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Abstract they are not is, to some extent, the result of the conceptual and im-
plementation complexity of these techniques.

Transactional Memory (TM), Thread-Level Speculation (TLS), Multiprocessor designs that support speculative multithreading
and Checkpointed multiprocessors are three popular architectureded to address two broad functions: correctly maintaining the data
techniques based on the execution of multiple, cooperating speaependences across threads and buffering speculative state. While
lative threads. In these environments, correctly maintaining data dise latter is arguably easier to understand (e.qg., [9]), the former is
pendences across threads requires mechanisms for disambiguatiommposed of several complicated operations that typically involve
addresses across threads, invalidating stale cache state, and makistyibuted actions in a multiprocessor architecture — often tightly
committed state visible. These mechanisms are both conceptuatigupled with the cache coherence protocol. Specifically, this func-
involved and hard to implement. tion includes mechanisms for: disambiguating the addresses ac-

In this paper, we preseBulk, a novel approach to simplify these cessed by different threads, invalidating stale state in caches, mak-
mechanisms. The idea is to hash-encode a thread's access inforifg-the state of a committing thread visible to all other threads, dis-
tion in a concise signature, and then support in hardware signatuf@rding incorrect state when a thread is squashed, and managing the
operations that efficiently process sets of addresses. Such opefeculative state of multiple threads in a single processor.
tions implement the mechanisms described. Bulk operations are The mechanisms that implement these five operations are hard-
inexact but correct, and provide substantial conceptual and impl&are intensive and often distributed. In current designs, the first
mentation simplicity. We evaluate Bulk in the context of TLS usingthree piggy-back on the cache coherence protocol operations of the
SPECint2000 codes and TM using multithreaded Java workload®achine, while the last two typically modify the primary caches.
Despite its simplicity, Bulk has competitive performance with mordJnfortunately, coherence protocols are complicated state machines
complex schemes. We also find that signature configuration is a k&fd primary caches are delicate components. Modifications to these
design parameter. structures should minimize added complexity.

The goal of this paper is to simplify the conceptual and imple-
. mentation complexity of these mechanisms. For that, we employ a
1. Introduction Bloom-filter-based [3] compact representation of a thread’s access

o information that we call &ignature A signature uses hashing to
In recent years, efforts to substantially improve the programmas,code the addresses accessed by a thread. It is, therefore, a su-

bility and performance of programs have resulted in techniques, set representation of the original addresses. We also define a
based on the execution of multiple, cooperating speculative thready o pasic signature operations that efficiently operate on groups
Such techniques include Transactional Memory (TM), Threadst ;yqresses. These operations are conceptually simple and easy to
Level Speculation (TLS), and Checkpointed multiprocessors. - Ipyniement in hardware. Finally, we use these operations as building
T™ (e.g., [2, 12, 13, 18, 20]), the speculative threads are obtainggl, ys (o enforce the data dependences across speculative threads
from parallel programs, and the emphasis is typically on easing Prond to correctly buffer speculative state.
grammability. In TLS (e.g., [11, 15, 17, 22, 23, 24, 26, 27]), the
speculative threads are extracted from a sequential program, and
the goal is to speed-up the program. Finally, Checkpointed multi-
processors [5, 8, 14] provide primitives to enable aggressive thread
speculation in a multiprocessor environment.

With the long-anticipated arrival of ubiquitous chip multipro-
cessor (CMP) architectures, it would appear that these techniques
should have been architected into systems by now. The fact that

Processor x Processor y

Figure 1. Example of an operation in Bulk.
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individual addresses. As an example, Figure 1 shows two procese cache coherence protocol to propagate the thread’s state to the
sors, each with its own signatures of addresses rBadrfd written  rest of the system.

(W). As one thread commits, it sends its write signature to th

other processor, where it is bulk-disambiguated against the sign%'—scardlng Incorrect State When a Thread Is Squashed. As

tures of the other thread. If no intersection is detected, there is r%jdresses are disambiguated either eagerly or lazily, the hardware

dependence violation. This is in contrast to conventional scheméﬁ;y find that a data dependence has been violated. In this case,

which have to disambiguate each address written by the first thre thread th_at Is found to ha_ve potentially read’or w_rltten a datum
individually. prematurely is squashed — in TLS, that thread’s children are also

In this paper, we make two contributions. First, we introduce thgquashed. When a thread is squashed, the state that it generated

concept and design of Bulk. Bulk is a novel approach to enforc@u,zt ?e dlf]ceiLdeda,Trél.st|r1Iy0Ives accestglng th(ﬁ tc;}acphe tag,s ?nd n-
data dependences across multiple speculative threads. The m‘é?rq ating the thread's dirty ines or sometimes all the thread's fines.

characteristic of Bulk is that it operates on sets of addresses, provigvalidating Stale State in Caches.Threads typically make their

ing substantial conceptual and implementation simplicity. Secondtate visible at commit time. In addition, in some TLS systems, a
we evaluate Bulk in the context of both TLS using SPECint200@hread can make its updates visible to its children threads immedi-
codes and TM using multithreaded Java workloads. We show thaftely. In both cases, the cache coherence protocol of the machine
despite its simplicity, Bulk has competitive performance with morensures that the relevant caches in the system receive a coherence
complex schemes. We also find that signature configuration is a kggtion — typically an invalidation for each updated line.

design parameter.

This paper is organized as follows: Section 2 is a brief backManaging the Speculative State of Multiple Threads in a Sin-
ground on speculative multithreading, Section 3 presents signatui@§ ProcessorA cache that can hold speculative state from multi-
and basic operations on them, Section 4 details the Bulk architgele threads is called multi-versioned. Among other reasons, these
ture, Section 5 demonstrates Bulk’s simplicity, Section 6 describ&@ches are useful to be able to preempt and re-schedule a long-

implementation issues, Section 7 evaluates Bulk in the context Bfnning TM transaction while keeping its state in the cache, or to
TLS and TM, and Section 8 presents related work. avoid processor stall when TLS tasks are imbalanced. Specifically,
in TLS, if tasks have load imbalance, a processor may finish a task
2. Operations in Speculative Multithreading and have to stall until the task becomes safe. If, instead, the cache
. . . . is multi-versioned, it can retain the state of the old task and allow
Both TLS and TM are environments with multiple speculatlvethe processor to execute another task.

threads. In TLS (e.g. [11, 15, 17, 22, 23, 24, 26, 27]), threads are Multi-versioned caches are often implemented by extending the

Lfvf gg: ?esde?nutehnetlzgr)rzggc:zjrg.r ;:ei;egﬁées’éheﬁ:t?aeldeioeipggsrt# of each cache line with a version ID. This ID records which task
u qu u 'éhe line belongs to.

™ (e.g., [2, 12, 13, 18, 20]), threads are typically obtained from
parallel program, and become speculative when they enter a trans-Overall, implementing these operations requires significant
action. While there is no predefined order of transactions, they hakardware. Such hardware is often distributed and not very mod-
to appear to be atomic. In both TLS and TM, these thread orderingar. It typically extends the cache coherence protocol or the pri-
constraints impose an ordering of accesses to data across threm@sy caches — two hardware structures that are already fairly com-
that, typically, the hardware has to enforce. As indicated in Segqlicated or time-critical. The implementation of these operations
tion 1, enforcing these data dependences requires performing s@/most likely the main contributor to the hardware complexity of
eral operations. We briefly outline them here. speculative multithreading.

Disambiguating the Addresses Accessed by Different Threads. 3 Signatures and Bulk Operations
To ensure that data dependences required by thread ordering con-

straints are enforced, the hardware typically monitors the addressesTo reduce the implementation complexity of the operations just
accessed by each thread and checks that no two accesses to the stgseribed, this paper proposes a novel, simpler way of supporting
location may have occurred out of order. The process of comparinigem. Our goal is to simplify their hardware implementation while
the addresses of two accesses from two different threads is calleaining competitive performance for the overall application.
cross-thread address disambiguation. An access from a thread canThe approach that we propose is calRdlk or Bulk Disam-

be disambiguategagerlyor Lazily. In Eager schemes, as soon aspiguation The idea is to operate on a group of addresses in a single,
the access is performed, the coherence protocol propagates theiglk operation. Bulk operations are relatively simple to implement,
quest to other processors, where address comparison is performggt at the expense of being inexact — although execution is always
In Lazy schemes, the comparison occurs when the thread has caerrect. This means that they may occasionally hurt performance
pleted and has broadcasted the addresses of all its accesses.  but not correctness.

Making the State of a Committing Thread Visible to All Other To support Bulk, we develop: (i) an efficient representation of
Threads. While a thread is speculative, the state that it generat&ts Of addresses and (ii) simple bulk operations that operate on such
is typically kept buffered, and is made available to only a subset & "EPresentation. We discuss these issues next.

the other threads (in TLS) or to no other thread (in TM). When th ;

thread completes (and itis its turn in TLS), it commits. Committing%'l' Address Signatres
informs the rest of the system that the state generated by the threadWe propose to represent a set of addresses Sigrature A

is now part of the safe program state. Committing often leveragessgnature is generated by inexactly encoding the addresses into a



register of fixed size (e.g., 2 Kbits), following the principles of hashsuming and can generate only a superset of the correct addresses.

encoding with allowable errors as described in [3]. Algebraicallylnstead, we define the decode operatiitd generate thexactset

given a set of addresses;, we use a hash functioH such that of cache set indicesf addressesl;. We will see that this opera-

A1 — S, whereS is a signature H is such that multiple sets of tion is useful in cache operations using signatures. It can be imple-

addresses can map into the safeAs a result of such aliasing, mented easily by simply selecting one of figbit-fields to be the

S encodes a superset dfi. Consequently, when we later decodecache index bits of the address and, therefore, the correspoviding

S with H~* such thaiS — A», we obtain a set of addressds  will be the cache set bitmask. This particular implementation is not

such that:A; C (A = H Y (H(AL))). required — if the index bits of the address are spread over multiple
Figure 2 illustrates how an address is added to a signature. Thg, the cache set bitmask can still be produced by simple logic on

address bits are initially permuted. Then, in the resulting addressultiple V;.

we select a few bit-field§’s, . .., C,,. Each of thes&; bit-fields Table 1 also lists a sample use of each operation. We will discuss

is then decoded and bit-wise OR’ed to the current value of the cathe uses in Section 4. Finally, Figure 3 shows how these operations

respondingV; bit-field in the signature. This operation is done inare implemented.

hardware.
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Figure 2. Adding an address to a signature.

Figure 3. Implementation of the primitive bulk operations on

Signature representation has aliasing. Our Bulk design is such .
signatures.

that aliasing can hurt performance but not affect correctness. More-
over, Bulk builds the signatures to minimize performance penalties

due to aliasing. 3.3. Signature Expansion

3.2. Primitive Bulk Operations There is one other important Bulk operation that is composed of

Bulk performs the primitive operations on signatures shown ifWo of the primitive operations in Table 1. This operation is called
Table 1. Signature intersection and union are bit-wise AND angignature Expansignand it involves determining which lines in
OR operations, respectively, on two signatures. Intersecting twWhe cache may belong to a signature. This operation is defined as
signatures produces a third signature that represents a supersetlof (S) N7, wheres is the signature being expanded ahi the
the addresses obtained by intersecting the original address sé@{ of line addresses present in the cache.

Specifically, for two setsd; and A, we have: (A; N Az) C A naive implementation would simply walk the cache tags, take
H~'(H(A1) N H(Ay)). A similar effect occurs for unions. every line address that is valid, and apply the membership opera-
tion to it. Unfortunately, this is very inefficient, since the number of
[[ Op. ][ Description [ Sample Use I matching line addresses may be small. Instead, we can use the de-
N Signature intersectio] Address disambiguation coding operatio on the signature to obtain the cache set bitmask.
U Signature union Combining write signatureg Then, for each of the selected sets, we can read the addresses of the
— 0 s Sigrame ety Edt&?g::gtif;:;ztggﬁon valid lines in the set and apply the membership operatiom each
€ Membership ofan | Address disambiguation of them.
address in a signature with individual address Figure 4 shows the implementation of signature expansion. The
3 Signature decoding | Signature expansion result of applyings on a signature is fed to a finite state machine
into sets (exact) (FSM). The FSM then generates, one at a time, the index of the
Table 1. Primitive bulk operations on signatures. selected sets in the bitmask. As each index is provided to the cache,

gwe cache reads out all the valid line addresses in the set. These

Checking if a signature i ty involves checking if at least
ecngf a signatuire IS emptyinvolves checking I at feas On9ddresses are then checked for membership in the signature.

of its V; bit-fields is zero. If so, the signature does not contain an

address. The membership operatie) ¢hecks if an addresscan 4. An Architecture for Bulk Disambiguation

be in a signaturé. It involves encoding into an empty signature

as discussed in Section 3.1, then intersecting it Witland finally Based on these primitive operations, we can now build the com-

checking if the resulting signature is empty. plete Bulk architecture. Bulk presumes a multiprocessor with an
Ideally, we would like to be able to decode a signature into iténvalidation-based cache coherence protocol. An application can

contributing addressed;. However, this is potentially time con- run both non-speculative and speculative threads. The former send
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Figure 4. Implementation of signature expansion. m
|
invalidations as they update lines; the latter do not send any inval- Bulk invalidation of
idations until they attempt to commit. At that point, they send a cache using W
single message out to inform the other threads of a superset of the (b)

addresses that they have updated — without sending out the full set

of addresses or the data that they have generated. Based on this mekigure 5. Flowchart of the commit process: committing

sage, other threads may get squashed and/or may invalidate some dfread (a) and receiver thread (b).

their cache lines. Bulk is, therefore, a lazy scheme as described in

Section 2. _ _ write signature of the committing threadl¢) to perform a bulk
In Bulk, every speculative thread hasR@ad(R) and aWrite  alidation on thread®’s cache.

(W) signature in hardware (Figure 1). At every load or store, the

hardware adds the requested addres® tor T, respectively, as 4.2. Bulk Address Disambiguation

shown in Figure 2. If the speculative thread is preempted from exe-

cution, itsR andW signatures are still kept in the processor. . . . .
In the followi d ibe th i f Bulk. includi disambiguated in hardware against the memory addresses accessed
n the foflowing, we describe the operation of Bulk, Inciu 'ng.by a receiver threaR using bulk operations on signatures. If

thread commit and squash, bulk address disambiguation, bulk in=

validation, and disambiguation at fine grain. We conclude with the WeNRr#0 V WenNWg#0 (1)
overall architecture of Bulk.

The memory addresses written by a committing thr€adre

. then we have detected a potential read-after-write or a potential
4.1. Thread Commit and Squash write-after-write dependence between the threads. In this case,
threadR is squashed; otherwise, it may continue executing. Write-

Consider a speculative thre@that finishes and wants to com- ] :
mit its speculative state. It first obtains permission to commit (e'$fter-wr|te dependences induce squashes because threads could

gaining ownership of the bus). When the thread knows that its comi&V€ updated a fraction of a line, and because an additional reason
mit will proceed, it clears it§Vc and Rc signatures. Then, it sends discussed in Section 4.4.

out its write signaturdVe so that it can be disambiguated against BUlk disambiguation is very fast and simple. However, it may
all other threads in the system (Figure 1). This is shown in Figbave false positives due to address aliasing and cause unnecessary
ure 5a). squashes. In our experiments of Section 7, we show that the num-

In Bulk, the committing thread never sends the expanded list &er of false positives is reasonable.and does not affect performance
addresses it wrote. Moreover, note that Bulk is not concerned abo?l?”_'f"fa““ﬁ’- We EISO ??olw that _s.lgnatures can be constructed to
how the system handles commit races — several threads attemptﬁ'?bp'r_n'ZEt € number ot false positives. . )
to commit at once. This is a matter for the protocol and networ%g Signatures are designed to encode a certain granularity of ad-

to support. However, by sending only a single signature messa ’esses_, — €9, line addresses or wqrd addressgs. In gach case,
Bulk may simplify the handling of such races iIsambiguation occurs at the granularity encoded in the signature.

Figure 5(b) shows the actions at a thréathat receives the sig- :T'OW?[\]/er’h'f v;e dlsalznblgtuabte a:)? gtranularlty smtglller tf(]iar: the ??Che
nature from the committing one. First, it perforrBsilk Address Ine, the hardware has to be able to merge partial updates ot fines.

Disambiguation(Section 4.2) against its local realt £) and write Section 4.4 discusses this issue.

(Wr) signatures. This operation decides whether the thread needsFmaHY’ not all d|samb.|gu.at.|ons are .don.e inbulk. Non-

to be squashed. If it is, thredluses its write signaturdi(r) to s_,peculatlve_ threads send |nd|y|dual |r_1vallt_jat|(_)ns as they update
Bulk Invalidate(Section 4.3) all the cache lines that it speculatively!'nes‘ In this case, wheR rece!ves an |nval_|dat|on for addreas
modified. Then, it clears itsx andWx. it uses the membership operation to check & Rr VvV a € Wk. If

Regardless of the outcome of the bulk address disambiguatiotrr{e testis trueRis squashed.

all the lines written by the committing thread that are present in 3. Bulk Invalidation

threadR's cache need to be invalidated. This is done by using the ] S ]
A thread R performs bulk invalidation in two cases. The first

1n TLS, other cache lines may be invalidated as well (Section 6.3). one is when it is squashed; it useslits; to invalidate all its dirty




cache lines. The second one is when it receives the write signaturerge in the order in which the threads commit. Bulk supports this
of a committing threadi{’¢); it invalidates all the lines in its cache case without modifying the cache or the cache coherence protocol.
that are inWc. To do so, Bulk slightly modifies the process of bulk invalidation
In Bulk, the first case would not work correctly if a cached dirtyfor the case when it needs to invalidate the lines that are in the write
line that is either non-speculative or was written by another spesignaturélVc of a committing thread”. Specifically, consider that
ulative threadS appears, due to aliasing, to belonglié;. Bulk the committing thread” and a second threal have written to a
would incorrectly invalidate the line. different word of a line. Since we encode word addresses in the sig-
To avoid this problem while still keeping the hardware simplenatures, wher performs the bulk disambiguation of the arriving
Bulk builds signatures in a special way, and restricts in a certain wa{/c against its owz and R, it finds no violation. However, as
the dirty lines that can be in the cache at a time. Specifically, Bulit performs bulk invalidation, it can find a cache line whose address
builds signatures so that the decode operafid#) of Section 3.2 b passes the membership test, is dirty, and (this is the new clue) is in
can generate thexactset of cache set indices of the linesiii. @ cache set present&Wx). This line has suffered updates from
Section 3.2 discussed how this is easily done. In addition, BulRoth threads.
enforces that any dirty lines in a given cache set can only belong to In this case, Bulk has to merge the two updates and keep the
a single speculative thread or be non-speculative. In other words[fisulting line inR's cache. To do so, Bulk usé¥’ andb to gen-
a cache set contains a dirty line belonging to speculative thsead erate a (conservative) bitmask of the words in the line that were
any other dirty line in that same set has to belong te- although ~ updated byR. This is done with an Updated Word Bitmask func-
no restrictions are placed on non-dirty lines. Similarly, if a cach&éional unit that takes and manipulates the appropriate bits fi6m
set contains a non-speculative dirty line, any other dirty line in théFigure 6). This bitmask is conservative because of word-address
set has to be non-speculative as well. We call this restriction trliasing. However, it cannot include words that were updated by the
Set Restriction Section 4.5 explains how Bulk enforces the Se€ommitting thread”’ — otherwise R would have been squashed in
Restriction. Overall, with the way Bulk generates signatures arif#e disambiguation operation. Then, Bulk reads the line from the
the Set Restriction, we have solved the problem — Bulk will not b&€twork and obtains the version just committed. The committed
incorrectly invalidating dirty lines. version is then updated with the local updates specified in the word
We can now describe how the two cases of bulk invalidation prd2itmask (Figure 6), and the resulting line is written to the cache.
ceed. They start by performing Signature Expansion on the wrifdote that this process requires no cache modifications — not even
signature (V' for the first case antil’c for the second one). Re- PEr-Wword access bits.
call from Section 3.3 that Signature Expansion is an operation com-

posed of two primitive Bulk operations. It finds all the lines in the [ Wa Signature [~ “5&’5}3"

cache that may belong @ . It involves applyingd(W) and, for Bitmask pESINEEIEE.
each of the resulting sets, reading all the line addressesd ap- Address of ine L ont

plying the membership teste W. For each addregsthat passes LocalversionofineL. [ [ [ [ [ [ [ [ ]
the membership test, the two cases of bulk invalidation perform dif- Commitied version of line L [ NI

ferentoperations. , Merged version of ine L [T TR
In the case of invalidating dirty lines on a squash, Bulk checks if
bis dirty. If so, Bulk invalidates it. Thanks to the way signatures are Figyre 6. Merging lines partially updated by two speculative
built and the Set Restrictioh,cannot be a dirty line that belongs to  threads.
another speculative thread or is non-speculative.

In the case of invalidating the addresses present in the write sig- From this discussion, it can be deduced whyTtfie N W com-
nature of a committing thread, Bulk checks ift is clean. If so, ponent of Equation 1 is required even in word-level disambiguation.
Bulk invalidates it. Itis possible thatpassed the membership testgpecifically, 1/ is conservative due to aliasing, and the word bit-
due to aliasing and therefore is not reallyifc. If so, we may hurt  mask of Figure 6 could include (due to aliasing) words that thread
performance but not correctness. In addition, note that Bulk takgs wrote. In this case, if Bulk did not perform th&c N Wx # 0

no action ifb is dirty. The reason is that this is the case of a nontest and did not squasR, we would be incorrectly merging the
speculative dirty line whose address appeaid’m due to aliasing. |ines.

Indeed, ifb belonged to a speculative thread, it would have caused a
squash. Moreover, it cannot be dirty non-speculative and be writtegh 5.  Overall Bulk Architecture

by the committing thread”. Based on the previous discussion, Figure 7 shows the overall

4.4. Disambiguating at Fine Grain Bulk architecture. It is placed in Bulk Disambiguation Module
(BDM) that includes several components. The BDM has a read
If the signatures are built using addresses that are of a finer graamd a write signature for each of the several speculative versions
ularity than memory lines, then the bulk disambiguation occurs aupported by the processor. Supporting multiple speculative ver-
that granularity. For example, if signatures use word addresses, twions is useful for buffering the state of multiple threads or multiple
speculative threads that have updated different words of a line witheckpoints.
commit without causing a dependence violation (except if aliasing The BDM also has a set of functional units. They perform the
occurs). Word-level disambiguation improves performance in manyrimitive bulk operations of Table 1, the Signature Expansion of
TLS codes [6], but requires that the partially updated memory lineSection 3.3, and the bitmask of updated words of Section 4.4.



Processor

Bulk Disambiguation Module tion of sets of addresses, and its definition of a collection of basic

of primitive operations on the sets. We discuss each reason in turn.
N —
Versions .
W Signature R Signature 5.1. Compact Representation of Address Sets
Functional Units Cache and Bulk represents the set of addresses accessed speculatively very
Controller  [~4—= Cache/Coherence concisely. This simplifies the hardware implementation of several

] ] Controller operations. Table 2 lists some of the key simplifications in Bulk.
8(Wrun)  ORIB(Wiro)] We discuss each one in turn.

Netwark Send only a write signature at commit
Single-operation full address disambiguation
Inexpensive recording of speculatively-accessed addresses
Compact version representation without version IDs
Fine-grain (per word) disambiguation with no extra storage

The BDM includes two registers with as many bits as sets in|| Commit by clearing a signature
the cache. They contain cache set bitmasks resulting from applying Table 2. Key simplifications in Bulk.
the decode operatiod)to certain signatures. Specifically, one de-
codes the write signature of the thread that is currently running on A committing thread in Bulk only sends a short, fixed-sized mes-
the processord(W.-..,)). The other contains the logical-OR of the sage with its write signature (e.g., 2 Kbits) to all other threads. It
decoded versions of all the other write signatures in the processdoes not broadcast the list of individual addresses. This enables
They belong to speculative threads that have state in the cache butre efficient communication and perhaps simpler commit arbitra-
have been preempted from the CRKE(5(W,r.))). This bitmask tion. Perhaps more importantly, Bulk does not need to walk the
is updated at every context switch. cache tags to collect any addresses to broadcast, nor to buffer them

These bitmasks are used to identify which dirty lines in the cachRéfore sending them. These issues complicate the commit imple-
are speculative and to which thread they belong. This is necessaRgntation in conventional systems. _
because the cache has no notion of what lines or words are specula-Bulk disambiguates all the addresses of two speculative threads
tive — we keep the cachenmodifiedrelative to a non-speculative N 0N€ single operation. W_hlle false positives are possible, our ex-
system. For example, consider an external read request that reach@dments suggest that their frequency is tolerable. In conventional
the BDM and wants to access a cache set that has a bit set in {AgY Systems, disambiguation is typically lengthy and complicated,
5(Wyun). We know that any dirty line in that set is speculative ancfs each individual address is checked against the cache tags. Con-

belongs to the running thread. Consequently, the BDM nacks tiy§ntional eager systems disambiguate each write separately. -
request, preventing it from getting speculative data. If the request Bulk records the speculatively-read and written addresses in an

wanted to read a line that was clean in the cache, no harm is dofe@nd @V’ signature, avoiding the need to modify the tags of cache
since the memory will respond. lines with a Speculatlve_blt. Moreover, cpn3|der a Iong_—runnlng
. . . thread that reads many lines. Read-only lines can be evicted from
. In addition, thege pltmasks a.Is.o help the BDM Contro!Ier MalNghe cache in both Bulk and conventional systems, but the system
_tam the Set_ Restriction. Specifically, when a speculative threa{‘aust record their addresses for later disambiguation. Conventional
issues a write to the cache, the BDM Controller checks the Iocgi/stems require a special hardware structure that grows with the
0(Wrun) and OR(§(Wpre)). If both bitmasks have a zero in the yoqy length to record (and later disambiguate) all these evicted

entry corresponding to the requested set, the write can IoroceeOlatt‘j’dresses. Bulk simply uses tliesignature. Written lines that

the ca_u:hg. prever, before th? write is aIIow_ed tq update the cact}ﬁe evicted are handled in a special manner in both conventional
any dirty line in the corresponding cache set is written back to men%'ystems and Bulk (Section 6.2.2).

ory. The corresponding entry if{ W) is then set.

Figure 7. Overview of the Bulk Disambiguation Module
(BDM).

Bulk represents multi-version information very concisely. For
If, instead, the bitmask entries are (1,0), respectively, the writgach version or checkpoint, Bulk stores a read and a write signa-
can update the cache directly. Finally, if they are (0,1), a specig@lire. Another related Bulk structure is a cache set bitmask gener-
action is taken to preserve the Set Restriction. Depending on thged from thelV of all the preempted threads (Figure 7). In con-
implementation, this can be preempting the thread, squashing thst, conventional systems typically tag each cache line with a ver-
preempted thread that owns the dirty lines in the set, or merging th#on 1D, whose size depends on the number of versions supported.
two threads that want to own lines in the same set. Overall, witBetting, managing, comparing, and clearing many version IDs in-
this support, Bulk guarantees the Set Restriction. Thanks to thijbduces significant hardware complexity.
restriction and the way Bulk builds signatures, it is the case that, for Bulk can build signatures using fine-grain addresses (e.g., word

any two write signatureB/’; andW- in the processoiy; N W2 =  or byte) and therefore enable fine-grain address disambiguation

0. without any additional storage cost. In contrast, conventional
schemes that perform fine-grain disambiguation typically add per-

5. Simplicity of Bulk Disambiguation word read and write access bhits to each cache line. These bits add

significant complexity to a structure that is time-critical.
A key feature of Bulk is its conceptual and implementation sim-  Finally, Bulk commits a thread by clearing its read and write sig-
plicity. Its simplicity is due to two reasons: its compact representaratures. This is a very simple operation, and is not affected by the



From committing

number of versions in the cache. In contrast, conventional schemes

thread
either gang-clear a Speculative bit in the cache tags, or walk the ) W,
cache tags to identify the lines belonging to the committing thread. R ac
Neither approach is simple to implement, especially when there are @l
lines from many threads in the cache. 1
5.2. Basic Primitive Operations T ransaction

:

The second reason for Bulk’s simplicity is that is uses a set of 2
well-defined basic operations. They are those in Table 1, the Sig-
nature Expansion of Section 3.3, and the Updated Word Bitmask - o saction
operation of Section 4.4. These operations map high-level compu-
tations on sets directly into hardware.

H
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6. Implementation Issues transaction To oter threads
This section examines some implementation details relevant to Figure 8. Supporting nested transactions in Bulk.

signatures and the use of Bulk in TM and TLS. ) ) .
As shown in the figure, when the thread receivd®a from a

6.1. Signature Encoding committing transaction, it performs bulk address disambiguation in
order, starting fromR; and¥/, and finishing withR; andWs. If
Address aliasing in signatures is an important concern for Bulk \;iglation is detected in a section (e.g.3pn only that section and
because it may degrade performance. Therefore, we would like {9 subsequent ones are squashed and restarted.
choose a signature implementation that minimizes aliasing. Given |4 three pairs of signatures are kept until secBafinishes

our generic signature mechanism presented in Section 3.1, thefgcution. At that point the outer transaction attempts to commit.

are many variables that can be adjusted to control address aliasigge \rite signature that it broadcasts to all other threads is the union
including the total size of the signature, the number and size of thg Wi, Wa, andWi.

V; and C; bit-fields, and how the address bits are permuted. The
whole space is very large but the main trade-off is between signatuge2.2. Overflow and Context Switch
size and accuracy — the latter measured as the relative absence of .
In TM, two potentially costly events are the overflow of spec-

false positives. We evaluate this trade-off in Section 7.5. - . -
. . ulative lines from the cache and the preemption of an executing
Although signatures are small (e.g., 2 Kbits), we may want tQ lative thread i itch he f ional
further reduce the cost of sending them over the interconnecticic'tli)ecu ative t.rea In & context switch. In.t € former, conventllona
schemes typically send the overflowed line addresses (and in the

network. Specifically, since they potentially have many sequences ' dirty lines their data as well) to an overflow area in memory,

of zeros, we compress them with run-length encoding (RLE) t:/%/}‘nere the addresses still need to be checked for potential depen-

fore broadcasting. RLE is simple enough to be easily implement ences [2, 20]. In a context switch, many conventional schemes

:ngfrdgvngin'(rjnlsaI::I?'r:yngcrte'g::V;) st compressing signatures. WS, o 1he cached state of the preempted speculative thread to the
yz Impact | on 7.5. overflow area [2, 20].

6.2. Issues in Transactional Memory (TM) Bulk reduces.the complexity and the perfprmance overhead of
having to deal with overflows and context switches. The three rea-

Two important issues in TM are transaction nesting and the agons are shown in Table 3. In the following, we consider overflow
tions taken on cache overflow and context switch. We consider hagywd context switches in turn.
Bulk addresses them.

. ) Addresses of overflowed lines are not accessed
6.2.1. Transaction Nesting when disambiguating threads

Figure 8 shows a transaction nested inside another. The trans- || A processor efficiently determines if it needs to accgss
action begin and end statements divide the code into three sections, || the overflow area
labeledl, 2, and3. An intuitive model of execution for this code Supporting multiple? andW signatures in the
is that of closed nested transactions with partial rollback. In closed | BDM substantially minimizes overheads
nested transactions [19], an inner transaction does not become vis-
ible to the other threads until the outer transaction commits. With Table 3. Ways in which Bulk reduces the complexity and per-
partial rollback, we mean that, if a dependence violation is detectedformance overhead of overflows and context switches.
on an access in sectionwe only rollback execution to the begin-
ning of sectiori and re-execute from there on. In Bulk, when dirty lines from a speculative thread are evicted
Bulk can easily support this model. Recall from Section 4.5 thdtom the cache, they are moved to a per-thread overflow area in
a processor’'s BDM supports multiple versions, each one with a reademory. However, recall that address disambiguation in Bulk is
and a write signature. Consequently, Bulk creates a separate reaalusively performed using signatures. Therefore, unlike in con-
and write signature for each of the three code sections in the figureentional schemes, the overflowed addresses in memory are not ac-
We call themR; andW;, R> andWW>, andR3; andWs3 in the figure.  cessed when Bulk disambiguates threads. A thread with overflowed




lines that receives B¢ from a committing thread simply operates _More speculative

on its signatures and performs bulk invalidation of cached data only. . ) )

It only accesses its overflow area to deallocate it — if the disam- Thread i Thread i+1  Thread i+2

biguation found a dependence. W T
During a speculative thread’s normal execution, a thread may

request data that happens to be in its overflow area. Bulk provides X

an efficient mechanism for the processor to know whether it needs W

to access the overflow area. Specifically, when a thread overflows, T % Spawn

the BDM sets an Overflow bit (O) for it. When the thread next b Thread i+1

misses in the cache (say, on addressas the BDM intercepts the .

request (Figure 7), it checks the O bit. If it is set, the BDM tests if v oy L. WyloThreadi+t

a € W. Ifthe result is false, the request does not need to access the

overflow area, and can be sent to the network. . i
Finally, consider context switches. In Bulk, when a thread is B

preempted, it still keeps it&® and W signatures in the BDM. A Figure 9. Supporting Partial Overlap in TLS.

new pair of signatures is assigned to the newly scheduled thread

(Section 4.5). Consequently, as long as there are enfugihd i’ identified by its thread ID — useld/s,, for disambiguation, while

signatures in the processor's BDM for the running and preempt@’w other threads usé’. Finally, when a thread spawns it first child,

threads, disambiguation proceeds as efficiently as usual in the prégpasses along with the spawn command its curi&ngFigure 9).

ence of overflows and context switches. In the receiving processor, the spawn operation includes a bulk in-
When a processor finally runs out of signatures, fhandW  validation of the clean cached lines whose addresses &b in

signatures of one thread, sgyare moved to memory. In this case,  With this support, before the child thread starts in a processor,

the thread’s cached dirty lines are also moved to memory — singge cache is emptied of any addresses whose data has been modified

the cache would not know what thread is the owner of these dirtyy the parent. Consequently, on accessing such addresses, the child

lines. From here on, thB/c of committing threads and individual will miss in its cache and obtain the data from its parent’s. Then,

writes from non-speculative threads need to disambiguate againghen the parent commits, address disambiguation will not include

the R; andW; in memory. This operation is similar to the disam-addresses updated by the parent only before spawning the child.
biguation against overflowed addresses in memory that is supported

in conventional systems (e.g., [20]) — yet simpler, because si¢, Evaluation
natures are small and fixed-sized, while overflowed line addresses
need a variable amount of storage space. When space opens up ifn this section, we evaluate Bulk in the context of both TM and
the BDM, theR; andTV; signatures are reloaded, possibly togetheT LS. After presenting our evaluation setup in Section 7.1, we show
with some or all its dirty lines in the overflow area. that Bulk induces a very small performance degradation in Sec-
. . tion 7.2. We characterize the main aspects of the bulk operations
6.3. Issues in Thread-Level Speculation (TLS) in Section 7.3. We then present bandwidth issues in Section 7.4.
As far as Bulk is concerned, the key difference between TL§inally, we show the trade-offs of signature encoding in Section 7.5.
and TM is that, in TLS, speculative threads can read speculative
data generated by other threads. As a result, Bulk needs to be &1. Evaluation Setup
tended slightly. Specifically, when a thread is squashed, it also uses ) ) o )
its R signature to bulk-invalidate all the cache lines that it has read. For the TLS evaluation, we compile the applications using a
The reason is that they may contain incorrect data read from a p,féu_lly automatic profile-based TLS compilation infrastructure [16].
decessor speculative thread that is also being squashed. We run the binaries on an execution-driven simulator [21] with de-
We also note that threads in TLS often have fine-grain shal@iled processor core and memory system models, including all TLS
ing, especially between a parent thread and the child thread tfRReration overheads, such as thread spawn, thread squash, and ver-
it spawns. The child often reads its live-ins from the parent shortl§ioning support. We used the SPECint2000 applications running
after being spawned. If we keep Bulk as is, the child will often pdhe ref data set. We run all the SPECint2000 applications except
squashed when the parent commits. eon(C++ is not supported) argtcandperlbmk(our compiler can-
To enhance performance, we propose one improvement: i@t handle them).
to squash a thread if it reads data that its parent generated beforeFor the TM evaluation, we modified Jikes RVM [1] to ablegin
spawning it. We call this improvememartial Overlap For sim- andendtransaction annotations to Java programs. We convert lock-
plicity, we only support it for the first child of a given thread. based constructs into transactions using methods similar to [4]. We
Partial Overlap requires three extensions to Bulk. The first ongn our modified Jikes RVM on the Simics full-system simulator en-
is that, at the point where a thread spawns its first child, the hartianced to collect memory traces and transaction annotations. These
ware starts generating a shadow write signatiitg in parallel as traces were then analyzed in our TM simulator. Our TM model sup-
it builds up the usual write signatuf® (Figure 9). From the point ports execution of non-transactional code as in [2, 18, 20]. The TM
of the spawn on, both signatures are updated at every write. simulation includes a detailed memory model. As listed in Table 4,
Secondly, when a thread commits, it sends both its write sighe applications used were SPECjbb2000 and programs from the
natureW and its shadow on&V,;, (Figure 9). lts first child — Java Grande Forum (JGF) multithreaded benchmarks package.




Application [[ Suite [ Description | in the BulkNoOverlap bar. The geometric mean speedup of Bul-

.Cbrt ng gggtggﬁgnge”mmafk kNoOverlap is 17% lower than that of Bulk. The reason for this
’,3 IGE | LU ma)t/,ix factorization significant difference is that SPECint applications tend to have fine-
mc JGF | Monte-Carlo simulation grain sharing, especially between adjacent threads. As a related
moldyn JGF Molecular dynamics I ; :
series JGF | Fourier coefficient analysis p_0|r_1t, in these_experlments, La_zy also mpludes sypport fora sc_:heme
sjbb2k SPEC | SPECjbb 2000 (business logid similar to Partial Overlap but with exact information. We do this to
Table 4. Java applications used in the TM experiments. have a fair comparison with Bulk.
Table 5 presents the architectural parameters for the TLS and B e ey
TM architectures. For the TM experiments, the signatures are con@f:g @ILsLazy
figured to encode line addresses. For TLS, since the applicatioRs.e DI TLS-BulkNoOverlap

evaluated have fine-grain sharing, signatures are configured to e‘?ﬁ‘z‘:

code word addresses. In both the TLS and TM experiments, wg1.0]
compare Bulk to conventional systems that perform exact addre§s e |

disambiguation. Conventional systems canHsger, if disam- %0-4*
0.2
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biguation occurs as writes are performed,Lary if threads dis- oA Z %

ambiguate all their updates when they commit. Finally, our base- “by e, G S e P oy ot Ce o
line Bulk includes support for Partial Overlap in TLS (Section 6.3) ) ] 7
and for overflows and context switches in TM (Section 6.2.2). It Figure 10. Performance of Eager, Lazy, and Bulk in

does not include support for partial rollback of nested transactions TLS.

(Section 6.2.1).

Figure 11 compares the performance of Bulk, Lazy, and Eager

[ S——— LS < | in the context of TM. The performance of Bulk and Lazy is ap-
Fetch, issue, retire width | 4,3, 3 proximately the same. We expected to see similar performance
ROB, |-window size 126, 68 in Eager and Lazy, which is the case for all applications except
LME;’mSTin‘i“f%“Snﬁ"t';mes ‘218’34f SPECjbb2000. There are two reasons why SPECjbb2000 is faster
L1 cache: in Lazy than in Eager. First, there is a situation where Eager has
géev%s_socv line 162'(36"‘(;54 B forward progress problems. This is shown in Figure 12(a), where
RT to neighbor's L1 (min) B'Cyc?,;s two threads read and write the same location inside a transaction,
I ™ I and they keep squashing each other repesatediie second rea-
Processors 8 son involves a situation where a squash happens in Eager but notin
Llcache: Lazy, as shown in Figure 12(b).
size, assoc, line] 32KB, 4,64 B
I Signature Information (Both TLS and TM) I
- M Eager
Default signature: O Lazy
S14(2 Kbits long, see Table 8 for details) @ 1.6 7 Bulk ) g
Bit permutations used: (bit indices, LSB is 0) E 1.4 W Bulk-Partial ’
T™: [0-6, 9, 11, 17, 7-8, 10, 12, 13, 15-16, 18-20, 14] 5 L2 g
TLS: [0-9, 11-19, 21, 10, 20, 22] L g 7NV
el 1
. . . . 5 0.6 7 % J
Table 5. Architectural parameters used in the simulations. OC 8 04 é g g
. Q.
and RT stand for occupancy and round trip from the processor, 7] O-S % % /
respectively. In the permutations, the bit indices are from line % o v Mm% %/% s@r,és %be/rc% 4
addresses (26 bits) in TM and from word addresses (30 bits) in 7 S
TLS. The high-order bits not shown in the permutation stay in Figure 11. Performance of the different schemes in
their original position. ™.
7.2. Performance The Bulk-Partial bar in Figure 11 shows the performance of sup-

porting partial rollback in nested transactions (Section 6.2.1). The
Figure 10 shows the performance of Eager, Lazy, and Bulk iplot shows that the impact of partial rollback is minor. This is due
TLS compared to sequential execution. The results show that usiggthe relatively low frequency and depth of transaction nesting in
Bulk has little impact on performance — only a geometric meagur Java applications. In addition, we observed that nested trans-
slowdown of 5% over Eager. Most of the performance degradatiogetions frequently access common pieces of data, which makes it
happens when going from Eager to Lazy. This degradation comggely that if a conflict happens, it will involve multiple sections of

mainly from not restarting offending tasks as early as Eager doegnested transaction, decreasing the benefits of partial rollback.
The small difference between Lazy and Bulk is due to the inexact-

nessi of Slgnatures.. . 2To solve this problem in Eager, we detect this situation and choose to let
Figure 10 also includes the performance of Bulk without thene longer-running thread make progress and commit, while the other thread
support for Partial Overlap discussed in Section 6.3. This is showtalls.




Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Table 7 characterizes Bulk in the context of TM. Thansac-

A tion Propertiescolumns show the average read and write set sizes
A StA dA dA of the transactions, and the dependence set size of the squashed
SUAL - S9uagy, quash-{stA stA transactions. The set sizes are measured in line lines. As expected,
e restart ==~ commit read set sizes are always a few times larger than write set sizes.
- squast <514 WA commit commit On average, write sets hold 22 lines, while read sets hold 68 lines.
restai - . . . .
aal Enumerating the addresses in hardware would induce considerable
S . .
Eager Lazy (no squash) overhead. On average, the size of the dependence set is only about
. 2 lines.
(a) No forward progress in Eager. (b) Squash happens in Eager but not in Lazy.
. . Transaction Propertie§ False Positives|| Set Rest|| Overflow
Figure 12. Examples of code patterns from SPECjbb2000 Rd | Wr | Dep Sq | False Safe AcCCesses
where the performance of Eager suffers. Appl Set | Set| Set || (%) | Inv/Com || WB/Tr || Bulk/Lazy
Size | Size| Size (Avg) (Avg) (%)
(ORNG) )
i ati cb 73.6] 269] 1.4 [ 200] 06 15 6.2
7.3. Characterization of Bulk jort 67.1]221| 13 | 221| 02 05 43
. . lu 81.7|273| 13 | 128 07 0.8 5.6
Table 6 characterizes Bulk in TLS. The columns labeladk me 516/ 17.6] 1.9 9.8 0.1 26 33
Propertiesshow the average sizes in words of the read and writg moldyn || 70.2} 25.1} 13 | 10.7| 0.4 0.4 2.6
sets (i.e., footprints) of the tasks. They also show the average size®"es || 869|259 11 j13.7) 01 03 21
_ -€., T1oolp - 1hey 9€ SiE€iphok || 416] 12.2| 14 || 77| o1 02 0.8
in words of the dependence sets of the squashed tasks. The deavg 675|223 14 |[138] 03 0.9 356
pendence set is the result of the intersection between a committing Table 7. Characterization of Bulk in TM

task’s write set and the read and write sets of the squashed task.
Note that read sets tend to be significantly larger than write sets. The False Positivescolumns show information similar to the

Also, dependence sets are small. corresponding columns of Table 6. They show that on average 14%
of the squashes are caused by signature collisions due to aliasing,
Task Properties || False Positives|| Set Restriction and that the number of lines invalidated at commit due to aliasing is
Rd [ Wr TDep|l Sq [ False Safe [ Wr-Wr only 3 lines every 10 transaction commits.
Appl Set | Set | Set || (%) | Inv/Com || WB/Tsk | Cnf/1k .
Size | Size | Size (Avg) (Avg) | Tasks The Set Restrl_ctlor_colu_mn shows that,_ on average, less than
W) W) | W) (Avg) one non-speculative dirty line has to be written back to memory per
bZilflé 1300920 24?;92 ;-g 12-2 8% 121-95 8-; transaction due to the Set Restriction. Finally, @heerflowcolumn
cral . . . . . . . .
gap 124 | 134] 66 |l 04 05 37 00 compares thg number of accesses to the overflow area in Bulk and
gzip 143 | 48| 20| 14 0.0 15 0.0 Lazy. Specifically, the column shows the number of such accesses
mef || 1231071 10 11} 00 0.4 0.0 in Bulk as a fraction of those in Lazy. We see that, on average,
parser|| 296 | 7.1 | 23 || 2.1 0.1 2.2 5.5 0 .
twolf || 41.1 | 64 | 1.4 || 140| 03 6.3 0.2 Bulk accesses _the overflow area only 4% of the times that Lazy
vortex || 34.7 | 235| 3.6 || 10.4| 03 6.4 31.6 does. The savings come from the fact that Bulk does not access
vpr 431 | 87|11 56| 05 4.1 0.0 ; ; ;
AVG o503 2469 0z i3 1> the overflow area on address disambiguation and that Bulk can use

a membership operation to decide that an access to the overflow
area is not necessary (Section 6.2.2). We can see that Bulk is very

The columns labelefalse Positivesharacterize the impact of effective atavoiding accesses to the overflow area.
address aliasing in signatures. Toquastcolumn shOV\_/s_ the per- 7.4. Bandwidth Usage in TM
centage of task squashes that were caused by collisions between
signatures due to aliasing. TRalse invalidations per commil- We study the bandwidth usage in TM by looking at both the to-
umn shows the average number of cache lines that were invalidated bandwidth and the commit bandwidth usage. Figure 13 shows
due to aliasing during a bulk invalidation following a task committhe breakdown of the total bandwidth used. We compare Eager
The figure shows the total over all the caches for a single comm(iE), Lazy (L), and Bulk (B). The bandwidth is broken down into:
operation. Overall, these numbers are low and explain why falsevalidations (nv), coherence messages like downgrades and up-

Table 6. Characterization of Bulk in TLS.

positives do not affect performance much in Figure 10. grades Coh), accesses to the unbounded memory area that holds
The columns labele@et Restrictiorshow the impact of using overflowed datalB), writebacks YB), and line fills ill).
our Set Restriction (Section 4.3). Ti8afe WB per taskolumn The figure shows that, despite the inaccuracy introduced by ad-

shows how many non-speculative dirty lines had to be written baakress aliasing, the overall bandwidth usage in Bulk is along the lines
to memory per task due to the Set Restriction. These lines often ref that in the other schemes. On average, it is only slightly higher
main in the cache in clean state, since the victim line is another lirtban Lazy and is lower than Eager. Bulk's bandwidth is higher than
in the set. ThaVr-Wr conflicts per 1000 tasklumn shows how Lazy’s because it has more line fills. They are due to the extra
often a speculative task attempts to write a line in a set that alreadgiuashes and line invalidations caused by address aliasing.
contains a dirty line from another speculative task. In these cases, Most of theInv bandwidth usage in Lazy and Bulk is due to
the most speculative task of the two is squashed to keep the Set Ree commit operations (since individual invalidations from non-
striction. We see that this situation is very infrequent, happening apeculative threads are few). While it is hard to see in the figure,
average only 4 times every 1000 tasks. Bulk significantly reduces the commit bandwidth. The reason is
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Compressed Sizj Description

2 (Bits) (Avg, in bits) (See Caption)
Ft S1 512 254 7.7, 7,7
2 s2 512 282 8,7,6,5,5
w s3 512 193 5,5,6,7,8
e sS4 1024 290 8,8,8,8
g S5 1024 318 9,8,7,7
S S6 800 234 5,8,8,8
5 s7 800 266 8,5,8,8
& 0~"ELB ELB ELB ELB ELB ELB ELB ELB gg ggg ggi g’ g’ g’g
% luy o M %/% g %094. Ay S10 || 1344 334 9,9,8,6
7 s11 1824 356 9,10,8,5
) ) ) s12 1600 353 10,9,6
Figure 13. Bandwidth usage breakdown in TM. Underneath S13 1664 353 10,9, 7
the barsE, L andB refer to Eager, Lazy and Bulk, respectively. Si4 ) 2048 363 10, 10
s15 2048 353 10,9,9
S16 2336 396 10,10,7,5
) . ) . s17 3072 380 10, 10, 10
twofold: it uses compact signatures instead of an enumeration of s18 4096 438 11, 10, 10
addresses as commit packets, and signatures are more suitable for S19 4096 469 11,11
. . S20 4096 381 12
RLE compression than address enumerations due to frequent long So1 4112 297 11,11, 4
sequences of zeros. Figure 14 shows the commit bandwidth of Bulk S22 5120 497 11,11, 10
normalized to that of Lazy. We see that, on average, Bulk achieves S23 || 16448 1219 13,13, 6

0 L . -
a83% reduction in commit bandwidth. Table 8. Signatures tested. The Description column shows the

82 sizes of the bit chunks used in each of ®e’s...C,, bit-fields
gR20 of the (already permuted) address (Figure 2). These chunks are
[
’g; ig all consecutive and start from the least significant bit. The
SE s bit-fields are obtained by decoding the correspondihdit-
o 0 - ! .
z b Jory 2 ,)'C/)'O/q,ff’/égfééef”@ fields.
Figure 14. Commit bandwidth of Bulk normalized to the 2
commit bandwidth of Lazy. Sis
5%
53
For TLS, we obtain qualitatively similar conclusions. We do not z
show data due to space limitations. g
5
7.5. Signature Size vs Accuracy Trade-off S 82 S5 ¢ %5 S5 > % S0 S1952y %2555t %256 51> N9 52052 9225

Finally, we evaluate the accuracy of signatures to represent setsigure 15. Fraction of false positives in bulk address disam-
of addresses. We choose a few signature configurations to illustratebiguations known to have no dependences. Each bar corre-
the overall size vs accuracy trade-off. Table 8 lists the signaturessponds to one signature configuration, while the error segment
we tested. For each signature, the table shows the ID, the full andcorresponds to using different bit permutations in the address
average compressed size in bits, and the format. The signature irbefore generating the signature.
bold (S19 is the one we used in all previous experiments.

. To assess the accuracy of a signature, we run the TM appllc%-e upper tick corresponds to the worst permutation. Good permu-
tions using that signature. We sample every bulk address dlsa|in-. .
) . tions group together bits that vary more, and map them to a large
biguation event that we know should not detect a dependenceéal o ) . .
- ; bit-field. From the figure, we see that the permutation has a sig-
there were no aliasing. Then, we record whether a dependence was - ; - ) .
o . ) nificant impact. Many times, it is possible to obtain better accuracy
found (false positive) or not. Figure 15 shows the fraction of false . . .

o With a smaller signature and a better permutation.
positives that such samples produced.

In the figure, each bar corresponds to one signature configurg- Related Work
tion, where the signatures are generated without any initial bit per-
mutation on the original addresses. We see that the frequency of There is a large volume of previous work in TLS and TM. The
false positives can be high, but that it quickly decreases as the sigrst hardware support for disambiguation in TLS was the Address
nature size increases. Within a given signature size, different coresolution Buffer (ARB) [7], which provided a shared table for
figurations have different accuracies, especially for small sizes. tracking all speculative loads and stores. After that, multiple pro-

We then repeat the experiments with a variety of bit permutgposals have been made to move speculative data into each core’s
tions on the original addresses before generating the signaturespaisate cache or write buffer, and leverage the cache coherence pro-
shown in Figure 2. The resulting fraction of false positives observemcol for disambiguation. This includes the Speculative Version-
is shown in Figure 15 as error segments. The lower tick in an erramg Cache [10], the Hydra design [11], the design of Steffan and
segment corresponds to the best permutation that we tried, whMdowry [25], and the Memory Disambiguation Table [15] among



several others. Several designs have been proposed to implememinments. Special thanks goes to Wonsun Ahn, Karin Strauss, Paul
scalable conflict detection and version management for TLS [6, 24%ack and Brian Greskamp for their feedback on the paper.

Herlihy and Moss [13] proposed an early architecture for

TM. They used a small, fully-associative cache to buffer a|References

speculatively-referenced data and a snoopy coherence protocol. Ret
cently, there have been several designs for TM such as TCC [12],
UTM [2], VTM [20], and LogTM [18]. They use a variety of tech-
niques similar to TLS that hinge around leveraging the coherenc#
protocol [2, 20, 18] and adding small buffers to track accesses [2].

Bulk differs from all of this prior work by using a signature as a 2!
compact representation of a speculative thread’s access history, apgl
by using bulk operations on signatures to perform disambiguation
and speculative state management. We have argued that Bulk sig-
nificantly simplifies the several mechanisms needed to enforce thél
data dependences across speculative threads.

Bulk uses lazy conflict detection, like TCC [12] and some TLS [6]
designs [25]. However, unlike TCC, Bulk assumes that some code
will not execute in a transaction and, therefore, Bulk is compatibld?]
with a plain invalidation-based cache coherence protocol. One
the TLS designs in [25] communicated and disambiguated at the
end of a task’s execution, whereas Bulk allows for eager comMupg
nication between tasks even though disambiguation is performed
lazily. This enables higher performance.

Signatures are very similar to Bloom filters [3]. Bloom fil- [10]
ters are employed in VTM [20] to reduce accesses to its overflow
area. Specifically, VTM uses the Transaction Address Data Tabi&i]
(XADT) to log all speculative reads and writes. The XADT Filter
(XF) is a Bloom filter that eliminates some searches of the XADT12]
and is employed only for performance. Bulk, instead, uses signa-
tures as the sole record of memory references.

[13]
9. Conclusions

This paper presented the concept and design of Bulk. Bulk is[él4
novel approach to enforcing data dependences across threads i Gk
environment with multiple, cooperating speculative threads such as
TM and TLS. The cornerstone of Bulk is the use of signatures tﬂs
efficiently encode a thread’s access information, and signature op-
erations in hardware that efficiently process sets of addresses. Bul
operations are inexact yet correct. They provide substantial concep-
tual and implementation simplicity to key mechanisms. (18]

Compared to the state-of-the-art, some of the simplifications
provided by Bulk include sending only a write signature at a comi9]
mit, performing full-address disambiguation of threads in a sin-
gle operation, recording speculatively-accessed addresses inexpgé#-
sively with signatures, representing versions concisely without vef)
sion IDs, supporting fine-grain (per word) address disambiguation
with no extra storage, and committing by clearing a signature. >3

We evaluated Bulk in the context of TLS using SPECint2000
codes and TM using multithreaded Java workloads. We showgs
that, despite its simplicity, Bulk has a performance that is competi-
tive with more complex schemes. False positives have a negligibllze
impact on both performance and bandwidth consumption. FinaIIYZ,
we showed that signature configuration is a key design paramete.
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