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Abstract
While Sequential Consistency (SC) is the most intuitive memory

consistency model and the one most programmers likely assume,
current multiprocessors do not support it. Instead, they support more
relaxed models that deliver high performance. SC implementations
are considered either too slow or — when they can match the per-
formance of relaxed models — too difficult to implement.

In this paper, we propose Bulk Enforcement of SC (BulkSC), a
novel way of providing SC that is simple to implement and offers
performance comparable to Release Consistency (RC). The idea is
to dynamically group sets of consecutive instructions into chunks
that appear to execute atomically and in isolation. The hardware
enforces SC at the coarse grain of chunks which, to the program,
appears as providing SC at the individual memory access level.
BulkSC keeps the implementation simple by largely decoupling
memory consistency enforcement from processor structures. More-
over, it delivers high performance by enabling full memory access
reordering and overlapping within chunks and across chunks. We
describe a complete system architecture that supports BulkSC and
show that it delivers performance comparable to RC.

Categories and Subject Descriptors: C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures—MIMD processors;
D.1.3 [Programming Techniques]: Concurrent Programming—par-
allel programming
General Terms: Design, Performance
Keywords: Memory Consistency Models, Chip Multiprocessors,
Programmability, Bulk, Sequential Consistency

1. Introduction
With chip multiprocessors now becoming ubiquitous, there is

growing expectation that parallel programming will become popu-
lar. Unfortunately, the vast majority of current application program-
mers find parallel programming too difficult. In particular, one of
the trickiest aspects of parallel programming is understanding the ef-
fects of the memory consistency model supported by the machine on
program behavior. The memory consistency model specifies what
orderings of loads and stores may occur when several processes are
accessing a common set of shared-memory locations [1].
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It is widely accepted that the most intuitive memory consistency
model, and the one that most programmers assume is Sequential
Consistency (SC) [21]. SC requires that all memory operations of
all processes appear to execute one at a time, and that the operations
of a single process appear to execute in the order described by that
process’s program. Programmers prefer this model because it of-
fers the same relatively simple memory interface as a multitasking
uniprocessor [18].

Despite this advantage of SC, manufacturers such as Intel, IBM,
AMD, Sun and others have chosen to support more relaxed mem-
ory consistency models [1]. Such models have been largely de-
fined and used to facilitate implementation optimizations that en-
able memory access buffering, overlapping, and reordering. It is felt
that a straightforward implementation of the stricter requirements
imposed by SC on the outstanding accesses of a processor impairs
performance too much. Moreover, it is believed that the hardware
extensions that are required for a processor to provide the illusion
of SC at a performance competitive with relaxed models are too ex-
pensive.

To ensure that the upcoming multiprocessor hardware is attrac-
tive to a broad community of programmers, it is urgent to find novel
implementations of SC that both are simple to realize and deliver
performance comparable to relaxed models. In this paper, we pro-
pose one such novel implementation.

We call our proposal Bulk Enforcement of SC or BulkSC. The
key idea is to dynamically group sets of consecutive instructions into
chunks that appear to execute atomically and in isolation. Then, the
hardware enforces SC at the coarse grain of chunks rather than at the
conventional, fine grain of individual memory accesses. Enforcing
SC at chunk granularity can be realized with simple hardware and
delivers high performance. Moreover, to the program, it appears as
providing SC at the memory access level.

BulkSC keeps hardware simple mainly by leveraging two sets of
mechanisms: those of Bulk operations [8] and those of checkpointed
processors (e.g., [3, 7, 10, 19, 23, 24, 29]). Together, they largely de-
couple memory consistency enforcement from processor structures.
BulkSC delivers high performance by allowing full memory access
reordering and overlapping within chunks and across chunks.

In addition to presenting the idea and main implementation as-
pects of BulkSC, we describe a complete system architecture that
supports it with a distributed directory and a generic network. Our
results show that BulkSC delivers performance comparable to Re-
lease Consistency (RC) [13]. Moreover, it only increases the net-
work bandwidth requirements by 5-13% on average over RC, mostly
due to signature transfers and squashes.

This paper is organized as follows. Section 2 gives a background;
Section 3 presents Bulk Enforcement of SC; Sections 4, 5, and 6
describe the complete architecture; Section 7 evaluates it; and Sec-
tion 8 discusses related work.



2. Background

2.1. Sequential Consistency

As defined by Lamport [21], a multiprocessor supports SC if the
result of any execution is the same as if the memory operations of
all the processors were executed in some sequential order, and those
of each individual processor appear in this sequence in the order
specified by its program. This definition comprises two ordering
requirements:
Req1. Per-processor program order: the memory operations from
individual processors maintain program order.
Req2. Single sequential order: the memory operations from all pro-
cessors maintain a single sequential order.

SC provides the simple view of the system shown in Figure 1.
Each processor issues memory operations in program order and the
switch connects an arbitrary processor to the memory at every step,
providing the single sequential order.

P1 P2 P3 PN

Memory

Figure 1. Programmer’s model of SC.

A straightforward implementation of SC involves satisfying the
following requirements [1]: (i) a processor must ensure that its pre-
vious memory operation is complete before proceeding with its next
one in program order, (ii) writes to the same location need to be
made visible in the same order to all processors, and (iii) the value
of a write cannot be returned by a read until the write becomes vis-
ible to all processors — for example, when all invalidations or up-
dates for the write are acknowledged. Since requirement (i), in par-
ticular, limits performance significantly, several optimizations have
been proposed to enable memory accesses to overlap and reorder
while keeping the illusion of satisfying these requirements.

Gharachorloo et al. [12] proposed two techniques. The first one
is to automatically prefetch ownership for writes that are delayed
due to requirement (i). This improves performance because when
the write can be issued, it will find the data in the cache — unless
the location is invalidated by another thread in between. The second
technique is to speculatively issue reads that are delayed due to re-
quirement (i) — and roll back and reissue the read (and subsequent
operations) if the line read gets invalidated before the read could
have been originally issued. This technique requires an associative
load buffer that stores the speculatively-read addresses. Incoming
coherence requests and local cache displacements must snoop this
buffer, and flag an SC violation if their address matches one in the
buffer. The MIPS R10000 processor supported SC and included this
technique [31]. Later, Cain et al. [6] proposed an alternate imple-
mentation of this technique based on re-executing loads in program
order prior to retirement.

Ranganathan et al. [27] proposed Speculative Retirement, where
loads and subsequent memory operations are allowed to specula-
tively retire while there is an outstanding store, although require-
ment (i) would force them to stall. The scheme needs a history buffer
that stores information about the speculatively retired instructions.
The per-entry information includes the access address, the PC, a reg-
ister, and a register mapping. Stores are not allowed to get reordered

with respect to each other. As in the previous scheme, the buffer is
snooped on incoming coherence actions and cache displacements,
and a hit is a consistency violation that triggers an undo.

Gniady et al. [15] proposed SC++, where both loads and stores
can be overlapped and reordered. The ROB is extended with a simi-
lar history buffer called Speculative History Queue (SHiQ). It main-
tains the speculative state of outstanding accesses that, according to
requirement (i), should not have been issued. To reduce the cost of
checking at incoming coherence actions and cache displacements,
the scheme is enhanced with an associative table containing the dif-
ferent lines accessed by speculative loads and stores in the SHiQ.
Since the SHiQ can be very large to tolerate long latencies, in [14],
they propose SC++lite, a version of SC++ that places the SHiQ in
the memory hierarchy.

While these schemes progressively improve performance —
SC++ is nearly as fast as RC — they also increase hardware com-
plexity substantially because they require (i) associative lookups of
sizable structures and/or (ii) tight coupling with key processor struc-
tures such as the load-store queue, ROB, register files, and map ta-
bles.

2.2. Bulk

Bulk [8] is a set of hardware mechanisms that simplify the sup-
port of common operations in an environment with multiple specu-
lative tasks such as Transactional Memory (TM) and Thread-Level
Speculation (TLS). A hardware module called the Bulk Disam-
biguation Module (BDM) dynamically summarizes into Read (R)
and Write (W) signatures the addresses that a task reads and writes,
respectively. Signatures are ≈2 Kbit long and are generated by ac-
cumulating addresses using a Bloom filter-based [4] hashing func-
tion (Figure 2(a)). Therefore, they are a superset encoding of the
addresses. When they are communicated, they are compressed to
≈350 bits.

The BDM also includes units that perform the basic signature
operations of Figure 2(b) in hardware. For example, intersection and
union of two signatures perform bit-wise AND and OR operations.
The combination of the decoding (δ) and membership (∈) operations
provides the signature expansion operation. This operation finds the
set of lines in a cache that belong to a signature without traversing
the cache. It is used to perform bulk invalidation of the relevant lines
from a cache.
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Figure 2. Signature encoding (a) and primitive operations (b).

Bulk has been proposed for environments with speculative tasks
such as TM or TLS that perform conflict detection between tasks
only when a task tries to commit [8]. Speculatively-written lines are
kept in-place in the cache and cannot be written back before com-
mit. Speculatively-read lines can be displaced at any time because
the R signature keeps a record of the lines read. We use this same
environment in this paper.



In this environment, signature operations are simple building
blocks for several higher-level operations. As an example, consider
the commit of task C. The BDM in the task’s processor sends its
WC to other processors. In each processor, the BDM performs bulk
disambiguation to determine if its local task L collides with C, as
follows: ( WC ∩ RL) ∪ (WC ∩ WL). If this expression does not
resolve to empty, L should be squashed. In this case, the BDM per-
forms bulk invalidation of the local cache using WL, to invalidate all
lines speculatively written by L. Finally, irrespective of whether L is
squashed, the BDM performs bulk invalidation of the local cache
using WC , to invalidate all lines made stale by C’s commit. In the
whole process, the BDM communicates with the cache controller,
and the cache is completely unaware of whether it contains specula-
tive data; its data and tag arrays are unmodified.

3. Bulk Enforcement of Sequential Consistency

Our goal is to support the concept of SC expressed in Figure 1
with an implementation that is simple and enables high performance.
We claim that this is easier if, rather than conceptually turning the
switch in the figure at individual memory access boundaries, we do
it only at the boundaries of groups of accesses called Chunks. Next,
we define an environment with chunks and outline a chunk-based
implementation of SC.

3.1. An Environment with Chunks

Consider an environment where processors execute sets of con-
secutive dynamic instructions (called Chunks) as a unit, in a way
that each chunk appears to execute atomically and in isolation. To
ensure this perfect encapsulation, we enforce two rules:

Rule1. Updates from a chunk are not visible to other chunks until
the chunk completes and commits.

Rule2. Loads from a chunk have to return the same value as if the
chunk was executed at its commit point. Otherwise, the chunk would
have “observed” a changing global memory state while executing.

In this environment, where a chunk appears to the system and is
affected by the system as a single memory access, we will support
SC if the following “chunk requirements” — which are taken from
Section 2.1 using chunks instead of memory accesses — hold:

CReq1. Per-processor program order: Chunks from individual pro-
cessors maintain program order.

CReq2. Single sequential order: Chunks from all processors main-
tain a single sequential order.

In this environment, some global interleavings of memory ac-
cesses from different processors are not possible (Figure 3). How-
ever, all the resulting possible executions are sequentially consistent
at the individual memory access level.
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Figure 3. Fine (a) and coarse-grain (b) access interleaving.

3.2. Implementing SC with Chunks

A trivial implementation that satisfies these two SC requirements
involves having an arbiter module in the machine that commands
processors to execute for short periods, but only one processor at a
time. During the period a processor runs, it executes a chunk with
full instruction reordering and overlapping. In reality, of course,
we want all processors to execute chunks concurrently. Next, we
describe a possible implementation, starting with a naive design and
then improving it.

3.2.1. Naive Design

We divide our design into two parts, namely the aspects neces-
sary to enforce the two rules of Section 3.1, and those necessary to
enforce the two chunk requirements of SC from Section 3.1.
Enforcing the Rules for Chunk Execution. To enforce Rule1, we
use a cache hierarchy where a processor executes a chunk specula-
tively as in TLS or TM, buffering all its updates in its cache. These
buffered speculative updates can neither be seen by loads from other
chunks nor be displaced to memory. When the chunk commits, these
speculative updates are made visible to the global memory system.

To enforce Rule2, when a chunk that is executing is notified that
a location that it has accessed has been modified by a committing
chunk, we squash the first chunk.

To see how violating Rule2 breaks the chunk abstraction, con-
sider Figure 4(a). In the figure, C1 in processor P1 includes LD A
followed by LD B, while C2 in P2 has ST A followed by ST B. Sup-
pose P1 reorders the loads, loading B before C2 commits. By Rule1,
C1 gets committed data, namely the value before ST B. If C2 then
commits — and therefore makes its stores visible — and later C1
loads A, then C1 would read the (committed) value of A generated
by C2. We would have broken the chunk abstraction.

(b)(a)
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Figure 4. Examples of access reordering.

We efficiently enforce Rule2 with Bulk Disambiguation [8].
When a chunk commits, it broadcasts its write signature (Wcommit),
which includes the addresses that it has updated. Any chunk C1 that
is executing intersects Wcommit with its own R and W signatures1.
If the intersection is not empty (there is a collision), C1 is squashed
and re-executed.
Enforcing the Chunk Requirements of SC. Given two consecu-
tive chunks Cpred and Csucc from an individual processor, to en-
force CReq1 (per-processor program order requirement), we need

1Given that a store updates only part of a cache line, Wcommit is inter-
sected with W to ensure that partially-updated cache lines are merged cor-
rectly [8].



to support two operations. The first one is to commit Cpred and
Csucc in order. Note that this does not preclude the processor from
overlapping the execution of Cpred and Csucc. Such overlapped ex-
ecution improves performance, and can be managed by separately
disambiguating the two chunks with per-chunk R and W signatures.
However, if Cpred needs to be squashed, then we also squash Csucc.

The second operation is to update the R signature of Csucc cor-
rectly and in a timely manner, when there is data forwarding from a
write in Cpred to a read in Csucc. In particular, the timing aspect of
this operation is challenging, since the update to the R signature of
Csucc may take a few cycles and occur after the data is consumed.
This opens a window of vulnerability where a data collision between
an external, committing chunk and Csucc could be missed: between
the time a load in Csucc consumes the data and the time the R signa-
ture of Csucc is updated. Note that if Cpred has not yet committed,
a data collision cannot be missed: the W signature of Cpred will flag
the collision and both Cpred and Csucc will be squashed. However,
if Cpred has committed and cleared its W signature, we can only rely
on the R signature of Csucc to flag the collision. Consequently, the
implementation must make sure that, by the time Cpred commits, its
forwards to Csucc have been recorded in the R signature of Csucc.

CReq2 (single sequential order requirement) can be conserva-
tively enforced with the combination of two operations: (i) total
order of chunk commits and (ii) atomic chunk commit. To support
the first one, we rely on the arbiter. Before a processor can com-
mit a chunk, it asks permission to the arbiter. The arbiter ensures
that chunks commit one at a time, without overlap. If no chunk is
currently committing, the arbiter grants permission to the requester.
To support atomic chunk commit, we disable access to all the mem-
ory locations that have been modified by the chunk, while the chunk
is committing. No reads or writes from any processor to these lo-
cations in memory are allowed. When the committing chunk has
made all its updates visible (e.g., by invalidating all the correspond-
ing lines from all other caches), access to all these memory locations
is re-enabled in one shot.

3.2.2. Advanced Design

To enforce CReq2, the naive design places two unnecessary con-
straints that limit parallelism: (i) chunk commits are completely se-
rialized and (ii) access to the memory locations written by a commit-
ting chunk is disabled for the duration of the whole commit process.
We can eliminate these constraints and still enforce CReq2 with a
simple solution: when a processor sends to the arbiter a permission-
to-commit request for a chunk, it includes the chunk’s R and W sig-
natures.

To relax the first constraint, we examine the sufficient conditions
for an implementation of SC at the memory access level. According
to [1], the single sequential order requirement (Req2 in Section 2.1)
requires only that (i) writes to the same location be made visible
to all processors in the same order (write serialization), and (ii)
the value of a write not be returned by a read until the write be-
comes visible to all processors. Therefore, Req2 puts constraints on
the accesses to a single updated location. In a chunk environment,
these constraints apply to all the locations updated by the commit-
ting chunk, namely those in its W signature. Consequently, it is safe
to overlap the commits of two chunks with non-overlapping W sig-
natures — unless we also want to relax the second constraint above
(i.e., disabling access to the memory locations written by the com-

mitting chunk, for the duration of the commit), which we consider
next.

To relax this second constraint, we proceed as follows. As a
chunk commits, we re-enable access to individual lines gradually, as
soon as they have been made visible to all other processors. Since
these lines are now part of the committed state, they can be safely
observed. Relaxing this constraint enhances parallelism, since it
allows a currently-running chunk to read data from a currently-
committing one sooner. Moreover, in a distributed-directory ma-
chine, it eliminates the need for an extra messaging step between
the directories to synchronize the global end of commit.

However, there is one corner case that we must avoid because
it causes two chunks to commit out of order and, if a third one ob-
serves it, we broke CReq2. This case occurs if chunk C1 is com-
mitting, chunk C2 reads a line committed by C1, and then C2 starts
committing as well and finishes before C1. One example is shown in
Figure 4(b). In the figure, C1 wrote A and B and is now committing.
However, A and B are in different memory modules, and while B is
quickly committed and access to it re-enabled, the commit signal has
not yet reached A’s module (and so access to A is not disabled yet).
C2 reads the committed value of B, stores C and commits, complet-
ing before C1. This out-of-order commit is observed by C3, which
reads the new C and the old A and commits — before receiving the
incoming W signature of C1. We have violated SC.

A simple solution that guarantees avoiding this and similar viola-
tions is for the arbiter to deny a commit request from a chunk whose
R signature overlaps with the W signature of any of the currently-
committing chunks.

To summarize, in our design, the arbiter keeps the W signatures
of all the currently-committing chunks. An incoming commit re-
quest includes a R and a W signature. The arbiter grants permission
only if all its own W signatures have an empty intersection with the
incoming R and W signature pair. This approach enables high par-
allelism because (i) multiple chunks can commit concurrently and
(ii) a commit operation re-enables access to different memory loca-
tions as soon as possible to allow incoming reads to proceed. The
latter is especially effective across directory modules in a distributed
machine.

3.2.3. Overall BulkSC System

We propose to support bulk enforcement of SC as described
with an architecture called BulkSC. BulkSC leverages a cache hierar-
chy with support for Bulk operations and a processor with efficient
checkpointing. The memory subsystem is extended with an arbiter
module. For generality, we focus on a system with a distributed di-
rectory protocol and a generic network. Figure 5 shows an overview
of the architecture.

Generic Interconnection Network

Directory

DBDM

Directory

DBDM

Arbiter
Directory

DirBDM

BDML1 Data Cache

Checkpointing

Core

BDM L1 Data Cache

Checkpointing

Core

Figure 5. Overview of the BulkSC architecture.

All processors repeatedly (and only) execute chunks, separated
by checkpoints. As a processor executes a chunk speculatively, it
buffers the updates in the cache and generates a R and a W signa-
ture in the BDM. When chunk i completes, the processor sends a



request to commit to the arbiter with signatures Ri and Wi. The ar-
biter intersects Ri and Wi with the W signatures of all the currently-
committing chunks. If all intersections are empty, Wi is saved in the
arbiter and also forwarded to all interested directories for commit.
Individual directories use a DirBDM module to perform signature
expansion [8] on Wi to update their sharing state, and forward Wi

to interested caches. The BDM in each cache uses Wi to perform
bulk disambiguation and potentially squash local chunks. Memory
accesses within a chunk are fully overlapped and reordered, and an
individual processor can overlap the execution of multiple chunks.

3.3. Interaction with Explicit Synchronization

A machine with BulkSC runs code with explicit synchronization
operations correctly. Such operations are executed inside chunks.
While they have the usual semantics, they neither induce any fences
nor constrain access reordering within the chunk in any way.

Figure 6 shows some examples with lock acquire and release. In
Figure 6(a), acquire and release end up in the same chunk. Mul-
tiple processors may execute the critical section concurrently, each
believing that it owns the lock. The first one to commit the chunk
squashes the others. The longer the chunk is relative to the crit-
ical section, the higher the potential for hurting parallelism is —
although correctness is not affected. Figure 6(b) shows a chunk that
includes two critical sections. Again, this case may restrict paral-
lelism but not affect correctness. Finally, Figure 6(c) shows a chunk
that only contains the acquire. Multiple processors may enter the
critical section believing they own the lock. However, the first one
to commit squashes the others which, on retry, find the critical sec-
tion busy.

ChunkAcquire A

Release A

(a)

Acquire A

Release A

Acquire B

Release B

(b)

Acquire A

Release A

(c)

Chunk
Boundary

Figure 6. Interaction of BulkSC with explicit synchronization.

Similar examples can be constructed with other primitives. A
worst case occurs when all processors but one are waiting on a syn-
chronization event — e.g., when they are waiting on the processor
that holds a lock, the processor that arrives last to a barrier, or the
one that will set a flag. In this case, BulkSC guarantees that the key
processor makes forward progress. To see why, note that the waiting
processors are spinning on a variable. Committing a chunk that just
reads a variable cannot squash another chunk. However, one could
envision a scenario where the spin loop includes a write to variable
v, and v (or another variable in the same memory line) is read by the
key processor. In this case, the latter could be repeatedly squashed.

This problem is avoided by dynamically detecting when a chunk
is being repeatedly squashed and then taking a measure to prevent
future squashing. BulkSC includes two such measures: one for high
performance that works in the common case, and one that is slow but
guarantees progress. The first one involves exponentially decreasing
the size of the chunk after each squash, thereby significantly increas-
ing the chances that the chunk will commit. However, even reduc-
ing a chunk’s size down to a single write does not guarantee forward
progress. The second measure involves pre-arbitrating. Specifically,

the processor first asks the arbiter permission to execute; once per-
mission is granted, the processor executes while the arbiter rejects
commit requests from other processors. After the arbiter receives
the commit request from the first processor, the system returns to
normal operation.

Finally, while chunks and transactions share some similarities,
chunks are not programming constructs like transactions. Indeed,
while transactions have static boundaries in the code, chunks are
dynamically built by the hardware from the dynamic instruction
stream. Therefore, they do not suffer the livelock problems pointed
out by Blundell et al. [5].

4. BulkSC Architecture

We consider the three components of the BulkSC architecture:
support in the processor and cache (Section 4.1), the arbiter module
(Section 4.2), and directory modifications (Section 4.3).

4.1. Processor and Cache Architecture

4.1.1. Chunk Execution

Processors dynamically break the instruction stream into chunks,
creating a checkpoint at the beginning of each chunk. As indicated
before, within-chunk execution proceeds with all the memory access
reordering and overlapping possible in uniprocessor code. Explicit
synchronization instructions do not insert any fences or constrain
access reordering in any way. In addition, a processor can have mul-
tiple chunks in progress, which can overlap their memory accesses.
As chunks from other processors commit, they disambiguate their
accesses against local chunks, which may lead to the squash and
re-execution of a local chunk. Finally, when a chunk completes, it
makes all its state visible with a commit.

This mode of execution is efficiently underpinned by the mecha-
nisms of Bulk [8] and of checkpointed processors [3, 7, 10, 19, 20,
23, 24, 29]. Bulk enables the inexpensive recording of the addresses
accessed by a chunk in a R and W signature in the BDM. Loads up-
date the R signature when they bring data into the cache, while stores
update the cache and the W signature when they reach the ROB head
— even if there are other, in-progress stores. Forwarded loads also
update the R signature. With such signatures, chunk commit in-
volves sending the chunk’s R and W signatures to the arbiter and, on
positive reply, clearing them. Cross-chunk disambiguation involves
intersecting the incoming W signature of a committing chunk against
the local R and W signatures — and squashing and re-executing the
chunk if the intersection is not empty. Chunk rollback leverages
the mechanisms of checkpointed processors: a register checkpoint
is restored and all the speculative state generated by the chunk is
efficiently discarded from the cache.

With this design, there is no need to snoop the load-store queue
to enforce consistency, or to have a history buffer as in [15]. An SC
violation is detected when a bulk disambiguation operation detects
a non-empty intersection between two signatures.

Moreover, there is no need to watch for cache displacements to
enforce consistency. Clean lines can be displaced from the cache,
since the R signature records them, while the BDM prevents the
displacement of speculatively written lines until commit [8]. Thanks
to the BDM, the cache tag and data array are unmodified; they do
not know if a given line is speculative or what chunk it belongs to.



4.1.2. Chunk Duration and Multiple-Chunk Support

The processor uses instruction count to decide when to start a
new chunk. While chunks should be large enough to amortize the
commit cost, very large chunks could suffer more conflicts. In prac-
tice, performance is fairly insensitive to chunk size, and we use
chunks of ≈1,000 instructions. However, if the processor supports
checkpoint-based optimizations, such as resource recycling [3, 23]
or memory latency tolerance [7, 20, 29], it would make sense to use
their checkpoint-triggering events as chunk boundaries. Finally, a
chunk also finishes when its data is about to overflow a cache set.

A processor can have multiple chunks in progress. For this,
it leverages Bulk’s support for multiple pairs of signatures and a
checkpointed processor’s ability to have multiple outstanding check-
points. When the processor decides that the next instruction to re-
name starts a new chunk, it creates a new checkpoint, allocates a
new pair of R and W signatures in the BDM, and increments a set
of bits called Chunk ID. The latter are issued by the processor along
with every memory address to the BDM. They identify the signature
to update.

Instructions from multiple local chunks can execute concurrently
and their memory accesses can be overlapped and reordered, since
they update different signatures. An incoming W signature performs
disambiguation against all the local signature pairs and, if a chunk
needs to be squashed, all its successors are also squashed.

Before a chunk can start the commit process, it ensures that all
its forwards to local successor chunks have updated the successors’s
R signatures. As indicated in Section 3.2.1, this is required to close a
window of vulnerability due to the lag in updating signatures. In our
design, on any load forwarding, we log an entry in a buffer until the
corresponding R signature is updated. Moreover, a completed chunk
cannot initiate its commit arbitration until it finds the buffer empty.
While a chunk arbitrates for commit or commits, its local successor
chunks can continue execution. Local chunks must request and ob-
tain permission to commit in strict sequential order. After that, their
commits can overlap.

4.1.3. I/O

I/O and other uncached operations cannot be executed specula-
tively or generally overlapped with other memory accesses. When
one such instruction is renamed, the processor stalls until the current
chunk completes its commit — checking this event may require in-
specting the arbiter. Then, the operation is fully performed. Finally,
a new chunk is started. To support these steps, we reuse the relevant
mechanisms that exist to deal with I/O in checkpointed processors.

4.1.4. Summary: Simplicity and Performance

We claim that BulkSC’s SC implementation is simple because
it largely decouples memory consistency enforcement from proces-
sor structures. Specifically, there is no need to perform associative
lookups of sizable structures in the processor, or to interact in a
tightly-coupled manner with key structures such as the load-store
queue, ROB, register file, or map table.

This is accomplished by leveraging Bulk and checkpointed pro-
cessors. With Bulk, detection of SC violations is performed with
simple signature operations outside the processor core. Addition-
ally, caches are oblivious of what data is speculative (their tag and
data arrays are unmodified), and do not need to watch for dis-
placements to enforce consistency. Checkpointing provides a non-
intrusive way to recover from consistency-violating chunks.

In our opinion, this decoupling enables designers to conceive
both simple and aggressive (e.g., CFP [29], CAVA/Clear [7, 20],
CPR [3] or Kilo-instruction [10]) processors with much less con-
cern for memory consistency issues.

BulkSC delivers high performance by allowing any reordering
and overlapping of memory accesses within a chunk. Explicit syn-
chronization instructions induce no fence or reordering constraint.
Moreover, a processor does not stall on chunk transitions, and it can
overlap and reorder memory operations from different chunks. Fi-
nally, arbitration for chunk commit is quick. It is not a bottleneck
because it only requires quick signature intersections in the arbiter.
In the meantime, the processor continues executing.

4.2. Arbiter Module

4.2.1. Baseline Design

The arbiter is a simple state machine whose role is to enforce the
minimum serialization requirements of chunk commit. The arbiter
stores the W signatures of all the currently-committing chunks. It re-
ceives permission-to-commit requests from processors that include
the R and W signatures of a chunk. The arbiter takes each of the
W signatures in its list and intersects them with the incoming R and
W signatures. If any intersection is not empty, permission is denied;
otherwise, it is granted, and the incoming W signature is added to the
list. Since this process is very fast, the arbiter is not a bottleneck in
a modest-sized machine. A processor whose request is denied will
later retry.

Figure 7(a) shows the complete commit process. Processor A
sends a permission-to-commit message to the arbiter, together with
R and W signatures (1). Based on the process just described, the
arbiter decides if commit is allowed. It then sends the outcome to
the processor (2) and, if the outcome was positive, it forwards the W
signature to the relevant directories (2). Each directory processes W
(Section 4.3) and forwards it to the relevant processors (3), collects
operation-completion acknowledgements (4) and sends a comple-
tion message to the arbiter (5). When the arbiter receives all the
acknowledgements, it removes the W signature from its list.

(a) (b)

DirDirDirArbiter

(RA, WA)
(WA)

(WA)
done

done

Ok/nOk2
1 4

5

3

Processor
A

2

Processor
B

Processor
B

Processor
B

(RA, WA)

Ok/nOk

(WA)
done

2
3

Processor
A

Processor
B

Processor
B

Processor
B

Arbiter + Dir

2

1

Figure 7. Commit process with separate (a) and combined (b)
arbiter and directory.

In a small machine like a few-core chip multiprocessor, there
may be a single directory. In this case, the arbiter can be combined
with it. The resulting commit transaction is shown in Figure 7(b).

4.2.2. RSig Commit Bandwidth Optimization

The list of W signatures in the arbiter of a modest-sized machine
is frequently empty. This is because the commit process is fast and
— as we will see in Section 5 — chunks that only write processor-
private data have an empty W signature.



When the arbiter’s W signature list is empty, the arbiter has no
use for the R signature included in a permission-to-commit request.
We can save network bandwidth if we do not include the R signature
in the message. Consequently, we improve the commit design by
always sending only the W signature in the permission-to-commit
request. In the frequent case when the arbiter’s list is empty, the
arbiter grants permission immediately; otherwise, it requests the R
signature from the processor and proceeds as before. We call this
optimization RSig and include it in the baseline BulkSC system.

4.2.3. Distributed Arbiter

In large machines, the arbiter may be a bottleneck. To avoid this
case, we distribute the arbiter into multiple modules, each managing
a range of addresses. An arbiter now only receives commit requests
from chunks that have accessed its address range (plus potentially
other ranges as well). To commit a chunk that only accessed a sin-
gle address range, a processor only needs to communicate with one
arbiter. For chunks that have accessed multiple ranges, multiple ar-
biters need to be involved. In this case, each arbiter will make a
decision based on the partial information that it has — the W signa-
tures of the committing chunks that have written its address range.
We then need an extra arbiter module that coordinates the whole
transaction. We call this module Global Arbiter or G-arbiter.

Figure 8 shows the two possible types of commit transactions, in
a machine where we have distributed the arbiter with the distributed
directory. Figure 8(a) shows the common case of a commit that
involves a single arbiter. The processor knows from the signatures
which arbiter to contact. Figure 8(b) shows the case when multiple
arbiters are involved. In this case, the processor sends the signatures
to the G-arbiter (1), which forwards them to the relevant arbiters
(2). The arbiters check their W list and send their responses to the
G-arbiter (3), which combines them and informs all parties (4). The
transaction then proceeds as usual.
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Figure 8. Distributed arbiter with a commit that involves a sin-
gle arbiter (a) or multiple (b).

When the G-arbiter is used, the commit transaction has longer
latency and more messages. We can speed up some transactions

by storing in the G-arbiter the W signatures of all the currently-
committing chunks whose requests went through the G-arbiter. With
this, we are replicating information that is already present in some
arbiters, but it may help speed up transactions that are denied. In-
deed, in Figure 8(b), when the G-arbiter receives message (1), it
checks its W list for collisions. If it finds one, it immediately denies
permission.

4.3. Directory Module

BulkSC does not require a machine with a broadcast link to work.
For generality, this paper presents a design with distributed memory
and directory. However, we need to extend the directory to work
with the inexact information of signatures. This is done by enhanc-
ing each directory module with a module called DirBDM that sup-
ports basic bulk operations (Figure 5). When a directory module
receives the W signature of a committing chunk, the DirBDM per-
forms three operations: (i) expand the signature into its component
addresses and update the directory state, (ii) based on the directory
state, forward W to the relevant caches for address disambiguation,
and (iii) conservatively disable access to the directory entries of all
the lines written by the committing chunk in this module, until the
new values of the lines are visible to all processors — i.e., until the
old values of the lines have been invalidated from all caches.

Operation (iii) is conservative; we could have re-enabled access
to individual lines in the directory module progressively, as they get
invalidated from all caches. However, we choose this implementa-
tion for simplicity. Still, different directory modules re-enable ac-
cess at different times.

In our discussion, we use a full bit-vector directory [22] for sim-
plicity. Directory state can be updated when a chunk commits, when
a non-speculative dirty line is written back, or when the directory re-
ceives a demand cache miss from a processor. The latter are always
read requests — even in the case of a write miss — and the directory
adds the requester processor as a sharer. The reason is that, because
the access is speculative, the directory cannot mark the requester
processor as keeping an updated copy of the line.

4.3.1. Signature Expansion

On reception of a W signature, the DirBDM performs a
signature-expansion bulk operation (Section 2.2) to determine what
entries in the directory structure may have their addresses encoded in
the signature. For each of these entries, it checks the state and, based
on it, (i) compiles a list of processors to which W will be forwarded
for bulk disambiguation and (ii) updates the entry’s state. The list of
processors that should receive W is called the Invalidation List.

A key challenge is that the signature expansion of W may pro-
duce the address of lines that have not been written. Fortunately, a
careful analysis of all possible cases ensures that the resulting direc-
tory actions never lead to incorrect execution. To see why, consider
the four possible states that one of the selected directory entries can
be at (Table 1). In all cases, we may be looking at a line that the
chunk did not actually write.

In the table, cases 1 and 3 from the top are clearly false positives:
if the committing chunk had written the line, its processor would
have accessed the line and be recorded in the bit vector as a sharer,
already. Therefore, no action is taken. Case 4 requires no action
even if it is not a false positive. Case 2 requires marking the com-
mitting processor as keeping the only copy of the line, in state dirty,
and adding the rest of current sharer processors to the Invalidation



Current Entry State
Dirty Committing
Bit Proc is in Action Notes
Set? Bit Vector?

False positive. Committing proc
No No Do nothing should have accessed the data

and be in bit vector already
1) Add sharer procs

No Yes to Invalidation List Committing proc becomes
2) Reset rest of bit the owner
vector
3) Set Dirty bit

False positive. Committing proc
Yes No Do nothing should have accessed the data

and be in bit vector already
Yes Yes Do nothing Committing proc already owner

Table 1. Possible states of a directory entry selected after signa-
ture expansion and action taken.

List. If this is a false positive, we are incorrectly changing the di-
rectory state and maybe forwarding W to incorrect processors. The
latter can at most cause unnecessary (and rare) chunk squashes —
it cannot lead to incorrect execution; the former sets the coherence
protocol to a state that many existing cache coherence protocols are
already equipped to handle gracefully — consequently, it is not hard
to modify the protocol to support it. Specifically, it is the same state
that occurs when, in a MESI protocol [26], a processor reads a line
in Exclusive mode and later displaces it from its cache silently. The
directory thinks that the processor owns the line, but the processor
does not have it.

In our protocol, at the next cache miss on the line by a processor,
the directory will ask the “false owner” for a writeback. The latter
will respond saying it does not have a dirty copy. The directory will
then provide the line from memory, and change the directory state
appropriately.

4.3.2. Disabling Access from Incoming Reads

As per Section 3.2.2, CReq2 (single sequential order require-
ment) requires that no processor use the directory to see the new
value of a line from the committing chunk, before all processors can
see the new value. As indicated above, our conservative implemen-
tation disables reads to any line updated by the committing chunk in
this module, from the time the directory module receives the W sig-
nature from the arbiter (Message (2) in Figure 7(a)) until it receives
the “done” messages from all caches in the Invalidation List (Mes-
sages (4)). This is easily done with bulk operations. The DirBDM
intercepts all incoming reads and applies the membership bulk op-
eration (Section 2.2) to them, to see if they belong to W. If they do,
they are bounced.

4.3.3. Directory Caching

In BulkSC, using directory caches [16] is preferred over full-
mapped directories because they limit the number of false positives
by construction. With a directory cache, the DirBDM uses signature
expansion (Section 2.2) on incoming W signatures with a different
decode (δ) function than for the caches — since directories have
different size and associativity.

However, directory caches suffer entry displacements. In con-
ventional protocols, a displacement triggers the invalidation of the
line from all caches and, for a dirty line, a writeback. In BulkSC,

a conservative approach is to additionally squash all the currently-
running chunks that may have accessed the line. Consequently,
when the directory displaces an entry, it builds its address into a
signature and sends it to all sharer caches for bulk disambiguation
with their R and W signatures. This operation may squash chunks,
and will invalidate (and if needed write back) any cached copies of
the line.

This protocol works correctly for a chunk that updated the dis-
placed line and is currently committing. Since the chunk has already
cleared its signatures, disambiguation will not squash it. Moreover,
since the line is dirty non-speculative in the processor’s cache, the
protocol will safely write back the line to memory.

5. Leveraging Private Data

Accesses to private data are not subject to consistency con-
straints. Consequently, they do not need to be considered when
disambiguating chunks or arbitrating for commits — they can be
removed from a chunk’s W signature.

Removing writes to private data from W also has the substan-
tial benefit of reducing signature pollution. This decreases aliasing
and false positives, leading to fewer unnecessary cache invalidations
and chunk squashes. Another benefit is that the resulting W is often
empty. This reduces the number of entries in the arbiter’s list of W
signatures — since a permission-to-commit request with a zero W
does not update the list. As a result, such a list is more often empty.
This has enabled the RSig commit bandwidth optimization of Sec-
tion 4.2.2.

To handle private data, we propose to include in the BDM an ad-
ditional signature per running chunk called Wpriv . Writes to private
data update Wpriv rather than W. Wpriv is used neither for bulk dis-
ambiguation nor for commit arbitration. In the following, we present
two schemes that use Wpriv to leverage either statically-private data
or dynamically-private data. The latter is data that, while perhaps
declared shared, is accessed by only one processor for a period of
time. These two schemes use Wpriv differently.

5.1. Leveraging Statically-Private Data

This approach relies on the software to convey to the hardware
what data structures or memory regions are private. A simple imple-
mentation of this approach is to have a page-level attribute checked
at address-translation time that indicates whether a page contains
private or shared data. On a read to private data, the R signature is
not updated, thereby avoiding polluting R; on a write to private data,
Wpriv is updated rather than W.

To commit a chunk, the processor only sends W to the arbiter.
Once commit permission is granted, the processor sends Wpriv di-
rectly to the directory for signature expansion, so that private data
is kept coherent. Coherence of private data is necessary because
threads can migrate between processors, taking their private data to
multiple processors. With this approach, we have divided the ad-
dress space into a section where SC is enforced and another where
it is not.

5.2. Leveraging Dynamically-Private Data

In many cases, a processor P updates a variable v in multiple
chunks without any intervening access to v from other processors.
Using our protocol of Section 4, every first write of P to v in a chunk



would require the update of W and the writeback of v’s line to mem-
ory. The latter is necessary because v’s line is in state dirty non-
speculative before the write.

We want to optimize this common case by (i) skipping the write-
back of v’s line to memory at every chunk and (ii) not polluting W
with the writes to v. Our optimization, intuitively, is to update v
keeping its line in dirty non-speculative state in the cache. If, by the
time the chunk completes, no external event required the old value
of v, the processor commits the chunk without informing the arbiter
or directory that the chunk updated v — more specifically, the pro-
cessor sends to the arbiter a W signature that lacks the writes to v.

To support this, we make two changes to BulkSC. First, every
time that a processor writes to a line that is dirty non-speculative in
its cache, the hardware updates Wpriv rather than W, and does not
write the line back to memory. These lines can be easily identified
by the hardware: they have the Dirty bit set and their address is not
in W. With this change, the commit process will not know about the
updates to these lines.

The second change is that, the first time that these lines are up-
dated in a chunk, the hardware also saves the version of the line
before the update in a small Private Buffer in the BDM, while the
updated version of the line is kept in the cache. The hardware easily
identifies that this is the first update: the Dirty bit set and the line’s
address is neither in W nor in Wpriv . We save the old value of the
line in this buffer in case it is later required. This buffer can hold
≈24 lines and is not in any critical path.

With this support, when a chunk is granted permission to commit
based on its W, the hardware clears the Private Buffer and Wpriv .
We have skipped the writeback of the lines in the buffer.

There are, however, two cases when the old value of the line
is required. The first one is when the chunk gets squashed in a bulk
disambiguation operation. In this case, the lines in the Private Buffer
are copied back to the cache — and the Private Buffer and Wpriv are
cleared.

The second case is when our predicted private pattern stops
working, and another processor requests a line that is in the Private
Buffer. This is detected by the BDM, which checks every external
access to the cache for membership (∈) in Wpriv . This is a fast bulk
operation (Section 2.2). In the (unusual) case of a non-empty result,
the Private Buffer is checked. If the line is found, it is supplied from
there rather than from the cache, and the address is added to W. In-
tuitively, we have to provide the old copy of the line and “add back”
the address to W. Similarly, if a line overflows the Private Buffer, it
is written back to memory and its address is added to W.

6. Discussion

Past approaches to supporting high-performance SC (Sec-
tion 2.1) add mechanisms local to the processor to enforce con-
sistency; BulkSC, instead, relies on an external arbiter. We argue,
however, that this limitation is outweighed by BulkSC’s advantage
of simpler processor hardware — coming from decoupling mem-
ory consistency enforcement from processor microarchitecture and
eliminating associative lookups (Section 4.1.4).

In addition, the amount of commit bandwidth required by
BulkSC is very small. There are three reasons for this. First, since
chunks are large, the few messages needed per individual commit
are amortized over many instructions. Second, we have presented
optimizations to reduce the commit bandwidth requirements due to
R (Section 4.2.2) and W (Section 5) signatures; these optimizations

are very effective, as we will show later. Finally, in large machines
with a distributed arbiter, if there is data locality, commits only ac-
cess a local arbiter.

BulkSC’s scalability is affected by two main factors: the abil-
ity to provide scalable arbitration for chunk commit, and whether
the superset encoding used by signatures limits scalability in any
way. To address the first factor, we have presented commit band-
width optimizations, and a distributed arbiter design that scales as
long as there is data locality. Superset encoding could hurt scalabil-
ity if the longer chunks needed to tolerate longer machine latencies
ended up creating much address aliasing. In practice, there is a large
unexplored design space of signature size and encoding. Superset
encoding could also hurt scalability if it induced an inordinate num-
ber of bulk disambiguations as machine size increases. Fortunately,
Section 4.3.1 showed that signature expansion can leverage the di-
rectory state to improve the precision of sharer information substan-
tially.

Finally, write misses are a common source of stalls in multipro-
cessors. The effect of these misses on performance is more pro-
nounced in stricter memory consistency models. In BulkSC, writes
are naturally stall-free. Specifically, writes retire from the head of
the reorder buffer even if the line is not in the cache — although the
line has to be received before the chunk commits. Moreover, writes
do not wait for coherence permissions because such permissions are
implictly obtained when the chunk is allowed to commit.

7. Evaluation

7.1. Experimental Setup

We evaluate BulkSC using the SESC [28] cycle-accurate
execution-driven simulator with detailed models for processor,
memory subsystems and interconnect. For comparison, we imple-
ment SC with hardware prefetching for reads and exclusive prefetch-
ing for writes [12]. In addition, we implement RC with specula-
tive execution across fences and hardware exclusive prefetching for
writes. The machine modeled is an 8-processor CMP with a single
directory. Table 2 shows the configurations used.

We use 11 applications from SPLASH-2 (all but Volrend, which
cannot run in our simulator), and the commercial applications
SPECjbb2000 and SPECweb2005. SPLASH-2 applications run
to completion. The commercial codes are run using the Sim-
ics full-system simulator as a front-end to our SESC simulator.
SPECjbb2000 is configured with 8 warehouses and SPECweb2005
with the e-commerce workload. Both run for over 1B instructions
after initialization.

We evaluate the BulkSC configurations of Table 2: BSCbase

is the basic design of Section 4; BSCdypvt is BSCbase plus the
dynamically-private data optimization of Section 5.2; BSCstpvt is
BSCbase plus the statically-private data optimization of Section 5.1;
and BSCexact is BSCbase with an alias-free signature. We also com-
pare them to RC, SC and SC++ [15].

7.2. Performance

Figure 9 compares the performance of BSCbase, BSCdypvt,
BSCexact, and BSCstpvt to that of SC, RC and SC++. In the figure,
SP2-G.M. is the geometric mean of SPLASH-2. Our preferred con-
figuration, BSCdypvt, performs about as well as RC and SC++ for
practically all applications. Consequently, we argue that BSCdypvt



Processor and Memory Subsystem BulkSC Configurations Used

Cores: 8 in a CMP
Frequency: 5.0 GHz
Fetch/issue/comm width: 6/4/5
I-window/ROB size: 80/176
LdSt/Int/FP units: 3/3/2
Ld/St queue entries: 56/56
Int/FP registers: 176/90
Branch penalty: 17 cyc (min)

Private writeback D-L1:
size/assoc/line:
32KB/4-way/32B

Round trip: 2 cycles
MSHRs: 8 entries

Shared L2:
size/assoc/line:
8MB/8-way/32B

Round trip: 13 cycles
MSHRs: 32 entries

Mem roundtrip: 300 cyc

Signature:
Size: 2 Kbits
Organization: Like in [8]
# Chunks/Proc: 2
Chunk Size: 1000 inst.
Commit Arb. Lat.: 30 cyc
Max. Simul. Commits: 8
# of Arbiters: 1
# of Directories: 1

BSCbase Basic BulkSC (Section 4)
BSCdypvt BSCbase + dyn. priv. data opt (Section 5.2)
BSCstpvt BSCbase + static priv. data opt (Section 5.1)
BSCexact BSCdypvt + “magic” alias-free signature

SC Includes prefetching for reads
+ exclusive prefetching for writes

RC Includes speculative execution across
fences + exclusive prefetching for writes

SC++ Model from [15] w/ 2K-entry SHiQ

Table 2. Simulated system configurations. All latencies correspond to an unloaded machine.
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Figure 9. Performance of several BulkSC configurations, SC, RC and SC++, all normalized to RC.

is the most attractive design of the three, as it is simple to imple-
ment and still supports SC. The only exception is radix, which has
frequent chunk conflicts due to aliasing in the signature. The perfor-
mance difference between RC and SC is large, and in line with [25].

Comparing BSCbase and BSCdypvt, we see the impact of the
dynamically-private data optimization. It improves performance by
6% in SPLASH-2, 3% in SPECjbb and 11% in SPECweb. Most of
the gains come from reducing the pollution in the W signature, lead-
ing to fewer line invalidations and chunk squashes. The small differ-
ence between BSCexact and BSCdypvt shows that the dynamically-
private data optimization reduces aliasing enough to make BSCdypvt

behave almost as if it had an ideal signature.
For BSCstpvt, we consider all stack references as private and

everything else as shared. Unfortunately, we can only apply it to
SPLASH-2 applications because of limitations in our simulation in-
frastructure. As Figure 9 shows, BSCstpvt improves over BSCbase

by a geometric mean of 5%, leaving BSCstpvt within 2% of the
performance of BSCdypvt. The only application with no noticeable
benefit is radix, which has very few stack references.

Figure 10 shows the performance of BSCdypvt with chunks of
1000, 2000 and 4000 instructions. 4000-exact is BSCexact with
4000-instruction chunks. We see that for a few SPLASH-2 applica-
tions and for the commercial ones, performance degrades as chunk
size increases. Comparing 4000 to 4000-exact, however, we see that
most of the degradation comes from increased aliasing in the signa-
ture, rather than from real data sharing between the chunks.
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Figure 10. BSCdypvt performance with different chunk sizes.

7.3. General Characterization of BulkSC

Table 3 characterizes BulkSC. Unless otherwise indicated, the
data is for BSCdypvt. We start with the Squashed Instructions
columns. In BSCexact, squashes are due to false and true sharing,
while in BSCdypvt and BSCbase, squashes also occur due to alias-
ing in the signatures. While the wasted work in BSCbase is 8-10%
of the instructions, in BSCdypvt it is only 1-2%, very close to that in
BSCexact. This is due to reduced aliasing.

The Average Set Sizes columns show the number of cache line
addresses encoded in the BSCdypvt signatures. We see that Priv.
Write has many more addresses than Write. The Priv. Write data
shows that a Private Buffer of ≈24 entries is typically enough.

The Spec Line Displacements columns show how often a line
speculatively read or written is displaced from the cache per 100k
commits. These events are very rare in SPLASH-2. They are less
rare in the commercial applications, where they can be as high as
1 per 10 commits for the read set. Note, however, that in BulkSC,
displacements of data read do not cause squashes, unlike in SC++.
The column Data from Priv. Buff. shows how frequently the Private
Buffer has to provide data. As expected, this number is very low —
6-9 times per 1k commits on average.

When a processor receives the W signature of a committing
chunk, it uses it to invalidate lines in its cache. Due to aliasing
in the signatures, it may invalidate more lines than necessary. The
Extra Cache Invs. column quantifies these unnecessary invalidates
per 1k commits. This number is very low and unlikely to affect per-
formance, since these lines are likely to be refetched from L2.

7.4. Commit and Coherence Operations

Table 4 characterizes the commit process and the coherence op-
erations in BSCdypvt. The Signature Expansion columns show data
on the expansion of W signatures in the directory. During expansion,
directory entries are looked up to see if an action is necessary. The
Lookups per Commit column shows the number of entries looked-
up per commit. Since the Write Set sizes are small, this is a small
number (7 in SPLASH-2 and 4 in the commercial applications). The



Squashed Instructions (%) Average Set Sizes in BSCdypvt Spec. Line Displacements Data from # of Extra
Appl. BSCexact BSCdypvt BSCbase (Cache Lines) (Per 100k Commits) Priv. Buff. Cache Invs.

Read Write Priv. Write Write Set Read Set (Per 1k Comm.) (Per 1k Comm.)

barnes 0.01 0.03 6.27 22.6 0.1 11.9 0.3 209.0 0.1 0.1
cholesky 0.04 0.05 2.18 42.0 0.9 11.6 0.0 57.2 1.0 0.2
fft 0.01 1.37 2.93 33.4 3.3 22.7 0.0 0.0 0.1 2.0
fmm 0.00 0.11 6.99 33.8 0.2 6.2 0.0 241.0 0.2 0.5
lu 0.00 0.00 3.29 15.9 0.1 10.8 0.0 0.9 0.0 0.0
ocean 0.35 0.92 2.14 45.3 6.7 8.4 0.0 1206.7 4.9 4.3
radiosity 0.98 1.04 4.25 28.7 0.5 15.2 0.0 50.7 29.9 28.8
radix 0.01 10.89 30.75 14.9 5.2 14.4 0.0 375.6 0.1 1760.0
raytrace 2.71 2.92 8.48 40.2 0.8 12.7 0.0 98.9 30.0 84.3
water-ns 0.03 0.07 12.67 20.2 0.1 16.3 0.0 2.7 0.3 1.9
water-sp 0.06 0.09 10.23 22.2 0.1 17.0 0.0 152.6 0.4 1.4
SP2-AVG 0.38 1.59 8.20 29.0 1.62 13.4 0.0 217.7 6.1 171.2
sjbb2k 0.45 1.11 10.33 43.6 3.56 19.2 1.8 6838.4 6.7 2.9
sweb2005 0.23 0.88 9.97 61.1 3.76 21.5 0.0 10502.5 8.7 4.1

Table 3. Characterization of BulkSC. Unless otherwise indicated, the data corresponds to BSCdypvt

Signature Expansion in Directory Arbiter R Sig.
Appl. Lookups Unnecessary Unnecessary Nodes per # of Pend. Non-Empty Empty W Sig. Required

per Commit Lookups (%) Updates (%) W Sig. W Sigs. W List (% Time) (% Commits) (% Commits)

barnes 0.1 12.7 0.3 0.08 0.09 8.2 95.3 3.9
cholesky 1.2 27.7 0.0 0.18 0.03 2.9 98.1 1.1
fft 22.1 85.0 0.3 0.01 0.10 9.4 90.9 1.2
fmm 0.7 78.0 1.0 0.08 0.03 3.0 98.2 1.2
lu 0.1 16.7 0.0 0.01 0.06 5.7 96.8 2.7
ocean 9.5 29.9 0.4 0.05 0.53 40.0 55.8 13.6
radiosity 0.6 23.2 0.5 1.15 0.09 8.5 95.2 4.0
radix 37.8 86.2 0.4 1.10 0.56 49.3 32.9 15.5
raytrace 0.8 6.2 0.4 0.95 0.22 20.6 84.9 8.6
water-ns 0.2 42.0 0.7 0.74 0.02 1.4 99.2 0.7
water-sp 0.0 36.1 4.6 1.12 0.01 0.5 99.7 0.2
SP2-AVG 6.7 40.3 0.8 0.50 0.16 13.6 86.1 4.8
sjbb2k 4.0 10.1 0.1 0.06 0.54 46.1 46.9 17.8
sweb2005 4.5 17.0 0.2 0.09 0.65 51.7 49.5 28.1

Table 4. Characterization of the commit process and coherence operations in BSCdypvt.

Unnecessary Lookups column is the fraction of these lookups per-
formed due to aliasing. In SPLASH-2, about 40% of the lookups
are unnecessary, while in the commercial applications only 10-17%
are. The Unnecessary Updates column shows how many directory
entries are unnecessarily updated due to aliasing. This number is
negligible (0.1-0.8%). Finally, the Nodes per W Sig. column shows
how many nodes receive the W signature from the directory. On av-
erage, a commit sends W to less than one node — often, the chunk
has only written to data that is not cached anywhere else.

The next few columns characterize the arbiter. Pend. W Sigs. is
the number of W signatures in the arbiter at a time, while Non-Empty
W List is the percentage of time the arbiter has a non-empty W list.
These numbers show that the arbiter is not highly utilized. Empty
W Sig. shows how many commits have empty W signatures, due
to accessing only private data. This number is 86% in SPLASH-2
and 47-50% in the commercial codes. Thanks to them, the arbiter’s
W list is often empty. Finally, R Sig. Required shows the fraction
of commits that need the R signature to arbitrate. The resulting low
number — 5% for SPLASH-2 and 18-28% for the commercial codes
— shows that the RSig optimization works very well.

Figure 11 shows the interconnection network traffic in bytes, nor-
malized to RC. We show RC (R), BSCexact (E), BSCdypvt without
the RSig commit bandwidth optimization (N) and BSCdypvt (B). The
traffic is due to reads and writes (Rd/Wr), R signatures (RdSig), W
signatures (WrSig), invalidations (Inv), and other messages.

This figure shows that the total bandwidth overhead of BSCdypvt

(B) compared to RC (R) is around 5-13% on average. This is very
tolerable. The overhead is due to the transfer of signatures (Wr-
Sig and RdSig) and to extra data fetches after squashes (increase in

RENB RENB RENB RENB RENB RENB RENB RENB RENB RENB RENB RENB RENB RENB

barnes

cholesky

fft fm
m

lu ocean

radiosity

radix

raytrace
w

ater-ns
w

ater-sp
S

P
2-A

V
G

sjbb2k
sw

eb2005

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

 T
ra

ffi
c 

N
or

m
al

iz
ed

 to
 R

C

 Inv
 Other
 WrSig
 RdSig
 Rd/Wr

Figure 11. Traffic normalized to RC. R, E, N, B refer to
RC, BSCexact, BSCdypvt without the RSig optimization, and
BSCdypvt, respectively.

Rd/Wr). The difference between N and B shows the effect of the
RSig commit bandwidth optimization. We see that it has a signif-
icant impact. With this optimization, RdSig practically disappears
from the B bars. Note that, without this optimization, RdSig is very
significant in fmm and water-sp. These two applications have few
misses and, consequently, signatures account for much of the traffic.
Finally, the difference between E and N shows the modest effect of
aliasing on traffic.

8. Other Related Work

There is extensive literature on relaxed memory consistency
models (e.g., [2, 11, 13]). Discussing it is outside our scope.



Chunks are similar to tasks in TLS or transactions in TM in that
they execute speculatively and commit as a unit. In particular, an en-
vironment with transactions all the time such as TCC [17] is related
to BulkSC where processors execute chunks all the time. However,
the environments differ in that while tasks and transactions are stat-
ically specified in the code, chunks are created dynamically by the
hardware. Still, BulkSC may be a convenient building block for TM
and TLS because it will support SC ordering for the entire program,
including transactional with respect to non-transactional code.

Concurrently with our work, Chafi et al. [9] have proposed an
arbiter-based memory subsystem with directories for TM.

Also concurrently with our work, Wenisch et al. [30] have pro-
posed Atomic Sequence Ordering (ASO) and a scalable store buffer
design to enable store-wait-free multiprocessors. ASO, like BulkSC,
makes a group of memory operations appear atomic to the rest of the
system to avoid consistency violations. Our approach in BulkSC is
to build the whole memory consistency enforcement based only on
coarse-grain operation. In BulkSC, stores are also wait-free because
they retire speculatively before the chunk commits.

9. Conclusion

This paper presented Bulk enforcement of SC or BulkSC, a novel
implementation of SC that is simple to implement and delivers per-
formance comparable to RC. The idea is to dynamically group sets
of consecutive instructions into chunks that appear to execute atom-
ically and in isolation. Then, the hardware enforces SC at the coarse
grain of chunks rather than at the fine grain of individual memory
accesses. Enforcing SC at chunk granularity can be realized with
simple hardware and delivers high performance. Moreover, to the
program, it appears as providing SC at the memory access level.

BulkSC uses mechanisms from Bulk and checkpointed proces-
sors to largely decouple memory consistency enforcement from pro-
cessor structures. There is no need to perform associative lookups
or to interact in a tightly-coupled manner with key processor struc-
tures. Cache tag and data arrays remain unmodified, are oblivious of
what data is speculative, and do not need to watch for displacements
to enforce consistency. Overall, we believe that this enables de-
signers to conceive processors with much less concern for memory
consistency issues. Finally, BulkSC delivers high performance by
allowing memory access reordering and overlapping within chunks
and across chunks.

We also described a system architecture that supports BulkSC
with a distributed directory and a generic network. We showed that
BulkSC delivers performance comparable to RC. Moreover, it only
increases the network bandwidth requirements by 5-13% on average
over RC, mostly due to signature transfers and chunk squashes.
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Martı́nez for their feedback. We thank Karin Strauss for the initial
suggestion of using bulk operations for consistency enforcement.

References
[1] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Mod-

els: A Tutorial,” Western Reseach Laboratory-Compaq. Research Re-
port 95/7, September 1995.

[2] S. V. Adve and M. Hill, “Weak Ordering - A New Definition,” in Inter.
Symp. on Computer Architecture, May 1990.

[3] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint Processing and
Recovery: Towards Scalable Large Instruction Window Processors,” in
Inter. Symp. on Microarchitecture, November 2003.

[4] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 11, July 1970.

[5] C. Blundell, E. Lewis, and M. Martin, “Subtleties of Transac-
tional Memory Atomicity Semantics,” Computer Architecture Letters,
November 2006.

[6] H. Cain and M. Lipasti, “Memory Ordering: A Value-Based Ap-
proach,” in Inter. Symp. on Computer Architecture, June 2004.

[7] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas, “CAVA: Us-
ing Checkpoint-Assisted Value Prediction to Hide L2 Misses,” ACM
Transactions on Architecture and Code Optimization, June 2006.

[8] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in Inter. Symp. on Com-
puter Architecture, June 2006.

[9] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh,
W. Baek, C. Kozyrakis, and K. Olukotun, “A Scalable, Non-blocking
Approach to Transactional Memory,” in Inter. Symp. on High Perfor-
mance Computer Architecture, February 2007.

[10] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-Order Commit
Processors,” in Inter. Symp. on High Performance Computer Architec-
ture, February 2004.

[11] M. Dubois, C. Scheurich, and F. Briggs, “Memory Access Buffering in
Multiprocessors,” in Inter. Symp. on Comp. Architecture, June 1986.

[12] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Two Techniques to
Enhance the Performance of Memory Consistency Models.,” in Inter.
Conf. on Parallel Processing, August 1991.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons, A. Gupta, and
J. L. Hennessy, “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors.,” in Inter. Symp. on Computer Archi-
tecture, June 1990.

[14] C. Gniady and B. Falsafi, “Speculative Sequential Consistency with
Little Custom Storage,” in Inter. Conf. on Parallel Architectures and
Compilation Techniques, September 2002.

[15] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP = RC?,” in
Inter. Symp. on Computer Architecture, May 1999.

[16] A. Gupta, W. Weber, and T. Mowry, “Reducing Memory and Traf-
fic Requirements for Scalable Directory-Based Cache Coherence
Schemes,” in Inter. Conference on Parallel Processing, August 1990.

[17] L. Hammond et al., “Transactional Memory Coherence and Consis-
tency,” in Inter. Symp. on Computer Architecture, June 2004.

[18] M. D. Hill, “Multiprocessors Should Support Simple Memory-
Consistency Models,” IEEE Computer, August 1998.

[19] M. Kirman, N. Kirman, and J. F. Martinez, “Cherry-MP: Correctly In-
tegrating Checkpointed Early Resource Recycling in Chip Multipro-
cessors,” in Inter. Symp. on Microarchitecture, 2005.

[20] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez, “Check-
pointed Early Load Retirement,” in Inter. Symp. on High Performance
Computer Architecture, February 2005.

[21] L. Lamport, “How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs,” IEEE Tran. on Comp., July 1979.

[22] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. S. Lam, “The Stanford Dash Multiproces-
sor,” IEEE Computer, March 1992.

[23] J. Martı́nez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas,
“Cherry: Checkpointed Early Resource Recycling in Out-of-order Mi-
croprocessors,” in Inter. Symp. on Microarchitecture, November 2002.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-order
Processors,” in Inter. Symp. on High Performance Computer Architec-
ture, February 2003.

[25] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton, “An Evaluation
of Memory Consistency Models for Shared-Memory Systems with ILP
Processors,” in Inter. Conf. on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[26] M. S. Papamarcos and J. H. Patel, “A Low Overhead Coherence Solu-
tion for Multiprocessors with Private Cache Memories,” in Inter. Symp.
on Computer Architecture, June 1984.

[27] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using Speculative Retire-
ment and Larger Instruction Windows to Narrow the Performance Gap
Between Memory Consistency Models,” in Symp. on Parallel Algo-
rithms and Architectures, June 1997.

[28] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC Simulator,”
January 2005. http://sesc.sourceforge.net.

[29] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual Flow Pipelines,” in Inter. Conf. on Architectural Support
for Programming Languages and Operating Systems, October 2004.

[30] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mecha-
nisms for Store-wait-free Multiprocessors,” in Inter. Symp. on Com-
puter Architecture, June 2007.

[31] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, April 1996.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /AcademyEngravedLetPlain
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AlBayan
    /AlBayan-Bold
    /AmericanTypewriter
    /AmericanTypewriter-Bold
    /AmericanTypewriter-Condensed
    /AmericanTypewriter-CondensedBold
    /AmericanTypewriter-CondensedLight
    /AmericanTypewriter-Light
    /AndaleMono
    /Apple-Chancery
    /AppleGothic
    /AppleMyungjo
    /AppleSymbols
    /AquaKana
    /AquaKana-Bold
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialHebrew
    /ArialHebrew-Bold
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /Baghdad
    /BankGothic-Light
    /BankGothic-Medium
    /Baskerville
    /Baskerville-Bold
    /Baskerville-BoldItalic
    /Baskerville-Italic
    /Baskerville-SemiBold
    /Baskerville-SemiBoldItalic
    /Batang
    /BigCaslon-Medium
    /BlackmoorLetPlain
    /BlairMdITCTTMedium
    /BodoniOrnamentsITCTT
    /BodoniSvtyTwoITCTTBold
    /BodoniSvtyTwoITCTTBook
    /BodoniSvtyTwoITCTTBookIta
    /BodoniSvtyTwoOSITCTTBold
    /BodoniSvtyTwoOSITCTTBook
    /BodoniSvtyTwoOSITCTTBookIt
    /BodoniSvtyTwoSCITCTTBook
    /BordeauxRomanBoldLetPlain
    /BradleyHandITCTTBold
    /BrushScriptMT
    /Chalkboard
    /Chalkboard-Bold
    /CharcoalCY
    /Cochin
    /Cochin-Bold
    /Cochin-BoldItalic
    /Cochin-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /Copperplate
    /Copperplate-Bold
    /Copperplate-Light
    /CorsivaHebrew
    /CorsivaHebrew-Bold
    /Courier
    /Courier-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /Cracked
    /DFKaiShu-SB-Estd-BF
    /DecoTypeNaskh
    /DevanagariMT
    /DevanagariMT-Bold
    /Didot
    /Didot-Bold
    /Didot-Italic
    /EuphemiaUCAS
    /EuphemiaUCAS-Bold
    /EuphemiaUCAS-Italic
    /Futura-CondensedExtraBold
    /Futura-CondensedMedium
    /Futura-Medium
    /Futura-MediumItalic
    /GeezaPro
    /GeezaPro-Bold
    /Geneva
    /GenevaCY
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GillSans
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GujaratiMT
    /GujaratiMT-Bold
    /Gulim
    /Handwriting-Dakota
    /Helvetica
    /Helvetica-Bold
    /HelveticaCYBold
    /HelveticaCYBoldOblique
    /HelveticaCYOblique
    /HelveticaCYPlain
    /HelveticaLTMM
    /HelveticaNeue
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-CondensedBlack
    /HelveticaNeue-CondensedBold
    /HelveticaNeue-Italic
    /HelveticaNeue-Light
    /HelveticaNeue-LightItalic
    /HelveticaNeue-UltraLight
    /HelveticaNeue-UltraLightItalic
    /Herculanum
    /HiraKakuPro-W3
    /HiraKakuPro-W6
    /HiraKakuStd-W8
    /HiraMaruPro-W4
    /HiraMinPro-W3
    /HiraMinPro-W6
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Impact
    /InaiMathi
    /JCHEadA
    /JCfg
    /JCkg
    /JCsmPC
    /JazzLetPlain
    /KufiStandardGK
    /LiGothicMed
    /LiHeiPro
    /LiSongPro
    /LiSungLight
    /LucidaGrande
    /LucidaGrande-Bold
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MarkerFelt-Thin
    /MarkerFelt-Wide
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MonaLisaSolidITCTT
    /Monaco
    /MonotypeGurmukhi
    /Mshtakan
    /MshtakanBold
    /MshtakanBoldOblique
    /MshtakanOblique
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Regular
    /Nadeem
    /NewPeninimMT
    /NewPeninimMT-Bold
    /NewPeninimMT-BoldInclined
    /NewPeninimMT-Inclined
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-ExtraBlack
    /Optima-Italic
    /Optima-Regular
    /Osaka
    /Osaka-Mono
    /PMingLiU
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /Papyrus
    /PartyLetPlain
    /PlantagenetCherokee
    /PortagoITCTT
    /PrincetownLET
    /Raanana
    /RaananaBold
    /SIL-Hei-Med-Jian
    /SIL-Kai-Reg-Jian
    /SantaFeLetPlain
    /SavoyeLetPlain
    /SchoolHouseCursiveB
    /SchoolHousePrintedA
    /SimSun
    /Skia-Regular
    /SnellRoundhand
    /SnellRoundhand-Black
    /SnellRoundhand-Bold
    /StoneSansITC-Bold
    /StoneSansSemITCTTSemi
    /StoneSansSemITCTTSemiIta
    /Symbol
    /SynchroLET
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /TimesLTMM
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TypeEmbellishmentsOneLetPlain
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /ZapfDingbatsITC
    /Zapfino
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


