitive performance for the overall application.

The approach that we propose is calledBulk or Bulk Disam-
biguation. The idea is to operate on a group of addresses in a single,
bulk operation. Bulk operations are relatively simple to implement,
but at the expense of being inexact — although execution is always
correct. This means that they may occasionally hurt performance
but not correctness.

To support Bulk, we develop: (i) an efficient representation of
sets of addresses and (ii) simple bulk operations that operate on such
a representation. We discuss these issues next.

3.1. Address Signatures

We propose to represent a set of addresses as aSignature. A
signature is generated by inexactly encoding the addresses into a



register of fixed size (e.g., 2 Kbits), following the principles of hash-
encoding with allowable errors as described in [3]. Algebraically,
given a set of addressesA1, we use a hash functionH such that
A1 7−→ S, whereS is a signature.H is such that multiple sets of
addresses can map into the sameS. As a result of such aliasing,
S encodes a superset ofA1. Consequently, when we later decode
S with H−1 such thatS 7−→ A2, we obtain a set of addressesA2

such that:A1 ⊆ (A2 = H−1(H(A1))).
Figure 2 illustrates how an address is added to a signature. The

address bits are initially permuted. Then, in the resulting address,
we select a few bit-fieldsC1, . . . , Cn. Each of theseCi bit-fields
is then decoded and bit-wise OR’ed to the current value of the cor-
respondingVi bit-field in the signature. This operation is done in
hardware.

Permute

C1 C2 C3 C4

V1 V2 V3 V4

. . .

Address

Signature

Figure 2. Adding an address to a signature.

Signature representation has aliasing. Our Bulk design is such
that aliasing can hurt performance but not affect correctness. More-
over, Bulk builds the signatures to minimize performance penalties
due to aliasing.

3.2. Primitive Bulk Operations

Bulk performs the primitive operations on signatures shown in
Table 1. Signature intersection and union are bit-wise AND and
OR operations, respectively, on two signatures. Intersecting two
signatures produces a third signature that represents a superset of
the addresses obtained by intersecting the original address sets.
Specifically, for two setsA1 and A2, we have: (A1 ∩ A2) ⊆
H−1(H(A1) ∩H(A2)). A similar effect occurs for unions.

Op. Description Sample Use
∩ Signature intersection Address disambiguation
∪ Signature union Combining write signatures

in transaction nesting
= ∅ Is signature empty? Address disambiguation
∈ Membership of an Address disambiguation

address in a signature with individual address
δ Signature decoding Signature expansion

into sets (exact)

Table 1. Primitive bulk operations on signatures.

Checking if a signature is empty involves checking if at least one
of its Vi bit-fields is zero. If so, the signature does not contain any
address. The membership operation (∈) checks if an addressa can
be in a signatureS. It involves encodinga into an empty signature
as discussed in Section 3.1, then intersecting it withS, and finally
checking if the resulting signature is empty.

Ideally, we would like to be able to decode a signature into its
contributing addressesA1. However, this is potentially time con-

suming and can generate only a superset of the correct addresses.
Instead, we define the decode operation (δ) to generate theexactset
of cache set indicesof addressesA1. We will see that this opera-
tion is useful in cache operations using signatures. It can be imple-
mented easily by simply selecting one of theCi bit-fields to be the
cache index bits of the address and, therefore, the correspondingVi

will be the cache set bitmask. This particular implementation is not
required — if the index bits of the address are spread over multiple
Ci, the cache set bitmask can still be produced by simple logic on
multipleVi.

Table 1 also lists a sample use of each operation. We will discuss
the uses in Section 4. Finally, Figure 3 shows how these operations
are implemented.
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Figure 3. Implementation of the primitive bulk operations on
signatures.

3.3. Signature Expansion

There is one other important Bulk operation that is composed of
two of the primitive operations in Table 1. This operation is called
Signature Expansion, and it involves determining which lines in
the cache may belong to a signature. This operation is defined as
H−1(S)∩T , whereS is the signature being expanded andT is the
set of line addresses present in the cache.

A naive implementation would simply walk the cache tags, take
every line address that is valid, and apply the membership opera-
tion to it. Unfortunately, this is very inefficient, since the number of
matching line addresses may be small. Instead, we can use the de-
coding operationδ on the signature to obtain the cache set bitmask.
Then, for each of the selected sets, we can read the addresses of the
valid lines in the set and apply the membership operation∈ to each
of them.

Figure 4 shows the implementation of signature expansion. The
result of applyingδ on a signature is fed to a finite state machine
(FSM). The FSM then generates, one at a time, the index of the
selected sets in the bitmask. As each index is provided to the cache,
the cache reads out all the valid line addresses in the set. These
addresses are then checked for membership in the signature.

4. An Architecture for Bulk Disambiguation

Based on these primitive operations, we can now build the com-
plete Bulk architecture. Bulk presumes a multiprocessor with an
invalidation-based cache coherence protocol. An application can
run both non-speculative and speculative threads. The former send
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Figure 4. Implementation of signature expansion.

invalidations as they update lines; the latter do not send any inval-
idations until they attempt to commit. At that point, they send a
single message out to inform the other threads of a superset of the
addresses that they have updated — without sending out the full set
of addresses or the data that they have generated. Based on this mes-
sage, other threads may get squashed and/or may invalidate some of
their cache lines. Bulk is, therefore, a lazy scheme as described in
Section 2.

In Bulk, every speculative thread has aRead(R) and aWrite
(W ) signature in hardware (Figure 1). At every load or store, the
hardware adds the requested address toR or W , respectively, as
shown in Figure 2. If the speculative thread is preempted from exe-
cution, itsR andW signatures are still kept in the processor.

In the following, we describe the operation of Bulk, including
thread commit and squash, bulk address disambiguation, bulk in-
validation, and disambiguation at fine grain. We conclude with the
overall architecture of Bulk.

4.1. Thread Commit and Squash

Consider a speculative threadC that finishes and wants to com-
mit its speculative state. It first obtains permission to commit (e.g.
gaining ownership of the bus). When the thread knows that its com-
mit will proceed, it clears itsWC andRC signatures. Then, it sends
out its write signatureWC so that it can be disambiguated against
all other threads in the system (Figure 1). This is shown in Fig-
ure 5(a).

In Bulk, the committing thread never sends the expanded list of
addresses it wrote. Moreover, note that Bulk is not concerned about
how the system handles commit races — several threads attempting
to commit at once. This is a matter for the protocol and network
to support. However, by sending only a single signature message,
Bulk may simplify the handling of such races.

Figure 5(b) shows the actions at a threadR that receives the sig-
nature from the committing one. First, it performsBulk Address
Disambiguation(Section 4.2) against its local read (RR) and write
(WR) signatures. This operation decides whether the thread needs
to be squashed. If it is, threadR uses its write signature (WR) to
Bulk Invalidate(Section 4.3) all the cache lines that it speculatively
modified1. Then, it clears itsRR andWR.

Regardless of the outcome of the bulk address disambiguation,
all the lines written by the committing thread that are present in
threadR’s cache need to be invalidated. This is done by using the

1In TLS, other cache lines may be invalidated as well (Section 6.3).
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Figure 5. Flowchart of the commit process: committing
thread (a) and receiver thread (b).

write signature of the committing thread (WC ) to perform a bulk
invalidation on threadR’s cache.

4.2. Bulk Address Disambiguation

The memory addresses written by a committing threadC are
disambiguated in hardware against the memory addresses accessed
by a receiver threadRusing bulk operations on signatures. If

WC ∩RR 6= ∅ ∨ WC ∩WR 6= ∅ (1)

then we have detected a potential read-after-write or a potential
write-after-write dependence between the threads. In this case,
threadR is squashed; otherwise, it may continue executing. Write-
after-write dependences induce squashes because threads could
have updated a fraction of a line, and because an additional reason
discussed in Section 4.4.

Bulk disambiguation is very fast and simple. However, it may
have false positives due to address aliasing and cause unnecessary
squashes. In our experiments of Section 7, we show that the num-
ber of false positives is reasonable and does not affect performance
significantly. We also show that signatures can be constructed to
minimize the number of false positives.

Signatures are designed to encode a certain granularity of ad-
dresses — e.g., line addresses or word addresses. In each case,
disambiguation occurs at the granularity encoded in the signature.
However, if we disambiguate at a granularity smaller than the cache
line, the hardware has to be able to merge partial updates of lines.
Section 4.4 discusses this issue.

Finally, not all disambiguations are done in bulk. Non-
speculative threads send individual invalidations as they update
lines. In this case, whenR receives an invalidation for addressa,
it uses the membership operation to check ifa ∈ RR ∨ a ∈ WR. If
the test is true,R is squashed.

4.3. Bulk Invalidation

A threadR performs bulk invalidation in two cases. The first
one is when it is squashed; it uses itsWR to invalidate all its dirty



cache lines. The second one is when it receives the write signature
of a committing thread (WC ); it invalidates all the lines in its cache
that are inWC .

In Bulk, the first case would not work correctly if a cached dirty
line that is either non-speculative or was written by another spec-
ulative threadS appears, due to aliasing, to belong toWR. Bulk
would incorrectly invalidate the line.

To avoid this problem while still keeping the hardware simple,
Bulk builds signatures in a special way, and restricts in a certain way
the dirty lines that can be in the cache at a time. Specifically, Bulk
builds signatures so that the decode operationδ(W ) of Section 3.2
can generate theexactset of cache set indices of the lines inW .
Section 3.2 discussed how this is easily done. In addition, Bulk
enforces that any dirty lines in a given cache set can only belong to
a single speculative thread or be non-speculative. In other words, if
a cache set contains a dirty line belonging to speculative threadS,
any other dirty line in that same set has to belong toS — although
no restrictions are placed on non-dirty lines. Similarly, if a cache
set contains a non-speculative dirty line, any other dirty line in the
set has to be non-speculative as well. We call this restriction the
Set Restriction. Section 4.5 explains how Bulk enforces the Set
Restriction. Overall, with the way Bulk generates signatures and
the Set Restriction, we have solved the problem — Bulk will not be
incorrectly invalidating dirty lines.

We can now describe how the two cases of bulk invalidation pro-
ceed. They start by performing Signature Expansion on the write
signature (WR for the first case andWC for the second one). Re-
call from Section 3.3 that Signature Expansion is an operation com-
posed of two primitive Bulk operations. It finds all the lines in the
cache that may belong toW . It involves applyingδ(W ) and, for
each of the resulting sets, reading all the line addressesa and ap-
plying the membership testa ∈ W . For each addressb that passes
the membership test, the two cases of bulk invalidation perform dif-
ferent operations.

In the case of invalidating dirty lines on a squash, Bulk checks if
b is dirty. If so, Bulk invalidates it. Thanks to the way signatures are
built and the Set Restriction,b cannot be a dirty line that belongs to
another speculative thread or is non-speculative.

In the case of invalidating the addresses present in the write sig-
nature of a committing threadC, Bulk checks ifb is clean. If so,
Bulk invalidates it. It is possible thatb passed the membership test
due to aliasing and therefore is not really inWC . If so, we may hurt
performance but not correctness. In addition, note that Bulk takes
no action ifb is dirty. The reason is that this is the case of a non-
speculative dirty line whose address appears inWC due to aliasing.
Indeed, ifb belonged to a speculative thread, it would have caused a
squash. Moreover, it cannot be dirty non-speculative and be written
by the committing threadC.

4.4. Disambiguating at Fine Grain

If the signatures are built using addresses that are of a finer gran-
ularity than memory lines, then the bulk disambiguation occurs at
that granularity. For example, if signatures use word addresses, two
speculative threads that have updated different words of a line will
commit without causing a dependence violation (except if aliasing
occurs). Word-level disambiguation improves performance in many
TLS codes [6], but requires that the partially updated memory lines

merge in the order in which the threads commit. Bulk supports this
case without modifying the cache or the cache coherence protocol.

To do so, Bulk slightly modifies the process of bulk invalidation
for the case when it needs to invalidate the lines that are in the write
signatureWC of a committing threadC. Specifically, consider that
the committing threadC and a second threadR have written to a
different word of a line. Since we encode word addresses in the sig-
natures, whenR performs the bulk disambiguation of the arriving
WC against its ownWR andRR, it finds no violation. However, as
it performs bulk invalidation, it can find a cache line whose address
b passes the membership test, is dirty, and (this is the new clue) is in
a cache set present inδ(WR). This line has suffered updates from
both threads.

In this case, Bulk has to merge the two updates and keep the
resulting line inR’s cache. To do so, Bulk usesWR andb to gen-
erate a (conservative) bitmask of the words in the line that were
updated byR. This is done with an Updated Word Bitmask func-
tional unit that takes and manipulates the appropriate bits fromWR

(Figure 6). This bitmask is conservative because of word-address
aliasing. However, it cannot include words that were updated by the
committing threadC — otherwise,R would have been squashed in
the disambiguation operation. Then, Bulk reads the line from the
network and obtains the version just committed. The committed
version is then updated with the local updates specified in the word
bitmask (Figure 6), and the resulting line is written to the cache.
Note that this process requires no cache modifications — not even
per-word access bits.

WR Signature

Address of line L

Updated
Word

Bitmask
Unit

1 1

Local version of line L

Committed version of line L

Merged version of line L

Figure 6. Merging lines partially updated by two speculative
threads.

From this discussion, it can be deduced why theWC∩WR com-
ponent of Equation 1 is required even in word-level disambiguation.
Specifically,WR is conservative due to aliasing, and the word bit-
mask of Figure 6 could include (due to aliasing) words that thread
C wrote. In this case, if Bulk did not perform theWC ∩WR 6= ∅
test and did not squashR, we would be incorrectly merging the
lines.

4.5. Overall Bulk Architecture

Based on the previous discussion, Figure 7 shows the overall
Bulk architecture. It is placed in aBulk Disambiguation Module
(BDM) that includes several components. The BDM has a read
and a write signature for each of the several speculative versions
supported by the processor. Supporting multiple speculative ver-
sions is useful for buffering the state of multiple threads or multiple
checkpoints.

The BDM also has a set of functional units. They perform the
primitive bulk operations of Table 1, the Signature Expansion of
Section 3.3, and the bitmask of updated words of Section 4.4.
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(BDM).

The BDM includes two registers with as many bits as sets in
the cache. They contain cache set bitmasks resulting from applying
the decode operation (δ) to certain signatures. Specifically, one de-
codes the write signature of the thread that is currently running on
the processor (δ(Wrun)). The other contains the logical-OR of the
decoded versions of all the other write signatures in the processor.
They belong to speculative threads that have state in the cache but
have been preempted from the CPU (OR(δ(Wpre))). This bitmask
is updated at every context switch.

These bitmasks are used to identify which dirty lines in the cache
are speculative and to which thread they belong. This is necessary
because the cache has no notion of what lines or words are specula-
tive — we keep the cacheunmodifiedrelative to a non-speculative
system. For example, consider an external read request that reaches
the BDM and wants to access a cache set that has a bit set in the
δ(Wrun). We know that any dirty line in that set is speculative and
belongs to the running thread. Consequently, the BDM nacks the
request, preventing it from getting speculative data. If the request
wanted to read a line that was clean in the cache, no harm is done,
since the memory will respond.

In addition, these bitmasks also help the BDM Controller main-
tain the Set Restriction. Specifically, when a speculative thread
issues a write to the cache, the BDM Controller checks the local
δ(Wrun) andOR(δ(Wpre)). If both bitmasks have a zero in the
entry corresponding to the requested set, the write can proceed to
the cache. However, before the write is allowed to update the cache,
any dirty line in the corresponding cache set is written back to mem-
ory. The corresponding entry inδ(Wrun) is then set.

If, instead, the bitmask entries are (1,0), respectively, the write
can update the cache directly. Finally, if they are (0,1), a special
action is taken to preserve the Set Restriction. Depending on the
implementation, this can be preempting the thread, squashing the
preempted thread that owns the dirty lines in the set, or merging the
two threads that want to own lines in the same set. Overall, with
this support, Bulk guarantees the Set Restriction. Thanks to this
restriction and the way Bulk builds signatures, it is the case that, for
any two write signaturesW1 andW2 in the processor,W1 ∩W2 =
∅.

5. Simplicity of Bulk Disambiguation

A key feature of Bulk is its conceptual and implementation sim-
plicity. Its simplicity is due to two reasons: its compact representa-

tion of sets of addresses, and its definition of a collection of basic
primitive operations on the sets. We discuss each reason in turn.

5.1. Compact Representation of Address Sets

Bulk represents the set of addresses accessed speculatively very
concisely. This simplifies the hardware implementation of several
operations. Table 2 lists some of the key simplifications in Bulk.
We discuss each one in turn.

Send only a write signature at commit
Single-operation full address disambiguation
Inexpensive recording of speculatively-accessed addresses
Compact version representation without version IDs
Fine-grain (per word) disambiguation with no extra storage
Commit by clearing a signature

Table 2. Key simplifications in Bulk.

A committing thread in Bulk only sends a short, fixed-sized mes-
sage with its write signature (e.g., 2 Kbits) to all other threads. It
does not broadcast the list of individual addresses. This enables
more efficient communication and perhaps simpler commit arbitra-
tion. Perhaps more importantly, Bulk does not need to walk the
cache tags to collect any addresses to broadcast, nor to buffer them
before sending them. These issues complicate the commit imple-
mentation in conventional systems.

Bulk disambiguates all the addresses of two speculative threads
in one single operation. While false positives are possible, our ex-
periments suggest that their frequency is tolerable. In conventional
lazy systems, disambiguation is typically lengthy and complicated,
as each individual address is checked against the cache tags. Con-
ventional eager systems disambiguate each write separately.

Bulk records the speculatively-read and written addresses in an
R and aW signature, avoiding the need to modify the tags of cache
lines with a Speculative bit. Moreover, consider a long-running
thread that reads many lines. Read-only lines can be evicted from
the cache in both Bulk and conventional systems, but the system
must record their addresses for later disambiguation. Conventional
systems require a special hardware structure that grows with the
thread length to record (and later disambiguate) all these evicted
addresses. Bulk simply uses theR signature. Written lines that
are evicted are handled in a special manner in both conventional
systems and Bulk (Section 6.2.2).

Bulk represents multi-version information very concisely. For
each version or checkpoint, Bulk stores a read and a write signa-
ture. Another related Bulk structure is a cache set bitmask gener-
ated from theW of all the preempted threads (Figure 7). In con-
trast, conventional systems typically tag each cache line with a ver-
sion ID, whose size depends on the number of versions supported.
Setting, managing, comparing, and clearing many version IDs in-
troduces significant hardware complexity.

Bulk can build signatures using fine-grain addresses (e.g., word
or byte) and therefore enable fine-grain address disambiguation
without any additional storage cost. In contrast, conventional
schemes that perform fine-grain disambiguation typically add per-
word read and write access bits to each cache line. These bits add
significant complexity to a structure that is time-critical.

Finally, Bulk commits a thread by clearing its read and write sig-
natures. This is a very simple operation, and is not affected by the



number of versions in the cache. In contrast, conventional schemes
either gang-clear a Speculative bit in the cache tags, or walk the
cache tags to identify the lines belonging to the committing thread.
Neither approach is simple to implement, especially when there are
lines from many threads in the cache.

5.2. Basic Primitive Operations

The second reason for Bulk’s simplicity is that is uses a set of
well-defined basic operations. They are those in Table 1, the Sig-
nature Expansion of Section 3.3, and the Updated Word Bitmask
operation of Section 4.4. These operations map high-level compu-
tations on sets directly into hardware.

6. Implementation Issues

This section examines some implementation details relevant to
signatures and the use of Bulk in TM and TLS.

6.1. Signature Encoding

Address aliasing in signatures is an important concern for Bulk
because it may degrade performance. Therefore, we would like to
choose a signature implementation that minimizes aliasing. Given
our generic signature mechanism presented in Section 3.1, there
are many variables that can be adjusted to control address aliasing,
including the total size of the signature, the number and size of the
Vi andCi bit-fields, and how the address bits are permuted. The
whole space is very large but the main trade-off is between signature
size and accuracy — the latter measured as the relative absence of
false positives. We evaluate this trade-off in Section 7.5.

Although signatures are small (e.g., 2 Kbits), we may want to
further reduce the cost of sending them over the interconnection
network. Specifically, since they potentially have many sequences
of zeros, we compress them with run-length encoding (RLE) be-
fore broadcasting. RLE is simple enough to be easily implemented
in hardware and is highly effective at compressing signatures. We
analyze RLE’s impact in Section 7.5.

6.2. Issues in Transactional Memory (TM)

Two important issues in TM are transaction nesting and the ac-
tions taken on cache overflow and context switch. We consider how
Bulk addresses them.

6.2.1. Transaction Nesting

Figure 8 shows a transaction nested inside another. The trans-
action begin and end statements divide the code into three sections,
labeled1, 2, and3. An intuitive model of execution for this code
is that of closed nested transactions with partial rollback. In closed
nested transactions [19], an inner transaction does not become vis-
ible to the other threads until the outer transaction commits. With
partial rollback, we mean that, if a dependence violation is detected
on an access in sectioni, we only rollback execution to the begin-
ning of sectioni and re-execute from there on.

Bulk can easily support this model. Recall from Section 4.5 that
a processor’s BDM supports multiple versions, each one with a read
and a write signature. Consequently, Bulk creates a separate read
and write signature for each of the three code sections in the figure.
We call themR1 andW1, R2 andW2, andR3 andW3 in the figure.

1

2

3

begin
transaction 

begin
transaction

∩
R1 W1

∩
R2 W2

∩
R3 W3

WC

From committing 
thread 

W1 ∪ W2 ∪ W3

To other threads

end
transaction

end
transaction

Figure 8. Supporting nested transactions in Bulk.

As shown in the figure, when the thread receives aWC from a
committing transaction, it performs bulk address disambiguation in
order, starting fromR1 andW1, and finishing withR3 andW3. If
a violation is detected in a section (e.g., in3), only that section and
the subsequent ones are squashed and restarted.

The three pairs of signatures are kept until section3 finishes
execution. At that point the outer transaction attempts to commit.
The write signature that it broadcasts to all other threads is the union
of W1, W2, andW3.

6.2.2. Overflow and Context Switch

In TM, two potentially costly events are the overflow of spec-
ulative lines from the cache and the preemption of an executing
speculative thread in a context switch. In the former, conventional
schemes typically send the overflowed line addresses (and in the
case of dirty lines their data as well) to an overflow area in memory,
where the addresses still need to be checked for potential depen-
dences [2, 20]. In a context switch, many conventional schemes
move the cached state of the preempted speculative thread to the
overflow area [2, 20].

Bulk reduces the complexity and the performance overhead of
having to deal with overflows and context switches. The three rea-
sons are shown in Table 3. In the following, we consider overflow
and context switches in turn.

Addresses of overflowed lines are not accessed
when disambiguating threads
A processor efficiently determines if it needs to access
the overflow area
Supporting multipleR andW signatures in the
BDM substantially minimizes overheads

Table 3. Ways in which Bulk reduces the complexity and per-
formance overhead of overflows and context switches.

In Bulk, when dirty lines from a speculative thread are evicted
from the cache, they are moved to a per-thread overflow area in
memory. However, recall that address disambiguation in Bulk is
exclusively performed using signatures. Therefore, unlike in con-
ventional schemes, the overflowed addresses in memory are not ac-
cessed when Bulk disambiguates threads. A thread with overflowed



lines that receives aWC from a committing thread simply operates
on its signatures and performs bulk invalidation of cached data only.
It only accesses its overflow area to deallocate it — if the disam-
biguation found a dependence.

During a speculative thread’s normal execution, a thread may
request data that happens to be in its overflow area. Bulk provides
an efficient mechanism for the processor to know whether it needs
to access the overflow area. Specifically, when a thread overflows,
the BDM sets an Overflow bit (O) for it. When the thread next
misses in the cache (say, on addressa), as the BDM intercepts the
request (Figure 7), it checks the O bit. If it is set, the BDM tests if
a ∈ W . If the result is false, the request does not need to access the
overflow area, and can be sent to the network.

Finally, consider context switches. In Bulk, when a thread is
preempted, it still keeps itsR andW signatures in the BDM. A
new pair of signatures is assigned to the newly scheduled thread
(Section 4.5). Consequently, as long as there are enoughR andW
signatures in the processor’s BDM for the running and preempted
threads, disambiguation proceeds as efficiently as usual in the pres-
ence of overflows and context switches.

When a processor finally runs out of signatures, theR andW
signatures of one thread, sayi, are moved to memory. In this case,
the thread’s cached dirty lines are also moved to memory — since
the cache would not know what thread is the owner of these dirty
lines. From here on, theWC of committing threads and individual
writes from non-speculative threads need to disambiguate against
theRi andWi in memory. This operation is similar to the disam-
biguation against overflowed addresses in memory that is supported
in conventional systems (e.g., [20]) — yet simpler, because sig-
natures are small and fixed-sized, while overflowed line addresses
need a variable amount of storage space. When space opens up in
the BDM, theRi andWi signatures are reloaded, possibly together
with some or all its dirty lines in the overflow area.

6.3. Issues in Thread-Level Speculation (TLS)

As far as Bulk is concerned, the key difference between TLS
and TM is that, in TLS, speculative threads can read speculative
data generated by other threads. As a result, Bulk needs to be ex-
tended slightly. Specifically, when a thread is squashed, it also uses
its R signature to bulk-invalidate all the cache lines that it has read.
The reason is that they may contain incorrect data read from a pre-
decessor speculative thread that is also being squashed.

We also note that threads in TLS often have fine-grain shar-
ing, especially between a parent thread and the child thread that
it spawns. The child often reads its live-ins from the parent shortly
after being spawned. If we keep Bulk as is, the child will often be
squashed when the parent commits.

To enhance performance, we propose one improvement: not
to squash a thread if it reads data that its parent generated before
spawning it. We call this improvementPartial Overlap. For sim-
plicity, we only support it for the first child of a given thread.

Partial Overlap requires three extensions to Bulk. The first one
is that, at the point where a thread spawns its first child, the hard-
ware starts generating a shadow write signatureWsh in parallel as
it builds up the usual write signatureW (Figure 9). From the point
of the spawn on, both signatures are updated at every write.

Secondly, when a thread commits, it sends both its write sig-
natureW and its shadow oneWsh (Figure 9). Its first child —

Thread i Thread i+1 Thread i+2

Wi

Spawn 
Thread i+1

Wi

Wshi

Wshi to Thread i+1

Wi to Thread i+2

More speculative

Figure 9. Supporting Partial Overlap in TLS.

identified by its thread ID — usesWsh for disambiguation, while
all other threads useW . Finally, when a thread spawns it first child,
it passes along with the spawn command its currentW (Figure 9).
In the receiving processor, the spawn operation includes a bulk in-
validation of the clean cached lines whose addresses are inW .

With this support, before the child thread starts in a processor,
the cache is emptied of any addresses whose data has been modified
by the parent. Consequently, on accessing such addresses, the child
will miss in its cache and obtain the data from its parent’s. Then,
when the parent commits, address disambiguation will not include
addresses updated by the parent only before spawning the child.

7. Evaluation

In this section, we evaluate Bulk in the context of both TM and
TLS. After presenting our evaluation setup in Section 7.1, we show
that Bulk induces a very small performance degradation in Sec-
tion 7.2. We characterize the main aspects of the bulk operations
in Section 7.3. We then present bandwidth issues in Section 7.4.
Finally, we show the trade-offs of signature encoding in Section 7.5.

7.1. Evaluation Setup

For the TLS evaluation, we compile the applications using a
fully automatic profile-based TLS compilation infrastructure [16].
We run the binaries on an execution-driven simulator [21] with de-
tailed processor core and memory system models, including all TLS
operation overheads, such as thread spawn, thread squash, and ver-
sioning support. We used the SPECint2000 applications running
the ref data set. We run all the SPECint2000 applications except
eon(C++ is not supported) andgccandperlbmk(our compiler can-
not handle them).

For the TM evaluation, we modified Jikes RVM [1] to addbegin
andendtransaction annotations to Java programs. We convert lock-
based constructs into transactions using methods similar to [4]. We
ran our modified Jikes RVM on the Simics full-system simulator en-
hanced to collect memory traces and transaction annotations. These
traces were then analyzed in our TM simulator. Our TM model sup-
ports execution of non-transactional code as in [2, 18, 20]. The TM
simulation includes a detailed memory model. As listed in Table 4,
the applications used were SPECjbb2000 and programs from the
Java Grande Forum (JGF) multithreaded benchmarks package.



Application Suite Description

cb JGF Cryptography Benchmark
jgrt JGF 3D Ray Tracer
lu JGF LU matrix factorization
mc JGF Monte-Carlo simulation
moldyn JGF Molecular dynamics
series JGF Fourier coefficient analysis
sjbb2k SPEC SPECjbb 2000 (business logic)

Table 4. Java applications used in the TM experiments.

Table 5 presents the architectural parameters for the TLS and
TM architectures. For the TM experiments, the signatures are con-
figured to encode line addresses. For TLS, since the applications
evaluated have fine-grain sharing, signatures are configured to en-
code word addresses. In both the TLS and TM experiments, we
compare Bulk to conventional systems that perform exact address
disambiguation. Conventional systems can beEager, if disam-
biguation occurs as writes are performed, orLazy, if threads dis-
ambiguate all their updates when they commit. Finally, our base-
line Bulk includes support for Partial Overlap in TLS (Section 6.3)
and for overflows and context switches in TM (Section 6.2.2). It
does not include support for partial rollback of nested transactions
(Section 6.2.1).

TLS

Processors 4
Fetch, issue, retire width 4, 3, 3
ROB, I-window size 126, 68
LD, ST queue entries 48, 42
Mem, int, fp units 2, 3, 1
L1 cache:

size, assoc, line 16 KB, 4, 64 B
OC, RT 1, 2 cycles

RT to neighbor’s L1 (min) 8 cycles

TM

Processors 8
L1 cache:

size, assoc, line 32 KB, 4, 64 B

Signature Information (Both TLS and TM)

Default signature:
S14(2 Kbits long, see Table 8 for details)

Bit permutations used: (bit indices, LSB is 0)
TM: [0-6, 9, 11, 17, 7-8, 10, 12, 13, 15-16, 18-20, 14]
TLS: [0-9, 11-19, 21, 10, 20, 22]

Table 5. Architectural parameters used in the simulations. OC
and RT stand for occupancy and round trip from the processor,
respectively. In the permutations, the bit indices are from line
addresses (26 bits) in TM and from word addresses (30 bits) in
TLS. The high-order bits not shown in the permutation stay in
their original position.

7.2. Performance

Figure 10 shows the performance of Eager, Lazy, and Bulk in
TLS compared to sequential execution. The results show that using
Bulk has little impact on performance — only a geometric mean
slowdown of 5% over Eager. Most of the performance degradation
happens when going from Eager to Lazy. This degradation comes
mainly from not restarting offending tasks as early as Eager does.
The small difference between Lazy and Bulk is due to the inexact-
ness of signatures.

Figure 10 also includes the performance of Bulk without the
support for Partial Overlap discussed in Section 6.3. This is shown

in the BulkNoOverlap bar. The geometric mean speedup of Bul-
kNoOverlap is 17% lower than that of Bulk. The reason for this
significant difference is that SPECint applications tend to have fine-
grain sharing, especially between adjacent threads. As a related
point, in these experiments, Lazy also includes support for a scheme
similar to Partial Overlap but with exact information. We do this to
have a fair comparison with Bulk.
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Figure 10. Performance of Eager, Lazy, and Bulk in
TLS.

Figure 11 compares the performance of Bulk, Lazy, and Eager
in the context of TM. The performance of Bulk and Lazy is ap-
proximately the same. We expected to see similar performance
in Eager and Lazy, which is the case for all applications except
SPECjbb2000. There are two reasons why SPECjbb2000 is faster
in Lazy than in Eager. First, there is a situation where Eager has
forward progress problems. This is shown in Figure 12(a), where
two threads read and write the same location inside a transaction,
and they keep squashing each other repeatedly2. The second rea-
son involves a situation where a squash happens in Eager but not in
Lazy, as shown in Figure 12(b).
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Figure 11. Performance of the different schemes in
TM.

The Bulk-Partial bar in Figure 11 shows the performance of sup-
porting partial rollback in nested transactions (Section 6.2.1). The
plot shows that the impact of partial rollback is minor. This is due
to the relatively low frequency and depth of transaction nesting in
our Java applications. In addition, we observed that nested trans-
actions frequently access common pieces of data, which makes it
likely that if a conflict happens, it will involve multiple sections of
a nested transaction, decreasing the benefits of partial rollback.

2To solve this problem in Eager, we detect this situation and choose to let
the longer-running thread make progress and commit, while the other thread
stalls.



Thread 1 Thread 2

ld A
st A

ld A
st A

ld A
st A

restart

restart
ld A
st A

(a) No forward progress in Eager.
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sh!
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Thread 1 Thread 2
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ld A

commit

commit

Eager Lazy (no squash)

(b) Squash happens in Eager but not in Lazy.

Figure 12. Examples of code patterns from SPECjbb2000
where the performance of Eager suffers.

7.3. Characterization of Bulk

Table 6 characterizes Bulk in TLS. The columns labeledTask
Propertiesshow the average sizes in words of the read and write
sets (i.e., footprints) of the tasks. They also show the average size
in words of the dependence sets of the squashed tasks. The de-
pendence set is the result of the intersection between a committing
task’s write set and the read and write sets of the squashed task.
Note that read sets tend to be significantly larger than write sets.
Also, dependence sets are small.

Task Properties False Positives Set Restriction
Rd Wr Dep Sq False Safe Wr-Wr

Appl Set Set Set (%) Inv/Com WB/Tsk Cnf/1k
Size Size Size (Avg) (Avg) Tasks
(W) (W) (W) (Avg)

bzip2 30.2 4.9 1.0 10.5 0.1 2.9 0.1
crafty 109.0 23.2 2.6 16.5 0.0 11.5 0.3
gap 42.4 13.4 6.6 0.4 0.5 3.7 0.0
gzip 14.3 4.8 2.0 1.4 0.0 1.5 0.0
mcf 12.3 0.7 1.0 1.1 0.0 0.4 0.0
parser 29.6 7.1 2.3 2.1 0.1 2.2 5.5
twolf 41.1 6.4 1.4 14.0 0.3 6.3 0.2
vortex 34.7 23.5 3.6 10.4 0.3 6.4 31.6
vpr 43.1 8.7 1.1 5.6 0.5 4.1 0.0
Avg 39.6 10.3 2.4 6.9 0.2 4.3 4.2

Table 6. Characterization of Bulk in TLS.

The columns labeledFalse Positivescharacterize the impact of
address aliasing in signatures. TheSquashcolumn shows the per-
centage of task squashes that were caused by collisions between
signatures due to aliasing. TheFalse invalidations per commitcol-
umn shows the average number of cache lines that were invalidated
due to aliasing during a bulk invalidation following a task commit.
The figure shows the total over all the caches for a single commit
operation. Overall, these numbers are low and explain why false
positives do not affect performance much in Figure 10.

The columns labeledSet Restrictionshow the impact of using
our Set Restriction (Section 4.3). TheSafe WB per taskcolumn
shows how many non-speculative dirty lines had to be written back
to memory per task due to the Set Restriction. These lines often re-
main in the cache in clean state, since the victim line is another line
in the set. TheWr-Wr conflicts per 1000 taskscolumn shows how
often a speculative task attempts to write a line in a set that already
contains a dirty line from another speculative task. In these cases,
the most speculative task of the two is squashed to keep the Set Re-
striction. We see that this situation is very infrequent, happening on
average only 4 times every 1000 tasks.

Table 7 characterizes Bulk in the context of TM. TheTransac-
tion Propertiescolumns show the average read and write set sizes
of the transactions, and the dependence set size of the squashed
transactions. The set sizes are measured in line lines. As expected,
read set sizes are always a few times larger than write set sizes.
On average, write sets hold 22 lines, while read sets hold 68 lines.
Enumerating the addresses in hardware would induce considerable
overhead. On average, the size of the dependence set is only about
2 lines.

Transaction Properties False Positives Set Rest. Overflow
Rd Wr Dep Sq False Safe Accesses

Appl Set Set Set (%) Inv/Com WB/Tr Bulk/Lazy
Size Size Size (Avg) (Avg) (%)
(L) (L) (L)

cb 73.6 26.9 1.4 20.0 0.6 1.5 6.2
jgrt 67.1 22.1 1.3 22.1 0.2 0.5 4.3
lu 81.7 27.3 1.3 12.8 0.7 0.8 5.6
mc 51.6 17.6 1.9 9.8 0.1 2.6 3.3
moldyn 70.2 25.1 1.3 10.7 0.4 0.4 2.6
series 86.9 25.9 1.1 13.7 0.1 0.3 2.1
sjbb2k 41.6 11.2 1.4 7.7 0.1 0.2 0.8
Avg 67.5 22.3 1.4 13.8 0.3 0.9 3.6

Table 7. Characterization of Bulk in TM.

The False Positivescolumns show information similar to the
corresponding columns of Table 6. They show that on average 14%
of the squashes are caused by signature collisions due to aliasing,
and that the number of lines invalidated at commit due to aliasing is
only 3 lines every 10 transaction commits.

The Set Restrictioncolumn shows that, on average, less than
one non-speculative dirty line has to be written back to memory per
transaction due to the Set Restriction. Finally, theOverflowcolumn
compares the number of accesses to the overflow area in Bulk and
Lazy. Specifically, the column shows the number of such accesses
in Bulk as a fraction of those in Lazy. We see that, on average,
Bulk accesses the overflow area only 4% of the times that Lazy
does. The savings come from the fact that Bulk does not access
the overflow area on address disambiguation and that Bulk can use
a membership operation to decide that an access to the overflow
area is not necessary (Section 6.2.2). We can see that Bulk is very
effective at avoiding accesses to the overflow area.

7.4. Bandwidth Usage in TM

We study the bandwidth usage in TM by looking at both the to-
tal bandwidth and the commit bandwidth usage. Figure 13 shows
the breakdown of the total bandwidth used. We compare Eager
(E), Lazy (L), and Bulk (B). The bandwidth is broken down into:
invalidations (Inv), coherence messages like downgrades and up-
grades (Coh), accesses to the unbounded memory area that holds
overflowed data (UB), writebacks (WB), and line fills (Fill ).

The figure shows that, despite the inaccuracy introduced by ad-
dress aliasing, the overall bandwidth usage in Bulk is along the lines
of that in the other schemes. On average, it is only slightly higher
than Lazy and is lower than Eager. Bulk’s bandwidth is higher than
Lazy’s because it has more line fills. They are due to the extra
squashes and line invalidations caused by address aliasing.

Most of the Inv bandwidth usage in Lazy and Bulk is due to
the commit operations (since individual invalidations from non-
speculative threads are few). While it is hard to see in the figure,
Bulk significantly reduces the commit bandwidth. The reason is
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Figure 13. Bandwidth usage breakdown in TM. Underneath
the bars,E, L andB refer to Eager, Lazy and Bulk, respectively.

twofold: it uses compact signatures instead of an enumeration of
addresses as commit packets, and signatures are more suitable for
RLE compression than address enumerations due to frequent long
sequences of zeros. Figure 14 shows the commit bandwidth of Bulk
normalized to that of Lazy. We see that, on average, Bulk achieves
a 83% reduction in commit bandwidth.
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Figure 14. Commit bandwidth of Bulk normalized to the
commit bandwidth of Lazy.

For TLS, we obtain qualitatively similar conclusions. We do not
show data due to space limitations.

7.5. Signature Size vs Accuracy Trade-off

Finally, we evaluate the accuracy of signatures to represent sets
of addresses. We choose a few signature configurations to illustrate
the overall size vs accuracy trade-off. Table 8 lists the signatures
we tested. For each signature, the table shows the ID, the full and
average compressed size in bits, and the format. The signature in
bold (S14) is the one we used in all previous experiments.

To assess the accuracy of a signature, we run the TM applica-
tions using that signature. We sample every bulk address disam-
biguation event that we know should not detect a dependence if
there were no aliasing. Then, we record whether a dependence was
found (false positive) or not. Figure 15 shows the fraction of false
positives that such samples produced.

In the figure, each bar corresponds to one signature configura-
tion, where the signatures are generated without any initial bit per-
mutation on the original addresses. We see that the frequency of
false positives can be high, but that it quickly decreases as the sig-
nature size increases. Within a given signature size, different con-
figurations have different accuracies, especially for small sizes.

We then repeat the experiments with a variety of bit permuta-
tions on the original addresses before generating the signatures, as
shown in Figure 2. The resulting fraction of false positives observed
is shown in Figure 15 as error segments. The lower tick in an error
segment corresponds to the best permutation that we tried, while

ID Full Size Compressed Size Description
(Bits) (Avg, in bits) (See Caption)

S1 512 254 7, 7, 7, 7
S2 512 282 8, 7, 6, 5, 5
S3 512 193 5, 5, 6, 7, 8
S4 1024 290 8, 8, 8, 8
S5 1024 318 9, 8, 7, 7
S6 800 234 5, 8, 8, 8
S7 800 266 8, 5, 8, 8
S8 800 281 8, 8, 5, 8
S9 576 234 5, 8, 8, 5
S10 1344 334 9, 9, 8, 6
S11 1824 356 9, 10, 8, 5
S12 1600 353 10, 9, 6
S13 1664 353 10, 9, 7
S14 2048 363 10, 10
S15 2048 353 10, 9, 9
S16 2336 396 10, 10, 7, 5
S17 3072 380 10, 10, 10
S18 4096 438 11, 10, 10
S19 4096 469 11, 11
S20 4096 381 12
S21 4112 497 11, 11, 4
S22 5120 497 11, 11, 10
S23 16448 1219 13, 13, 6

Table 8. Signatures tested. The Description column shows the
sizes of the bit chunks used in each of theC1C2...Cn bit-fields
of the (already permuted) address (Figure 2). These chunks are
all consecutive and start from the least significant bit. TheVi

bit-fields are obtained by decoding the correspondingCi bit-
fields.
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Figure 15. Fraction of false positives in bulk address disam-
biguations known to have no dependences. Each bar corre-
sponds to one signature configuration, while the error segment
corresponds to using different bit permutations in the address
before generating the signature.

the upper tick corresponds to the worst permutation. Good permu-
tations group together bits that vary more, and map them to a large
Ci bit-field. From the figure, we see that the permutation has a sig-
nificant impact. Many times, it is possible to obtain better accuracy
with a smaller signature and a better permutation.

8. Related Work

There is a large volume of previous work in TLS and TM. The
first hardware support for disambiguation in TLS was the Address
Resolution Buffer (ARB) [7], which provided a shared table for
tracking all speculative loads and stores. After that, multiple pro-
posals have been made to move speculative data into each core’s
private cache or write buffer, and leverage the cache coherence pro-
tocol for disambiguation. This includes the Speculative Version-
ing Cache [10], the Hydra design [11], the design of Steffan and
Mowry [25], and the Memory Disambiguation Table [15] among



several others. Several designs have been proposed to implement
scalable conflict detection and version management for TLS [6, 24].

Herlihy and Moss [13] proposed an early architecture for
TM. They used a small, fully-associative cache to buffer all
speculatively-referenced data and a snoopy coherence protocol. Re-
cently, there have been several designs for TM such as TCC [12],
UTM [2], VTM [20], and LogTM [18]. They use a variety of tech-
niques similar to TLS that hinge around leveraging the coherence
protocol [2, 20, 18] and adding small buffers to track accesses [2].

Bulk differs from all of this prior work by using a signature as a
compact representation of a speculative thread’s access history, and
by using bulk operations on signatures to perform disambiguation
and speculative state management. We have argued that Bulk sig-
nificantly simplifies the several mechanisms needed to enforce the
data dependences across speculative threads.

Bulk uses lazy conflict detection, like TCC [12] and some TLS
designs [25]. However, unlike TCC, Bulk assumes that some code
will not execute in a transaction and, therefore, Bulk is compatible
with a plain invalidation-based cache coherence protocol. One of
the TLS designs in [25] communicated and disambiguated at the
end of a task’s execution, whereas Bulk allows for eager commu-
nication between tasks even though disambiguation is performed
lazily. This enables higher performance.

Signatures are very similar to Bloom filters [3]. Bloom fil-
ters are employed in VTM [20] to reduce accesses to its overflow
area. Specifically, VTM uses the Transaction Address Data Table
(XADT) to log all speculative reads and writes. The XADT Filter
(XF) is a Bloom filter that eliminates some searches of the XADT
and is employed only for performance. Bulk, instead, uses signa-
tures as the sole record of memory references.

9. Conclusions

This paper presented the concept and design of Bulk. Bulk is a
novel approach to enforcing data dependences across threads in an
environment with multiple, cooperating speculative threads such as
TM and TLS. The cornerstone of Bulk is the use of signatures to
efficiently encode a thread’s access information, and signature op-
erations in hardware that efficiently process sets of addresses. Bulk
operations are inexact yet correct. They provide substantial concep-
tual and implementation simplicity to key mechanisms.

Compared to the state-of-the-art, some of the simplifications
provided by Bulk include sending only a write signature at a com-
mit, performing full-address disambiguation of threads in a sin-
gle operation, recording speculatively-accessed addresses inexpen-
sively with signatures, representing versions concisely without ver-
sion IDs, supporting fine-grain (per word) address disambiguation
with no extra storage, and committing by clearing a signature.

We evaluated Bulk in the context of TLS using SPECint2000
codes and TM using multithreaded Java workloads. We showed
that, despite its simplicity, Bulk has a performance that is competi-
tive with more complex schemes. False positives have a negligible
impact on both performance and bandwidth consumption. Finally,
we showed that signature configuration is a key design parameter.
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