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Abstract
Support for deterministic replay of multithreaded execution can

greatly help in finding concurrency bugs. For highest effectiveness,
replay schemes should (i) record at production-run speed, (ii) keep
their logging requirements minute, and (iii) replay at a speed similar
to that of the initial execution. In this paper, we propose a new
substrate for deterministic replay that provides substantial advances
along these axes. In our proposal, processors execute blocks of
instructions atomically, as in transactional memory or speculative
multithreading, and the system only needs to record the commit
order of these blocks. We call our schemeDeLorean. Our results
show that DeLorean records execution at a speed similar to that of
Release Consistency (RC) execution and replays at about 82% of its
speed. In contrast, most current schemes only record at the speed
of Sequential Consistency (SC) execution. Moreover, DeLorean
only needs 7.5% of the log size needed by a state-of-the-art scheme.
Finally, DeLorean can be configured to need only 0.6% of the log
size of the state-of-the-art scheme at the cost of recording at 86% of
RC’s execution speed — still faster than SC. In this configuration,
the log of an 8-processor 5-GHz machine is estimated to be only
about 20GB per day.

1. Introduction

Debugging multithreaded codes is challenging because concur-
rency bugs are typically exercised only under certain timing condi-
tions, and their effects often manifest only after many instructions.
With the growing popularity of multicores, it is crucial to find ef-
fective debugging techniques for multithreaded codes.

One such technique is hardware-assisted deterministic replay of
multithreaded programs. The idea is to record in a log how memory
accesses interleave during an initial multithreaded execution. Later,
the log is used to replay the execution, recreating the same mem-
ory access interleaving — hopefully illuminating what brought the
execution to a buggy state. Recent schemes for hardware-assisted
deterministic replay include FDR [15], BugNet [7], RTR [16] and
Strata [6].

We argue that schemes for deterministic replay have four de-
sirable traits. First, to capture the timing of production-run bugs
accurately, they should record at production-run speeds. Second, to
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support long recording periods, their logging requirements should
be minimal. Third, to provide an effective debugging environment,
their replay speed should be similar to the initial execution speed.
Finally, they should require only modest hardware support.

While existing schemes for hardware-assisted deterministic re-
play have made major strides in these directions, they still fall short
of our goals in some axes. First, they require Sequential Consis-
tency (SC) [6, 7, 15] — a strict consistency model whose typical
implementations have relatively low performance and, therefore,
can distort the timing of bugs relative to production-run execution.
The exception is RTR [16], which introduces an algorithm to record
under Total Store Order (TSO). However, the impact of this algo-
rithm on execution speed or log size is not evaluated. Secondly,
existing schemes capture shared-memory dependences by logging
them individually [15] or in groups [6, 16]. For this, they need to
log about one byte per processor per kilo-instruction after compres-
sion, which limits the duration of the recorded interval. Finally, it
is unclear how fast these schemes replay.

In this paper, we presentDeLorean, a new approach to deter-
ministic replay that provides substantial advances in some of these
axes. DeLorean uses a new execution substrate: one where pro-
cessors execute large blocks of instructions atomically, separated
by processor checkpoints, like in transactional memory or thread-
level speculation. To capture a multithreaded execution, DeLorean
only needs to record the totalorder in which blocks from different
processors commit — not individual shared-memory dependences.
This results in a substantial reduction in log size compared to pre-
vious schemes. Moreover, since the memory accesses of a proces-
sor can overlap and reorder within and across the same-processor
blocks, DeLorean can record execution at the speed of the most
aggressive consistency models used today — and replay at a com-
parable speed. While the hardware used is not standard in today’s
current systems, the required changes are mostly concentrated in
the memory system and are arguably simple.

DeLorean offers different execution modes that provide differ-
ent trade-offs between performance and log size. One mode, called
OrderOnly, records execution at the speed of Release Consistency
(RC) execution and replays at about 82% of RC speed. This is in
contrast to most other schemes, which only record at SC execu-
tion speeds and provide no details on replay speeds.OrderOnly
only needs 1.3 bits of memory-ordering log per processor per kilo-
instruction, which is 16% of the log size needed by the state-of-the-
art RTR design [16]. Moreover, by reorganizingOrderOnly’s log



according to the Strata [6] design, we further reduce the log size to
7.5% of RTR’s.

A second execution mode calledPicoLogreduces the memory-
ordering log to 0.05 bits per processor per kilo-instruction, which
is 0.6% of the log size of RTR [16]. In this mode, the log of an 8-
processor 5-GHz machine is estimated to be only about 20GB per
day. This mode has a lower execution speed — 86% of RC’s exe-
cution speed, which is still higher than typical SC speed. Overall, a
block-based replay scheme such as DeLorean has great potential to
enhance the debugging of production-run multithreaded codes.

This paper is organized as follows. Section 2 gives a back-
ground; Sections 3 and 4 introduce DeLorean and its implemen-
tation; and Sections 5 and 6 evaluate DeLorean.

2. Background

2.1. Hardware-Assisted Deterministic Replay

Several hardware-based schemes have been proposed for deter-
ministic multiprocessor replay. Bacon and Goldstein [1] captured
dependences between concurrent threads by logging the coherence
messages in the bus of a multiprocessor using an attached board.
The Flight Data Recorder (FDR) [15] is a full-system recorder for
directory-based multiprocessors under SC. Like Bacon and Gold-
stein’s scheme [1], FDR observes coherence messages between pro-
cessors. It improves on the former scheme notably by implement-
ing a hardware version of Netzer’s Transitive Reduction (TR) op-
timization [8]. TR eliminates the need to record dependences that
are transitively implied by others.

Figure 1(a) illustrates TR. ProcessorP1 writes locationsa and
b, and laterP2 accessesb and a. The dependence1:Wa→2:Ra
does not need to be recorded because it is transitively implied by
1:Wa→1:Wb, 1:Wb→2:Wb, and2:Wb→2:Ra. Consequently, FDR
only records1:Wb→2:Wb. FDR saves the processor ID and in-
struction count of the two instructions in a Memory Races Log
buffer.
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Figure 1. Key insights of previous work on deterministic replay:
FDR (a), RTR (b), and Strata (c).

FDR augments each cache block with the count of the last in-
struction that accessed it. FDR increases the area of the caches by
6.25% and generates a compressed log size of 2MB per 1GHz pro-
cessor per second [15].

BugNet [7] reuses FDR’s hardware to replay user code and
shared libraries. It efficiently records the output of all load in-
structions by compressing them with a hardware-based dictionary
scheme.

Xu et al. [16] extend FDR in several ways. For the purpose of
our paper, we focus on two extensions. The first one is the Regu-
lated Transitive Reduction (RTR). The idea is to judiciously intro-

duce artificial dependences so that Netzer’s TR can eliminate other
dependences. Figure 1(b) illustrates RTR. The code has depen-
dences1:Wa→2:Ra and 1:Wb→2:Wb. RTR introduces artificial
dependence1:Wb→2:Ra, which is recorded. Now, RT eliminates
the need to record the other two dependences. RTR also saves space
by representing recurring dependences with a vector notation.

The second contribution of Xuet al.’s work is a recording algo-
rithm for a TSO machine [16]. It extends FDR’s algorithm as fol-
lows. There is hardware in the processor that detects when a load
has violated SC. In this case, the dependence that FDR would log
(assuming SC) is not logged. Instead, the hardware logs the value
read by the load, which is later fed to the replayer. Supporting TSO
is significant because TSO is used in real machines. However, the
authors do not evaluate the impact of the new algorithm on execu-
tion speed or on log size [16].

We refer to Xuet al.’s work [16] as the RTR system, and dis-
tinguish between the Base (no TSO) and Advanced (TSO) sup-
port. The Base RTR support logs about 1B per processor per kilo-
instruction (compressed).

The Strata [6] replay scheme records dependences differently
than FDR/RTR. Rather than logging individual dependences with
a pair of instruction counts, each Strata log entry (a “Stratum”) is
a vector of as many counters as processors. Each counter is the
number of memory operations issued by the corresponding proces-
sor since the last stratum was logged. A stratum is logged before
a processor issues the second access of an inter-processor depen-
dence. Figure 1(c) shows a reference trace with the points (S0and
S1) where strata are logged. Right before the second reference of
the dependence1:Wa→2:Ra is issued, Strata logs the memory ref-
erence counts of all 3 processors. The same process is repeated
right before the second reference of the dependence2:Wb→1:Wb.
The other two dependences in the figure do not require the creation
of a new stratum: each of them already has its two references in
different strata regions.

Strata works with directory- and snoop-based systems — both
under SC. Strata can choose to ignore WAR dependences when
building the log. In this case, WAR dependences are uncovered
at replay at the cost of slowing down the replay with multiple re-
executions [6]. The compressed log for 4 processors is 2.2KB per
1M memory references.

2.2. Comparison of HW-Assisted Full-System Re-
play Schemes

Columns 2-5 of Table 1 show our estimation of how FDR [15],
RTR [16], and Strata [6] measure along the four axes that Section 1
argued are key for replay schemes: initial execution speed, log size,
replay speed, and hardware needed. Note that, under log size, we
consider only the memory-ordering log. This is because the other
logs, such as input and DMA logs, are less critical [16] and are
handled similarly by the schemes.

FDR, Strata, and Base RTR have been shown to affect execution
speed negligibly. Consequently, we list as their execution speed that
of the memory consistency model supported, namely SC. Advanced
RTR supports TSO but its execution speed has not been measured.

The log size for Base RTR and Strata is smaller than for FDR;
there is no information for Advanced RTR. There is also no infor-
mation on the replay speed of these schemes, but we estimate that,
in their current shape, replay is significantly slower than the initial



DeLorean inOrderOnlymode: DeLorean inPicoLogmode:
Property FDR RTR Strata Non-Predefined Chunk Predefined Chunk

Base Advanced Commit Interleaving Commit Interleaving

Initial Execution Speed SC SC TSO? SC RC 0.86× RC
Memory-Ordering Log Size Medium Small Not reported Small Very small Tiny
Replay Speed Not reported Not reported Not reported Not reported 0.82×RC 0.72×RC
Hardware Needed Cache hier Cache hier Cache hier + proc Very little BulkSC/IT/TCC (Mem hier) BulkSC/IT/TCC (Mem hier)

Table 1. Comparing the main issues in hardware-assisted, full-system replay schemes.

execution. In the case of Strata, there are three reasons: (i) the log
strata likely act as synchronization barriers for replaying proces-
sors, (ii) the presence of WARs (if not recorded) requires multiple
replays of the same stratum region, and (iii) the replay under direc-
tory schemes needs a prepass to combine the multiple logs. In the
case of FDR and RTR, every dependence requires a communica-
tion between two replaying processors. Moreover, the conservative
dependences introduced by RTR may potentially cause processor
stalls. Finally, all the schemes require changes in the cache hier-
archy, with Advanced RTR requiring changes in the processor as
well. Strata has very few hardware requirements.

3. Chunk-Based Execution & Replay

3.1. Motivation

Recent proposals on systems with all-the-time software-
annotated transactions such as TCC [5], checkpointed multiproces-
sors with all-the-time hardware-based transactions such as Implicit
Transactions (IT) [13], or high-speed SC implementations such as
BulkSC [2] have described an environment where processors con-
tinuously execute blocks of consecutive dynamic instructions atom-
ically and in isolation. Such an environment can also be supported
in systems with thread-level speculation or with coarse-grain mem-
ory ordering support such as ASO [14]. In this environment, the up-
dates made by a block of instructions (which we will call aChunk)
only become visible when the chunk commits. Moreover, when
two concurrently-executing chunks conflict — there is a data de-
pendence across the two chunks — one of the chunks is typically
squashed and retried. The net effect is that the interleaving between
the memory accesses of different processors appears to occuronly
at chunk boundaries.

In this environment, recording the execution for replay involves
logging the sequence of chunk commits. This provides two funda-
mental advantages over conventional recorders. The first one is that
we can record and replay executions where the memory accesses
issued by a processor within a chunk (and in fact across chunks [2])
are fully reordered and overlapped. Recording under such condi-
tions has been a major stumbling block for this area’s research, and
is recognized by Xuet al.[16] as an open problem. The significance
of this is that both execution and replay can now proceed at a speed
similar to that of a highly-relaxed memory consistency model such
as RC. This enables the recording of access interleavings intrue
production runs. It also enables high-speed deterministic replay. In
our view, this has major implications on improved code debugging
techniques.

The second fundamental advantage is that the memory-ordering
log is now very small. Indeed, rather than recording individual
dependences, or even groups of them such as in Strata [6] and
RTR [16], the log in a chunk-based system only needs to record the
total orderin which chunks from different processors commit. This
means that each log entry is short (naively, the ID of the committing

processor and the chunk size) and the log is updated infrequently
(chunks can be thousands of instructions long). Furthermore, in
an aggressive design, we can predefine when to finish a chunk and
start a new one, and even the chunk commit order. In this case, we
practically eliminate the need to log at all.

In the rest of this section, we examine the design space in
chunk-based systems, present our proposed chunk-based architec-
ture called DeLorean, and then put it in the context of conventional
replayers.

3.2. Design Space in Chunk-Based Systems

In a chunk-based system, the memory-ordering log does not
store individual or groups of dependences; it only needs to store
the total order of chunk commits. In the simplest design, each log
entry contains the ID of the processor committing the chunk and the
chunk size — measured in number of retired instructions.

We can reduce the log size by either reducing the number of
entries or reducing the size of each entry. To reduce the number of
entries, we can increase the chunk size — i.e., include more instruc-
tions in each chunk. However, increasing the chunk size beyond a
certain point is counter-productive. First, we may hurt performance
because long chunks increase the chances of inter-chunk conflicts
and resulting squashes. Second, we may be unable to increase the
effective chunk size. Indeed, a long chunk may access more lines
mapping to a cache set than ways the cache has — risking the cache
overflow of speculatively updated lines. Before this happens, the
chunk has to be forcefully finished and committed.

To reduce the size of each log entry, we can omit the chunk
size or the ID of the committing processor from the entry. To be
able to omit the chunk size, we need to make “chunking” — i.e.,
the decision of when to finish a chunk — deterministic. We can
accomplish this in different ways. One could be to finish chunks
at software annotation points — perhaps similar to what is done in
transactional memory systems. Another is to finish chunks when
a certain number of memory operations or instructions have been
committed — like it is done in BulkSC or IT.

In reality, there may be events that truncate a currently-running
chunk and force it to commit before it has reached its “expected”
size. This is fine as long as the event reappears deterministically
in the replay. An example is an uncached load to an I/O port. The
chunk is truncated but its log entry does not need to record its ac-
tual size because the uncached load will reappear in the replay and
truncate the chunk at the same place.

There are, however, a few events that truncate a currently-
running chunk and are not deterministic — e.g., cache overflow as
discussed above. We will examine these rare events in Section 4.2.
When one such event occurs, the log is augmented with informa-
tion on: (i) what chunk gets truncated and (ii) its size. With this
information, the exact chunking can be reproduced during replay.

To be able to omit the ID of the committing processor from the
log entry, we need to “predefine” the chunk commit interleaving.



Non-Deterministic Chunking Deterministic Chunking

Name: Order&Size Name: OrderOnly
Execution: Arbiter logs committing processors Execution: Arbiter logs committing processors

Non- Processors log chunk sizes Replay: Arbiter consumes Proc-Interleaving log
Predefined Replay: Arbiter consumes Proc-Interleaving log Arbiter enforces order in Proc-Interleaving log
Chunk Arbiter enforces order in Proc-Interleaving log Processors execute chunks normally
Commit Processors consume private Chunk-Size log
Interleaving Processors chunk according to private Chunk-Size log

Log size≈ (log (# of procs) + log (max chunksize))×
# dyn. insts

chunksize
bits Log size≈ log (# of procs)×

# dyn. insts

chunksize
bits

Predefined Name: PicoLog
Chunk Execution: Arbiter enforces predefined commit order
Commit — Replay: Arbiter enforces predefined commit order
Interleaving Processors execute chunks normally

Log size≈ 0 bits

Table 2. Execution modes in chunk-based systems.

This can be accomplished by enforcing a given commit policy —
e.g., pick processors round-robin, allowing them to commit one
chunk at a time. The drawback is that, by delaying the commit
of completed chunks until their turn, we may slow down execution
and replay.

Based on all these ways to reduce the log size, we have threeEx-
ecution Modesin chunk-based systems (Table 2). In the following
discussion, we assume that the machine has anArbiter module that
observes the order of chunk commits. The arbiter can be associated
with the bus controller in a bus-based machine or be an indepen-
dent module in a machine with a generic network as in BulkSC [2]
or Scalable TCC [3].

In the Order&SizeMode (top left), chunking is not determin-
istic and the chunk commit interleaving is not predefined. During
execution, the arbiter logs the sequence of committing processor
IDs in aProcessor Interleaving(PI) log. In addition, processors log
the size of the chunks they commit in the per-processorChunk Size
(CS) log. During replay, each processor generates chunks that are
sized according to its CS log, and the arbiter enforces the commit
order present in the PI log. The combination of a single PI log and
per-processor CS logs constitutes the memory-ordering log. The
table shows the estimated size of the memory-ordering log, where
maxchunksizeandchunksizeare the maximum and average chunk
size, respectively.

In the OrderOnlyMode (top right), the commit interleaving is
not predefined, but chunking is deterministic. Therefore, there is
no need to log the chunk size. During execution, the arbiter logs
the committing processor IDs in the PI log; during replay, it uses
the PI log to enforce the same commit interleaving. The log size is
smaller because we only have the PI log. In reality, each processor
also keeps a very small CS log where, for each of its few chunks that
were truncated non- deterministically, it records both the position in
the sequence of chunks committed by the processor and the size.

In thePicoLogMode (bottom right), chunking is deterministic
and the commit interleaving is predefined. During both execution
and replay, the arbiter enforces a given commit order. There is no
PI log. Each processor keeps the very small CS log discussed for
OrderOnly. The memory-ordering log is largely eliminated.

Note that a mode where the chunking is not deterministic but the
chunk commit interleaving is predefined (bottom left) is unattrac-
tive. We save log space in the arbiter only to use more in the pro-
cessors.

3.3. DeLorean: A Chunk-Based Execution-Replay
Architecture

DeLorean is our architecture for chunk-based execution-replay
(Figure 2). It takes a machine that supports a chunk-based execu-
tion environment with a generic network and an arbiter for chunk
commit as in BulkSC [2] or Scalable TCC [3], and augments it with
the three typical mechanisms for replay: the memory-ordering log,
the input logs, and system checkpointing.
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Structures also found in other multiprocessor replay proposals 
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Figure 2. DeLorean architecture.

The memory-ordering log consists of the PI and CS logs. They
replace the Memory Races Log Buffer in FDR [15] and RTR [16],
and the Strata Log in Strata [6]. They are configured differently de-
pending on which of the three execution modes of Table 2 is desired
— allowing for different trade-offs between speed and log size. For
each execution mode, Table 3 lists the log entry formats and the
time when the logs are updated.

PI Log CS Log
Execution Log Entry When Log Entry When
Mode Format Updated Format Updated

Order&Size procID Chunk size Chunk
Commit Commit

OrderOnly procID Chunk chunkID, size Chunk
Commit Truncation

PicoLog - - chunkID, size Chunk
Truncation

Table 3. PI and CS logs in each mode. The PI log can be
reorganized based on Strata to reduce its size (Section 4.3).

In theOrder&SizeandOrderOnlymodes, when the arbiter gives
commit permission to a processor during execution, it also saves the
processor’sprocID in the PI log. During replay, the arbiter uses the



sequence ofprocIDs in the PI log to give commit permissions to
processors in the correct order.

We can reorganize the PI log according to the Strata [6] design
and reduce its size by half (Section 4.3).

In the Order&Sizemode, when a processor gets permission to
commit a chunk during execution, it records the number of dynamic
instructions in the chunk (size) in its CS log. In theOrderOnlyand
PicoLog modes, the processor only updates its CS log when the
chunk to be committed has been truncated non-deterministically. In
this case, it stores the processor-local sequence order of the chunk
(chunkID) and itssize. During replay, each processor uses its
CS log to determine when it needs to terminate each chunk (inOr-
der&Size), or only those that were truncated non-deterministically
in the initial execution (inOrderOnlyandPicoLog).

The input logs are similar to those in previous replay schemes.
As shown in Figure 2, they include one shared log (DMA log) and
two per-processor logs (InterruptandI/O logs). The DMA log logs
the data that the DMA writes to memory. During the initial execu-
tion, the DMA acts like another processor in that, before it updates
memory, it needs to get commit permission from the arbiter. When
the arbiter grants permission, the DMA writes to memory and a
copy of the data is saved in the DMA log. Moreover, the arbiter
creates an entry in the PI log with the DMA’sprocID. Note that, in
thePicoLogmode, there is no PI log. In this case, the arbiter records
the “commit slot” of the DMA operation, namely the current value
of a counter that counts the total number of chunk commits since
recording started. Later, during replay, when the arbiter finds the
DMA’s procID in its PI log — or, in thePicoLogmode, when the
arbiter’s count of chunk commits matches a saved DMA commit
slot — the data in the next entry of the DMA log is consumed.

The per-processor Interrupt log stores, for each interrupt, the
time it is received, its type, and its data. Time is recorded as the
processor-localchunkID of the chunk that initiates execution of
the interrupt handler. The per-processor I/O log records the values
obtained by I/O loads. Section 4.2 provides more details.

Like previous replay schemes, DeLorean includes system
checkpointing support, possibly with schemes such as ReVive [9]
or SafetyNet [12]. We do not focus on this issue.

As a summary, the last two columns of Table 1 compare De-
Lorean inOrderOnlyandPicoLogmodes to existing schemes. The
memory-ordering log is either very small or practically nil. We will
see that DeLorean executes at a speed similar to that of RC exe-
cution in OrderOnly mode and only modestly slower inPicoLog
mode. Replay speed will also be shown to be high. The hardware
needed is that of a chunk-based system like BulkSC, IT, or TCC,
which modifies the memory hierarchy more than the conventional
schemes. Processor modifications are largely confined to support-
ing checkpointing.

3.4. DeLorean in the Context of Other Replayers

3.4.1. Initial Execution

Recall that the advantages of DeLorean in the initial execution
are that: (i) it records an environment where memory accesses re-
order and overlap substantially, delivering a performance similar to
that of a relaxed-consistency machine, and (ii) its log is minuscule.
The first advantage comes at the cost of potential squash and re-
execution of code sections. In most cases, the squash frequency is

very small and the execution time is largely unaffected. In theory,
however, squashing can noticeably slow down an application. This
issue is not present in conventional replay schemes.

The minuscule log is the combination of two facts: DeLorean
needs few log entries and each entry is small. For this discussion,
consider theOrderOnlymode. DeLorean naturally combines mul-
tiple dependences between two processors into a single dependence
— something that RTR does at a smaller scale by creating stricter
dependences artificially. This is shown in Figure 3(a), whereall the
dependences between the instructions in the chunks executed byP4
andP5 (shown with arrows in the figure) are combined into asingle
PI log entry. Moreover, as shown in the figure, such log entry is
simply P4’s ID.

Time

P4 P5

(a) (b) (c)

P7P6P4 P5

ChunkDependence

P6P4 P5
PI Log

P4 ID

PI Log

P5 ID

PI Log

P6 ID
P4 ID

Figure 3. Comparing DeLorean to RTR and Strata.

Similarly, like Strata, DeLorean naturally combines multiple de-
pendences across several processors into a single one. Indeed, as
shown in Figure 3(b), when a chunk finishes, it is like asingle-
processorstratum: in the figure, the three dependences are summa-
rized into asinglelog entry, which issimply P5’s ID. Unlike Strata,
though, DeLorean is unable to combine executions from multiple
processors into a single stratum. This is shown in Figure 3(c), where
the chunk-commit log entries forP4 andP6 are not combined as
they would in Strata. However, while a Strata log entry is very wide
— it is a vector of as many reference counters as processors the
machine has — a DeLorean log entry is only a processor ID.

Interestingly, we can reorganize DeLorean’s log according to
Strata’s design and save space. This is shown in Section 4.3.

3.4.2. Replay

An advantage of DeLorean’s replay over previously-proposed
schemes is its high speed: all processors execute concurrently, with
each processor fully reordering and overlapping its memory ac-
cesses. Chunk commit involves a fast check with the arbiter, which
is overlapped with the computation of the next chunk, as in BulkSC.
Intuitively, therefore, replay speed is likely to be high.

In comparison, the processors in the other schemes replay at
most at SC speed (or TSO in Advanced RTR). Moreover, they re-
quire more communication between the replaying processors: FDR
and RTR require a cross-processor communication for each depen-
dence in the log, while Strata requires the replaying processors to
synchronize in a barrier at every log stratum. Finally, as discussed
in Section 2.2, Strata has other potential sources of replay overhead.

In practice, replay is likely to proceed on top of a hypervisor
layer. A detailed analysis of replay requires considering virtualiza-
tion issues that are beyond our scope.



4. DeLorean Implementation
We now consider three implementation aspects of DeLorean:

implementation choices, exceptional events, and an optimization to
further reduce the log size.

4.1. Implementation Choices and Operation

Fundamentally, a chunk-based execution-replay system needs
support for speculative tasking and cross-task address disambigua-
tion — the support needed for transactional memory and thread-
level speculation. Such support can be implemented in software,
hardware, or in a hybrid way. Moreover, there are multiple degrees
of freedom, including whether conflict detection and version man-
agement are done lazily or eagerly. In addition, the network can be
a bus or generic. If generic, we need an arbiter module — which
can be designed in a distributed manner to avoid bottlenecks [2].

DeLorean can be implemented in any of these ways. In this pa-
per, we choose to implement DeLorean using the signature-based
BulkSC [2]. A reason is that signatures enable fast and efficient
memory disambiguation, and an additional log optimization (Sec-
tion 4.3). Moreover, chunks are automatically created by the hard-
ware, eliminating any need to add software annotations to the ap-
plication to indicate when the current chunk should finish. Specif-
ically, a chunk inOrderOnly and PicoLog modes finishes when
the processor has committed a certain fixed number of instructions
since the chunk started. We call such chunk size the standard chunk
size. Finally, we use a generic network with a directory and a single
arbiter module. Appendix A overviews BulkSC.

With this support, Figure 4 summarizes DeLorean’s operation.
During the initial execution inOrder&Sizemode, when a processor
such asP0 or P1 finishes a chunk, it sends its ID and signature
to the arbiter (messages1 and2). Suppose that the arbiter grants
permission toP0 first (message3). In this case, the arbiter logs
P0’s ID (4) and propagates the commit operation to the rest of the
machine (5). While this is in progress, if the arbiter determines
that both chunks can commit in parallel, it sends a commit grant to
P1 (6), logsP1’s ID (7), and propagates the commit (8). As each
processor receives commit permission, it logs the chunk size (9 and
10). In OrderOnly, steps9 and10are skipped. InPicoLog, steps4,
7, 9 and10 are skipped, and the arbiter grants commit permission
to processors according to a predefined order policy, irrespective of
the order in which it receives their commit requests. In all cases,
a processor does not stall when requesting commit permission; it
continues executing its next chunk(s).
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size 
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Arbiter
1sig, P0's ID
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CS Log
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Figure 4. DeLorean’s operation.

During replay, suppose thatP1 finishes its chunk first, and the
arbiter receives message2 before1. The arbiter checks its PI log (or
its predefined order policy inPicoLog) and does not grant permis-
sion to commit toP1. Instead, it waits until it receives the request

from P0 (message1). At that point, it grants permission to commit
to P0 (3) and propagates its commit (5). The rest of the operation
is as in the initial execution but without logging. In addition, inOr-
der&Size, processors use the information in their CS log to decide
when to finish each chunk.

4.2. Exceptional Events

In DeLorean, the same instruction in the initial and the replayed
execution must see exactly the same full-system architectural state.
Only then can the stream of committed instructions be guaranteed
to be the same in both runs. This means, for example, that the two
runs perform the same number of spins on a spinlock, and the same
number of system calls and I/O operations.

On the other hand, it is likely that structures that are not visible
to the software such as the cache and branch predictor will contain
different state in the two runs. This is because, in the two runs,
the relative timing of some events may be different, the number of
chunk squashes may be different, and structures like the cache and
branch predictor may diverge.

Unfortunately, chunk construction is affected by the cache state
— through cache overflow that requires finishing the chunk — and
by the branch predictor — through wrong-path speculative loads
that may cause spurious dependences and induce chunk squashes.
Consequently, we need to be careful that chunks are still replayed
deterministically.

This section addresses this problem. Table 4 lists the excep-
tional events that might affect chunk construction during the initial
execution. In the following, we consider each one in turn.

Do Not Truncate Truncate a Chunk
a Chunk Deterministically Non-deterministically

1) Interrupts 1) Reach limit number1) Attempt to overflow
2) Traps of instructions the cache

2) Uncached accesses2) Repeated chunk collision
(e.g., I/O initiation) (Not for PicoLogand

3) Special system not during replay)
instructions

Table 4. Exceptional events that may affect chunk construction.

4.2.1. Interrupts and Traps

An interrupt during the initial execution does not truncate the
current chunk (Table 4). If the interrupt has low priority, the pro-
cessor waits until the current chunk completes; if the interrupt has
high priority or the current chunk has recently started, the processor
squashes the current chunk. In either case, after this, the processor
starts a new chunk while initiating execution of the interrupt han-
dler. Moreover, an entry in the Interrupt log is created with: (i) the
ID of the new chunk — namely, the number of chunks committed
by this processor up to now plus one — and (ii) the interrupt’s type
and data1.

During replay, interrupts are replayed in the same way in all
execution modes. Specifically, each processor keeps a count of the
chunks it has committed so far. When such count is one lower than

1In PicoLogmode, if the interrupt has high priority, the processor can
request that the arbiter commit the chunk that handles the interrupt immedi-
ately — rather than for the processor to wait until it is its turn to commit. If
so, the arbiter records the “commit slot” of the interrupt chunk like it does
for DMA requests (Section 3.3), to know when to consume it during replay.



the chunk ID in the next entry of its Interrupt log, the processor
starts a new chunk by consuming the Interrupt log entry.

A trap does not truncate the current chunk (Table 4). Instead, the
current chunk simply continues to grow, now executing instructions
from the trap handler. In addition, the trap is not logged, since it
will deterministically reappear during replay. Consider, for exam-
ple, a page fault trap. The instruction that caused it will cause it
again in the replay because the memory state is the same — since
wrong-path speculative loads cannot trigger the fault, and squashed
chunks cannot modify memory state. The TLB state may be differ-
ent during replay, but we assume TLBs managed in hardware.

4.2.2. Deterministic Truncation of a Chunk

There are certain events that truncate the chunk that is currently-
executing in the processor and that will reappear deterministically
during replay (Table 4). They include the trivial case when the num-
ber of instructions committed by the chunk reaches the size limit.
More importantly, they include instructions that are hard to undo
in a speculative environment, like uncached accesses (such as those
that initiate I/O operations) and special system instructions (such as
those that change the processor frequency or mask/unmask inter-
rupts).

Following BulkSC [2], when one these hard-to-undo instruc-
tions is encountered, the currently-running chunk is truncated, the
instruction is executed, and a new chunk starts. Typically, the ex-
ecution of the instruction is not initiated until the previous chunk
commits, and the subsequent chunk does not start until the instruc-
tion commits. There is no need to log the size of the truncated chunk
in theOrderOnlyandPicoLogmodes because the event will reoccur
in the replay and truncate the chunk at exactly the same instruction.
The event itself is not logged either. The only exception is that we
must log in the I/O log the value loaded by I/O loads. Such values
will be provided to the I/O loads when they are encountered again
in the replay.

4.2.3. Non-Deterministic Truncation of a Chunk

Finally, there are two events that truncate the currently-
executing chunk and are not deterministic (Table 4). They are the
attempt to overflow the cache and repeated chunk collision.

When a chunk accesses more memory lines mapping to a cache
set than ways the cache has, there is the danger that speculatively
written data may overflow. Before this happens, execution has to
stop. Squashing the chunk and re-executing it does not help be-
cause the problem will typically reoccur. Instead, we need to trun-
cate the chunk, initiate its commit process, and start a new chunk.
Note that the actual point in the chunk where overflow is detected is
not deterministic. It depends on the actual reordering of loads and
stores; e.g., a wrong-path speculative load may trigger the attempt
to displace dirty speculative data. Moreover, multiple speculative
chunks of a thread concurrently running may interfere and cause
the overflow. Consequently, when a chunk is truncated due to at-
tempted overflow during initial execution, the processor records in
its CS log the truncated size of the chunk and, inOrderOnlyand
PicoLog, thechunkID as well.

During replay, processors use their CS log to identify what
chunks need to be truncated and at what instruction. It is possible
that, due to timing differences between initial execution and replay,
one such chunk would not have caused overflow during replay —

still, it will be truncated to preserve determinism. It is also possible
that, during replay, a chunk unexpectedly attempts to cause over-
flow and has to be committed sooner than in the initial execution.
In this case, the processor, as it commits the shorter chunk, requests
the arbiter to let it commit a second chunk immediately after. This
second chunk has the rest of the original chunk.

The second non-deterministic event, repeated chunk collision,
occurs when, during the initial execution, a chunk is repeatedly
squashed by other chunks. The simplest solution proposed in [2]
is to progressively reduce the size of the chunk until it can com-
mit. This final size is not deterministic. Consequently, the proces-
sor records in its CS log the truncated size of the chunk and, in
OrderOnly, thechunkID as well. Note that repeated chunk colli-
sion cannot occur inPicoLog. This is because a chunk can only be
squashed by a committing chunk and, inPicoLog, there is a prede-
fined chunk commit order.

During replay, processors use their CS log to truncate chunks
that were truncated due to collisions in the initial execution. Note
that, during replay, chunks may suffer a different set of collisions.
However, the problem of repeated chunk collisions cannot occur
because chunks have now a predefined commit order.

Overall, even in the presence of all these types of exceptional
events, DeLorean’s replay is deterministic. Appendix B outlines a
proof for why DeLorean’s replay is deterministic.

4.3. Optimization: Reducing the PI Log Size by
Stratifying It

We can reduce the size of the PI log inOrder&Sizeand Or-
derOnly by applying Strata’s [6] approach to log construction.
Specifically, we design the PI log to record chunk strata. Each stra-
tum is a vector of counters that tell the number of chunks commit-
ted per processor since the previous stratum. These chunks have
no cross-processor conflicts — although they may have within-
processor cross-chunk conflicts. Consequently, we need not record
their exact commit sequence because, during replay, those chunks
among them that belong to different processors can be executed and
committed in any order; those chunks that belong to the same pro-
cessor will serialize their commit by construction.

DeLorean creates a new stratum when the chunk to log next has
these properties: (i) it conflicts with chunks committed by other
processors since the last stratum or (ii) it would overflow the counter
of chunks committed by this processor since the last stratum. We
call this log optimizationstratifyingthe PI log.

Figure 5(a) shows an example of this technique. Assume that
there is a conflict between the chunks from processors3 and 0
whose PI log entries are connected with an arrow. The other
chunks do not have cross-processor conflicts. Also, assume that
each counter in the vector can at most reach2. The figure shows
that stratumS1is created when the chunk from processor0 is next
to be logged, whileS2is created when the last chunk from proces-
sor1 is next to be logged.

We implement this optimization without affecting DeLorean’s
recording speed as follows. Chunks commit as usual. However,
after a chunk commits, rather than dumping itsprocID into the PI
log, we pass its signatureS to a Stratifier Module(Figure 5(b)).
The Stratifier contains: (i) the vector of chunk counters and (ii)
one Signature Register (SR) per processor. The latter contain the



Baseline Architecture Configuration Preferred DeLorean Configurations
Processor Memory BulkSC Order&Size OrderOnly PicoLog
Processors: 8 in a CMP
Frequency: 5.0 GHz
Fetch/issue/comm width: 6/4/5
I-window/ROB size: 80/176
LdSt/Int/FP units: 3/3/2
Ld/St queue entries: 56/56
Int/FP registers: 176/90
Branch penalty: 17 cyc (min)

Private wback D-L1:
32KB/4-way/32B-lines
Round trip: 2 cycles
MSHRs: 8 entries

Shared L2:
8MB/8-way/32B-lines
Round trip: 13 cyc min
MSHRs: 32 entries

Mem round trip: 300 cyc

Signature: 2 Kbits
Commit arbitration
latency: 30 cyc

Max. concurrent
commits: 4

# Simultaneous chunks
per processor: 2

# of arbiters: 1
# of directories: 1

Chunk Size:
2000 inst. maximum
25% chunks<2000inst.

CS log entry:
Variable-sized
1bit if max size
else 12bit

PI log entry:
4bit procID

Chunk Size:
2000 inst.

CS log entry:
21bit distance
11bit size

PI log entry:
4bit procID

Chunk Size:
1000 inst.

CS log entry:
22bit distance
10bit size

Commit ordering:
round robin

Table 5. Evaluated architecture configurations.

(a)

procID 1
procID 2
procID 3
procID 0
procID 3
procID 1
procID 1
procID 1

Conflict

PI Log Stratified PI Log

Stratifier Module
Chunk Counters

Stratified PI Log

Signature Registers 
(SR)

Committed Chunk Info: 
(procID, Signature)

Arbiter

(b)

p0 p1 p2 p3
0 1 1 1
1 2 0 1

1

S1

S2

Ti
m

e

Ti
m

e

Figure 5. PI log stratification: example (a) and design (b).

logical-OR of the signatures of all the chunks from a given proces-
sor committed since the last stratum. When a new chunk arrives at
the Stratifier, if the corresponding counter is at its maximum value,
the system creates a new stratum by dumping the counters into the
PI log. Then, it sets the corresponding SR and counter toSand 1,
respectively, and clears the other SRs and counters. Otherwise,S is
logically ANDed with the other processors’ SRs — without updat-
ing the latter. If there is a conflict, the system creates a new stratum
as above. Otherwise,Sis logically ORed into the corresponding SR
and the corresponding counter is incremented.

5. Evaluation Setup

We use the SESC [11] cycle-accurate execution-driven simu-
lator to evaluate an 8-processor DeLorean Chip Multiprocessor
(CMP). The architectural parameters are shown in Table 5. As
shown in the table, the BulkSC parameters are largely like those
in [2]. The table also shows the preferred parameters for De-
Lorean’sOrder&Size, OrderOnlyandPicoLogmodes. Specifically,
Order&Sizeuses chunks of at most 2,000 instructions, variable-
sized CS log entries (1 bit if the chunk has maximum size or 12
bits otherwise), and 4-bit PI log entries. The latter encode the IDs
of the 8 processors and the DMA. To model an environment with
variable-sized chunks, we artificially truncate the chunk probabilis-
tically: we truncate 25% of the chunks inOrder&Size, giving them
a size between 1 and the maximum size using a uniform probability
distribution.

OrderOnlyuses 2,000-instruction chunks, 32-bit CS log entries
(which include 11 bits for the truncated chunk size and, in lieu of
chunkID , 21 “distance” bits for the number of chunks committed
by the processor since its most-recent truncated chunk), and 4-bit
PI log entries.PicoLoguses 1,000-instruction chunks, 32-bit CS
log entries, and round-robin processor commit order. In our exper-
iments with different chunk sizes inOrderOnlyandPicoLog, we
keep the CS log entry size constant, thus changing the distance bits.
Our simulator models both initial execution and replay.

All log buffers are enhanced with compression hardware that
uses the LZ77 algorithm.

We compare the speed of DeLorean’s execution and replay to
two other systems that do not support BulkSC, speculative tasking,
or logs. The first one is the CMP of Table 5 under RC with spec-
ulative execution across fences and hardware exclusive prefetching
for stores. We call itRC. The second is the CMP of Table 5 under
an aggressive SC implementation that includes speculative execu-
tion of loads and hardware exclusive prefetching for stores. We call
it SC. We assume that the performance of the initial execution in
FDR [15], Strata [6], and Basic RTR [16] is similar to that ofSC.
Finally, we estimate the performance of Advanced RTR using data
on Processor Consistency (PC) performance.

As applications, we use SPLASH-2, SPECjbb2000 and
SPECweb2005. The SPLASH-2 codes are evaluated without sys-
tem references. They run to completion, and include all applications
but Volrend (which fails in our infrastructure). SPECjbb2000 and
SPECweb2005 are evaluated by interfacing the Simics full-system
simulator as a front-end to our SESC simulator. Therefore, we cap-
ture system references as well. SPECjbb2000 is configured to use 8
warehouses, while SPECweb2005 runs the e-commerce workload.
Each runs for over 1 billion instructions after warm-up.

6. Evaluation
In our evaluation, we assess DeLorean’s log size (Section 6.1)

and performance (Section 6.2), and characterizePicoLog (Sec-
tion 6.3).

6.1. DeLorean’s Log Size

Figure 6 shows the size of the PI and CS logs inOrderOnly in
bits per processor per kilo-instruction. We evaluate configurations
with standard chunk sizes of 1,000, 2,000 and 3,000 instructions.
For each of them, we report the size of both logs with and without
compression. In the figure, the CS log contribution is stacked atop
the PI log’s, but it is too small to be seen. The SP2-G.M. bars cor-
respond to the geometric mean of SPLASH-2. For comparison, the
figure shows a line with the average size of the compressed Mem-
ory Races Log in Basic RTR from [16]. We will use this line as a
reference, although we note that the set of applications measured
here and in RTR [16] are different.

The figure shows that our preferred 2,000-inst.OrderOnlycon-
figuration uses on average only 2.1 bits (or 1.3 bits if compressed)
per processor per kilo-instruction to store both the PI and CS logs.
This means that these compressed logs use only 16% of the space
that we estimate is needed by the compressed Memory Races Log
in Basic RTR.

Figure 6 also shows that the size of the CS log is negligible.
Moreover, as we increase the standard chunk size, the size of the PI
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Figure 6. Size of the PI and CS logs in OrderOnly. The numbers
under the bars are the standard chunk sizes in instructions.

log decreases. This is because there are fewer chunks to commit.
However, chunks are also more likely to conflict, and the potentially
higher number of squashes may affect performance.

Figure 7 shows the space required by the CS log inPicoLog.
Recall thatPicoLoghas no PI log. We see that the CS log needs
0.37 bits or fewer per processor per kilo-instruction in all cases —
even without compression. Our preferred 1,000-instr.PicoLogcon-
figuration needs a compressed log with an average of only 0.05 bits
per processor per kilo-instruction. To put this in perspective, it im-
plies that, if we assume an IPC of 1, the combined effect of all eight
5-GHz processors is to produce a log of only about 20GB per day.
This is a very small log. It is 0.6% of the estimated size needed
by the compressed Memory Races Log in Basic RTR. Since the CS
log entries are due to chunk truncation caused by attempted cache
overflow, we see that such an event is rare.
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Figure 7. Size of the CS log in PicoLog. Recall that PicoLog
has no PI log. The numbers under the bars are the standard
chunk sizes in instructions.

Figure 8 showsOrder&Size’s PI and CS log sizes. We can see
that this execution mode requires larger PI and CS logs, sometimes
comparable to Basic RTR log sizes. Our preferred 2,000-instr. com-
pressed configuration uses, on average, 3.7 bits per processor per
kilo-instruction. This is 46% of the estimated space needed by the
compressed Memory Races Log in Basic RTR.
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Figure 8. Size of the PI and CS logs in Order&Size. The num-
bers under the bars are the maximum chunk sizes in instructions.

So far, we have roughly compared the per-processor log size
of two schemes: DeLorean’s 8-processor runs and Basic RTR’s 4-
processor runs. To compare to Strata, we can use the fact that both
the Strata [6] and RTR [16] papers quantitatively compare their

schemes’ log sizes to FDR’s. Alternatively, we can use the num-
bers in the Strata paper — which measure different applications
than we do and are again for only 4-processor runs. In this case,
the Strata paper claims a compressed log size of 2.2KB per mil-
lion memory operations for the 4 processors combined. DeLorean
needs 364B and 13.7B per processor per million memory opera-
tions inOrderOnlyandPicoLog, respectively. This is 64% and 2%,
respectively, of the space Strata claims to need. However, if, to
speed-up Strata’s replay, we also add WAR dependences in Strata’s
log, Strata’s log size increases by 25% [6]. In addition, since the
size of a Strata log entry is proportional to the number of proces-
sors, Strata’s log size may increase substantially for 8-processor
runs. Consequently, this comparison is likely not very accurate.

6.1.1. Stratifying the PI Log

Figure 9 compares the size of the PI log in 2000-instr.Or-
derOnlywithout and with stratification. We consider three Stratified
PI log designs, which differ in the maximum number of committed
chunks allowed per processor per stratum, namely 1, 3, or 7. The
bars are normalized to the non-stratified design. We can see that
stratifying the PI log while allowing 1 or 3 committed chunks per
processor per stratum saves log space. In the case of 1 chunk per
processor per stratum, the PI log size decreases by an average of
54%. This results in an average totalOrderOnly log size of about
0.6 bits per processor per kilo-instruction, or 7.5% of the estimated
Basic RTR log size. Allowing 7 chunks per processor per stratum
results in wasted space and larger logs in SPECweb2005.
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Figure 9. Size of the PI log in OrderOnlywithout and with strati-
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6.2. DeLorean’s Performance

Figure 10 compares the performance ofRCandSCto that of the
initial execution under each of the three DeLorean modes plus the
StratifiedOrderOnlywith one chunk. For comparison purposes, we
also show the performance of a BulkSC environment. All bars are
normalized to the performance ofRC.

The figure shows that the average performance ofOrder&Size
and OrderOnly is only 2-3% lower than that ofRC. Moreover,
some of this reduction is the result of running under BulkSC (which
causes some chunk squashes), as can be seen by comparing to the
BulkSCbar. Consequently, we conclude that DeLorean’s logging
support causes negligible slowdown. The figure also shows that
StratifiedOrderOnlydelivers a performance similar toOrderOnly.
Stratification, therefore, has negligible performance impact.

The figure also shows thatPicoLoghas a lower performance —
on average, execution proceeds at 86% ofRC’s speed. This is still
faster thanSC, which averages 79% ofRC. As we will see in Sec-
tion 6.3,PicoLog’s lower performance is less caused by load imbal-
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Figure 11. Performance of several environments during initial execution and replay. All bars are normalized to RC.

ance due to round-robin commit ordering than to chunk squashes.
This problem especially affectsraytrace . Overall, it can be ar-
gued that a performance 14% lower thanRC is a modest price to
pay for a deterministic replay system that only logs 0.05 bits per
processor per kilo-instruction — or 20GB per day for the combined
eight 5-GHz processors (Section 6.1).

Given that FDR, Strata, and Base RTR have also been shown to
have negligible recording overhead, we estimate their performance
with theSCbar — which is a fairly aggressive implementation of
sequential consistency. It is seen in the figure that all DeLorean
execution modes on average outperformSC, typically substantially.
This is because, through chunk-based execution, DeLorean allows
for very aggressive reordering and overlapping of accesses.

If we estimate the performance of Advanced RTR to be that of
the machine supporting TSO, we can compare Advanced RTR to
DeLorean. TSO’s performance is similar to that of Processor Con-
sistency (PC). Since our infrastructure does not model TSO or PC,
we simply note that previous work showed that PC’s performance
is significantly lower than RC’s [4, 10] — hence significantly lower
than at least that ofOrderOnlyandOrder&Size. Quantitative com-
parisons are not possible due to the use of different applications.

6.2.1. Performance During Replay

We use our replay simulator to estimate the performance of De-
Lorean’s replay. Since replay will likely occur under a virtualized
environment, we penalize the replay speed by disabling parallel
commit and increasing the commit arbitration latency in the arbiter
from 30 to 50 cycles. Moreover, in our simulator, we add random
delays to the replay execution to ensure that the timings are differ-
ent from the initial execution. Specifically, we take the PI log from
the initial execution and use it in 5 different replay runs. In each
run, we add from 10 to 300-cycle stalls before a randomly-selected
30% of the commit operations. We also change the delay of 1.5%
randomly-selected cache hits to that of cache misses and the same
number of cache misses to cache hits. Finally, we report the average
performance of the 5 runs.

Figure 11 compares the performance ofOrderOnly, Stratified
OrderOnlywith one chunk, andPicoLogduring initial execution
and replay. All bars are normalized toRC. From the figure, we see
that, on average, bothOrderOnlyand StratifiedOrderOnlyreplay at
82% ofRC’s speed, whilePicoLogreplays at 72% ofRC. Several
factors contribute to the lower performance of replay, namely the

penalties added, the stall of processors waiting to commit, and two
effects due to keeping several completed but uncommitted chunks:
additional squashes and cache overflows. However, we believe that,
at these speeds, deterministic replay opens up new possibilities in
concurrency debugging.

Stratifying OrderOnlywith one chunk does not appear to hurt
replay performance. Overall, StratifyingOrderOnly has reduced
the log size by half, at some hardware cost, without noticeably im-
pacting the speed of execution recording or replay.

6.3. Characterizing Picolog

We perform a sensitivity analysis to determine howPicoLog’s
performance changes with (i) the number of processors in the CMP,
(ii) the standard chunk size in committed instructions, and (iii) the
maximum number of chunks that a processor may be executing and
are not yet committed. We called the latter the number of simultane-
ous chunks per processor in Table 5. Figure 12 shows the resulting
performance ofPicoLogrelative toRCfor the same number of pro-
cessors. Because our infrastructure does not support the commer-
cial applications on 16 processors, the data in the figure corresponds
to SPLASH-2 only.
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Increasing the number of processors reducesPicoLog’s relative
performance. For example, with one chunk per processor and 1000-
instr. chunks, the performance drops from 87% for 4 processors to
77% for 16. This is because there are more squashes and because it
takes longer for a given processor to get its turn to commit.

The latter can be partly mitigated by increasing the number of
simultaneous chunks per processor. These additional chunks keep
the processor busy while the chunk waits for its turn to commit.
However, the figure shows that we quickly get diminishing returns.
The more chunks we add, the higher the chance for chunk collisions
and attempted cache overflows. In our baseline design (Table 5), we
used two simultaneous chunks per processor.

Finally, larger chunk sizes have little effect for 4- or 8-processor
systems, but hurt performance for 16-processor systems. Large
chunks with many processors tend to induce more conflicts.

Table 6 characterizesPicoLog for 8 processors. TheParallel
Commitcolumns show data on the commit process. TheReady
Procscolumn shows the average number of processors with fully-
executed, ready-to-commit chunks at a given time. On average,
there are 4.2-5.2 such processors. However, not all of them can
commit. Indeed, while chunk commits may overlap if there are no
conflicts, they are initiated in a round-robin manner. Consequently,
if processori is not ready to commit,i+1 cannot commit. TheAc-
tual Commitcolumn shows the average number of chunks that end
up committing at the same time. The average number is 2.6-3.0.

Parallel Commit Commit Token Passing
Appl. Ready Actual Proc Wait Wait Token Stall

Procs Commit Ready Token Cplete Rndtrip Cycles
(Avg) (Avg) (%) (Cyc) (Cyc) (Cyc) (%)

barnes 4.0 2.4 80.4 499 230 661 4.9
cholesky 5.3 3.0 84.7 750 431 793 29.4
fft 3.5 2.3 77.4 411 478 889 2.5
fmm 5.1 3.0 84.0 739 386 788 20.4
lu 3.9 2.3 79.5 487 207 757 5.4
ocean 3.9 2.5 78.4 1067 760 1601 4.2
radiosity 4.9 2.9 82.7 670 403 758 9.3
radix 2.5 2.3 65.6 524 1119 3262 0.3
raytrace 4.6 2.5 78.4 1290 691 1462 34.0
water-ns 4.4 2.6 80.9 541 249 659 9.4
water-sp 4.6 2.6 82.1 489 203 575 2.3
SP2-G.M. 4.2 2.6 79.3 638 403 956 6.0
sjbb2k 5.1 3.0 77.5 1634 694 1841 7.2
sweb2005 5.2 2.9 83.7 1002 612 1346 8.7

Table 6. Characterizing PicoLog.

TheCommit Token Passingcolumns characterize how the “com-
mit token” is passed around processors.Proc Readyis the percent-
age of time that a processor is ready to commit when it acquires
the commit token. On average, it is 77-84%. For those processors
that are ready, theWait for Tokencolumn is the number of cycles
elapsed from when they completed the chunk until they acquire the
token; for those processors that are not ready, theWait for Complete
column is the number of cycles elapsed from when they receive the
token until they complete the chunk. Both of these two numbers
must be smaller than theToken Roundtrip, which is the number of
cycles it takes for the token to circulate through all processors once.
Such number is about 600-3,300 cycles. Finally,Stall Cyclesshows
the fraction of cycles that processors stall because they have com-
pleted two simultaneous chunks and not received the token. On
average, this number is 6-9%.

Table 6 explains the low performance of some codes in Fig-
ure 10. For example, considerraytrace andradix . In ray-

trace , it can be shown that the squashes are concentrated on a
few processors, which slow down the passing of the token for ev-
eryone. As a result, processors complete the chunk before receiving
the token (theWait for Tokencycles are 1,290) and stall often (the
fraction of stall cycles is 34.0%). Inradix , it can be shown that
squashes are spread over many processors. As a result, processors
receive the token before chunk completion (theWait for Complete
cycles are 1,119) and stall little (the fraction of stall cycles is 0.3%).

Finally, DeLorean induces more network traffic thanRCbecause
of signature traffic chunk squashes. It can be shown that the traffic
in Order&SizeandOrderOnly is practically the same as in a plain
BulkSC system which, in turn, is on average 9% higher in bytes
than inRC[2]. In PicoLog, due to the higher squash frequency, the
total network traffic is on average 17% higher than inOrderOnly.

7. Conclusions and Future Work

This paper has proposed DeLorean, a novel scheme for deter-
ministic replay where processors execute groups of instructions
atomically. DeLorean has two fundamental advantages over cur-
rent schemes. First, it records at the speed of the most aggressive
memory consistency models used today — and also replays at high
speed. This makes it useful for production-run debugging. Second,
it summarizes the execution interleaving into a truly small log.

DeLorean’s execution modes offer a trade-off between perfor-
mance and log size. InOrderOnly, DeLorean records at the speed
of RC execution and replays at 82% of RC speed. In contrast, most
other schemes record only at the speed of SC execution and provide
no details on replay speed. RTR presents an algorithm for recording
TSO executions but does not evaluate its impact on execution speed
or log size. Moreover,OrderOnlyonly needs 1.3 bits of compressed
memory-ordering log per processor per kilo-instruction and, with
stratification, only 0.6 bits. We estimate the latter to be 7.5% of the
log size needed by Basic RTR.

In PicoLogmode, DeLorean reduces the memory-ordering log
to 0.05 bits per processor and kilo-instruction, which we estimate is
0.6% of the log size in Basic RTR. In this mode, we estimate that
the total memory-ordering log of an 8-processor 5-GHz machine is
only about 20GB per day. Recording speed decreases to 86% of RC
execution speed — still higher than typical SC speed. Overall, we
conclude that DeLorean greatly enhances the potential of determin-
istic replay to help debug multithreaded codes.

There are many directions for future work. Three of them stand
out. The first one is to adapt DeLorean to work in more conven-
tional multiprocessor environments that do not require hardware
for chunk-based execution. The second one relates to the fact that
there are a variety of implementations of SC. Specifically, the work
involves taking current replay schemes, use very aggressive imple-
mentations of SC, and find out how the schemes compare to De-
Lorean. The third direction involves combining the best aspects
of the different recording approaches (DeLorean, RTR, and Strata)
into a better approach, along the lines described in Section 3.4 and
in PI log stratification. We are working on these areas.
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Appendix A: BulkSC Overview
In BulkSC [2], a processor takes a checkpoint everyN committed in-

structions. The instructions between two checkpoints, called aChunk, are
executed speculatively until either they get squashed due to a data depen-
dence with another chunk, or they all commit at once, after the chunk has
completed. BulkSC relies on speculative tasking support such as that needed
by transactional memory or thread-level speculation to execute dynamic
chunks of instructions atomically and in isolation.

A processor can have more than one speculative chunk of a thread ex-
ecuting at a time. Memory accesses by a processor are allowed to fully re-
order and overlap both within chunks and across chunks. However, chunks
from one or multiple processors must appear to commit in a total order. In
practice, for high performance, multiple chunks are allowed to commit con-
currently as long as the addresses they have accessed do not overlap. Over-
all, BulkSC execution supports SC, although its performance is practically
the same as that of RC execution [2].

BulkSC requires little modifications to the processor — beyond the abil-
ity to take regular checkpoints, which is already feasible today — or L1
cache arrays. Task speculation and address disambiguation are supported by
a Bulk Disambiguation Module (BDM) connected to the L1 controller. The
addresses read and written by a chunk are hash-encoded in hardware into
a Read (R) and Write (W) signature in the BDM. Address disambiguation,
chunk commit and chunk squash are implemented with signature operations
supported in the BDM.

When a processor wants to commit a chunk, it sends its signatures to an
arbiter. The arbiter intersects the signatures with those of the chunks that
are currently committing. If the intersection is empty, the arbiter keeps the
W signature, forwards it to the directory to make the commit visible to all
processors, and grants permission to commit to the processor. While a pro-
cessor is requesting permission to commit a chunk, it continues executing
subsequent chunks — each has its own signatures.

Appendix B: Why DeLorean’s Replay is Deter-
ministic

We outline a proof for why DeLorean’s replay is deterministic assuming
that we use a BulkSC implementation. For brevity, we focus only on the
OrderOnlymode, but a similar reasoning can be followed for the other two.

In DeLorean, a chunk executes atomically and in isolation. It cannot see
any state change while it executes — otherwise it is squashed. The only
state it observes is the state of the system when it is about to commit. Thus,
we make the following observations.

Observation 1The execution path taken inside a chunk only depends on the
state of the system when the chunk is about to commit.

Observation 2 Non-deterministic events that can modify a processor’s in-
struction stream happen at chunk boundaries, and they are logged. They
include both external events (e.g., I/O and interrupts) and internal ones
(stores executed by other processors’ chunks, which are made visible when
those chunks commit).

Observation 3Chunk sizes in the initial execution and in the replay are the
same because the decision of when to truncate a chunk is either determin-
istic (it depends on the instruction stream itself) or reproducible (it is based
on information found in the CS log).

We now define deterministic replay and show that DeLorean’s replay is
deterministic.

Definition TheGlobal Commit Count(GCC) is the number of chunks com-
mitted by all processors since execution began.

Definition An Interval I(n,m)of execution is the period between GCC=n
and GCC=n+m, where m≥1.

Definition The deterministic replayof interval I(n,m) is a new interval
I’(n,m) such that the initial and final system states, the number of chunks
executed by each processor, the instructions in each chunk and the chunk
interleaving are the same inI andI’ .

Theorem Assuming that a system checkpoint was taken at GCC=n, De-
Lorean can deterministically replay an execution for the interval I(n,m).

Proof We use induction onm. Start withm=1. The PI log has a single
entry (say, processorPi) and the system state has been restored to that at
GCC=n. As replay starts, all processors execute, but the arbiter only allows
Pi to commit. Because no other processor can commit, the system state
that Pi observes is the one at the checkpoint. AsPi replays its chunk,
Observation 1 tells us that the path taken by the execution inside the chunk
will be the same as in the initial execution. Moreover, as per Observation 3,
the number of instructions in the chunk will also be the same as in the initial
execution. Finally, if the chunk was affected by an external event in the
initial execution, Observation 2 tells us that the event was logged. In the
replay of the chunk, we simply reproduce the logged event. Overall, the
system has replayed deterministically.

We now assume that the system replayed deterministically for the first
k committed chunks (k<m) and show that it will also do so for thek+1
commit. At GCC=k, we know that: (i) the next processor in the PI log (say,
Pi) is the one that executed next in the initial execution; (ii)Pi is at the
same instruction as it was in the initial execution; and (iii) the system state
thatPi’s chunk observes now in the replay is the same as it observed in the
initial execution. We can use observations 1, 2 and 3 like inm=1 to show
that chunkk+1 is replayed deterministically. Therefore, the system replays
deterministically.


