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Abstract

We propose Last Writer Slicing (LWS), a mechanism for

tracking data provenance information in multithreaded code

in a production setting. Last writer slices dynamically track

provenance of values by recording the thread and operation

that last wrote each variable. We show that this information

complements core dumps and greatly improves debugability.

We also propose communication traps (CTraps), an exten-

sible framework that uses LWS to interpose on operations

that lead to inter-thread communication. We show how to

use CTraps to implement multiple dynamic analysis tools for

mulithreaded programs. Our evaluation on server programs

and PARSEC benchmarks shows that LWS has low run time

overheads (0–15%) for many applications,including mem-

cached, LevelDB, MySQL, and Apache. Our debugging case

studies of real, buggy programs shows that LWS are indeed

useful for debugging.

1. Introduction

Multi-threaded programming is challenging. In contrast to

simple sequential reasoning, multi-threaded programs re-

quire complex reasoning about many threads and their in-

teractions. Threads primarily interact by reading and writing

shared memory locations and different threads’ reads and

writes interleave arbitrarily and nondeterministically. Dif-

ferent interleavings can lead to different behaviors, some of

which may be undesirable, like crashes or data corruption.

Such undesirable interleavings often evade testing and cause

production failures because complete concurrency testing is

infeasible.

The problem that this work addresses is that debugging

support for understanding thread interactions is inadequate.

Today, programmers use a debugger to examine memory

state during a debugging execution or by loading a core

dump after a failure. Examining memory reveals what the

state of the program is (e.g., “is the pointer null?”). Unfor-

tunately, the real question programmers must answer is why

the state of the program is what it is (e.g., “what thread and

instruction made the pointer null?”). Understanding why a

program entered an undesirable state (e.g., crashed) is the

key to fixing buggy code to prevent that state. Aiding devel-

opers in this understanding for failed production executions

is especially important because hard-to-find bugs may man-

ifest in production only.

Our approach is to provide the programmer with data

provenance information that can be examined alongside the

program’s memory state (i.e., core dump). Provenance infor-

mation describes why a memory location contains its value.

In this work we develop a new provenance tracking mecha-

nism called Last Writer Slicing (LWS). A memory location’s

last writer slice is a record containing the program point and

the identifier of the thread that last wrote data to that memory

location. As the program executes in production, we collect

last writer slices for each potentially shared memory loca-

tion, recording the provenance of the data in each location.

Last writer slices are saved with a core dump and are avail-

able in the debugger.

We have three goals for LWS: (1) To collect general

provenance information, not limited to certain values or lo-

cations only. (2) To provide provenance information focused

on how threads interact to aid in understanding concurrency

bugs. (3) To engineer our system to have overheads low

enough for use in production, aiming for a 10 – 50% maxi-

mum overhead.

Last writer slices are primarily useful for concurrency

debugging, but provenance information is the foundation of

many other concurrency analyses. Several tools from prior

work have used ad hoc last-writer information as part of

more heavy-weight analyses in domains like bug detection

(e.g., [11, 16]), automatic debugging (e.g., [13, 19, 32]),

profiling (e.g., [7, 26]), and program understanding [29].

Motivated by these ad hoc efforts, we develop a dy-

namic analysis framework called Communication Traps or

CTraps. CTraps uses the provenance information provided

by last writer slices to identify memory accesses that lead to

communication between the threads. Communication occurs

when a thread accesses memory last written by a different

thread and CTraps delivers a software trap to a thread when

it communicates with another thread, giving it information

about how communication occurred. Programmer-defined

CTraps Applications can implement arbitrary analysis using

that information. By default, CTraps has low overheads, ap-

propriate for production in many cases. As our evaluation
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Figure 1: System Overview. Last writer slicing tracks prove-

nance, which augments the core dump and enables provenance

debugging. CTraps uses provenance to convey communication

to CTraps applications, which implement concurrency analyses,

like communication graphs [19] or CBI [13].

shows, the overhead of CTraps applications scales with the

complexity of their analysis. Figure 1 shows the relationship

between last writer slices, CTraps, and CTraps applications.

Contributions of This Work To summarize, this work

makes several contributions:

Last writer slicing (LWS): a provenance tracking mecha-

nism useful for concurrency debugging. We present an LWS

implementation efficient enough for production use.

Communication traps (CTraps): an extensible framework

for implementing concurrency analyses, built on LWS.

Efficacy evaluation: We show that LWS is useful for de-

bugging with a study of several real concurrency bugs. We

show CTraps is useful for building concurrency analyses by

implementing two analyses from prior work [13, 19, 23].

Performance evaluation: We show that in many cases our

designs have overheads low enough for use in deployment

(0–15%) with a study of a diverse set of real programs (e.g.,

MySQL, memcached and the PARSEC benchmarks [3]).

2. Background

This section motivates the use of LWS in deployed systems

by showing how provenance is useful for debugging an ex-

ample program. We then provide context for CTraps by dis-

cussing other concurrency analyses that use provenance.

2.1 Debugging and Data Provenance

Prior work shows that data provenance information is di-

rectly useful during program debugging. The WhyLine De-

bugger [14, 15] showed that when programmers debug, they

benefit from the ability to ask provenance (“why”) questions

of their debugger. Bad Value Origin Tracking [4] is a lim-

ited form of provenance analysis that tracks intructions that

stored certain unusable values. The authors of Bad Value

Origin Tracking showed that even such limited provenance

information helps understand some bug root causes. Like

these prior efforts, we focus on using provenance analysis

for debugging the root cause of a failure, rather than detect-

ing unknown bugs.

Figure 2 shows how provenance helps debug code from

the JDK-1.4 stringbuffer library, adapted to C++ in prior

work [31]. The stringbuffer object pointed to by sb in Thread

1’s code contains a buffer and a variable called count that

stores its length. The append() code should atomically read

sb->count and update the string’s buffer (the full update

StringBuffer::erase(start,end){

    int len = end - start;

  if (len > 0) {  

      //modify buffer

      this->count -= len;  } return; }

StringBuffer::append(StringBuffer *sb){ ...

    int len = sb->length();//returns sb->count

    int newcount = count + len;

    

    assert( len < sb->count ); //in sb->getChars()    }

A

B

Thread 1 Thread 2

Thread 1's len = 10

shared sb->count = 5

BCore Dump @

Bug: Thread 2 modifying sb->count 

makes len  inconsistent

Assertion Fails! len and sb->count are both defined but 

Thread 1's len is stale. Ask:  Why is len 10 and count 5? 

Interleaves 

Thread 2 may exit  

erase() before the failure, 

masking any connection.

Figure 2: Atomicity violation in string buffer code. The core

dump does not reveal the connection between append() and

erase(), which is crucial to understand the bug.

code is not pictured). The failure occurs when the append()

code in Thread 1 is interleaved with the erase() code

in Thread 2 as indicated in the figure. The erase() code

updates the buffer’s count, making the version that Thread

1 read into len stale. Thread 1’s assertion fails at B using

the stale len value, causing a crash.

When the failure occurs, Thread 1 is at the assertion in

append(). However, Thread 2 may have completed its erase

and moved on to some unrelated code. Thread 2’s call stack

may lack evidence of its involvement in the failure, despite

the fact that its interleaving with the append() code is the

root cause. The core dump shows that length and buffer are

inconsistent, but does not show why they are inconsistent.

Understanding the connection between append() and

erase() is the key to fixing this bug. The provenance of

the value stored in sb->count at B was the write at A in

erase(). Provenance information shows the programmer

that key connection. Prior provenance work on origin track-

ing for unusable values [4] does not help here. The involved

values are inconsistent, but they are all usable so their prove-

nance would not be tracked.

Another challenge posed by this bug is that it mani-

fests as a failure infrequently and under only real-world

conditions. Prior slicing and provenance debugging tech-

niques [15, 24, 27], have overheads too high to use in pro-

duction. Used offline, these techniques may not observe the

failure in a reasonable amount of time and triggering the

bug may require unavailable real-world inputs making of-

fline analysis impossible. A better strategy is to continuously

collect that information in deployed systems and package it

with core dumps sent to programmers with bug reports. In

this work, we propose a LWS design that espouses this in

situ data collection strategy and does so with overheads ap-

propriate for production systems.

2.2 Communication Tracking in Concurrency

Analyses

Many concurrency analyses monitor inter-thread commu-

nication. The domains of these analyses include debug-

ging [9, 17, 19, 22, 23, 25, 32], software engineering [29,

30], anomaly detection [8, 11, 13, 16], bug and failure avoid-

ance [12, 18] and concurrent performance profiling [2, 7].

Despite the potential of a general communication track-

ing mechanism, prior work has largely relied on ad hoc com-

munication analyses. For example, DefUse [23] tracks com-



munication via read-after-write (RAW) dependences, but not

write-after-write (WAW) dependences. Recon [19] tracks

some inter-thread WAW and RAW dependences. These anal-

yses could both be built with a general communication track-

ing mechanism. Unfortunately, their single-purpose imple-

mentations track slightly different information, making them

incompatible and difficult to compose.

These analyses vary in their purpose and environments,

but a cross-cutting theme is the advantage reaped from their

use in a deployment environment. Debugging tools, profil-

ers, and anomaly detectors benefit from seeing diverse, real-

world behavior. Dynamic failure avoidance techniques must

work in deployed systems to be effective. Deployment en-

vironments demand low overheads and all of these analy-

ses benefit from a general, high-performance communica-

tion tracking framework. Unfortunately, many of these tech-

niques are built using heavy-weight infrastructure, like bi-

nary instrumentation [20], with overheads too high for pro-

duction.

There is a need for a general communication tracking

framework that has performance overheads that are low

enough to use in production systems. As we describe in

Section 4, we aim to satisfy that need in this work.

3. Last Writer Slices

A last writer slice is a dynamic property of a memory lo-

cation at a point in an execution. A memory location’s last

writer slice records the program point and thread that last

wrote data to that memory location. We gather last writer

slices at runtime by maintaining a last writer table (LWT)

that maps from a memory location’s address to its last writer

slice. Just before a thread writes to a memory location, the

thread first finds the memory location’s entry in the LWT and

updates that entry with its thread identifier and its current

point in the program. After updating the LWT, the thread

performs the original memory access.

Figure 3 shows the basic operation of the LWT. The right

side of the figure shows a program execution with three

threads. On the left is the LWT at the point of each memory

access. There are three key things to notice. First, write

operations update the LWT entry of the memory location

they access. Second, there is no action necessary for read

operations. Making read operations cheap is key to making

the overhead of LWS low enough for production use. Third,

if the program stops at a point like the Rd Y illustrated in

Thread 1, the LWT holds provenance information for the

involved values (i.e., Thread 3 last wrote Y at the code point

shown). That information helps understand why Y holds its

value.

3.1 Debugging with Last Writer Slices

At each point in an execution, a memory location’s LWT

entry represents the provenance of the data stored in that

memory location. Last writer slicing performs no action on a

Last Writer Table

Program Execution
T1 T2 T3

Update

Update

UpdateT1

T
im

e

Thread ID

Write Insn.

Wr X

Rd Y

Rd X

Wr Y

Wr X

...X Y

T1

T1

T1

T2

T3

T3

T3

Crash or breakpoint 

on         ? LWT shows 

provenance of Y s 

value is T3

Rd Y

Figure 3: Basic operation of the last writer table. Different

shapes signify different distinct memory operations.

read operation. Instead, a programmer can examine an LWT

entry at any arbitrary point in an execution and see a value’s

provenance (e.g., at a breakpoint or after a failure). Including

the LWT with core dumps means provenance is available

when post-mortem debugging production failures.

Figure 4 illustrates how the information in the LWT helps

debug the JDK stringbuffer bug introduced in Figure 2. Re-

call that the failure occurs because Thread 2’s execution of

erase() violates the atomicity of Thread 1’s execution of

append(). The LWT entry for sb->count at B shows the

programmer that its last writer was Thread 2 at A. Thread

2 may have run ahead to an arbitrary point in its execution.

Nothing in the core dump implicates erase() in causing

this bug. The last writer slice reveals the interference be-

tween append() and erase() via sb->count, helping the

programmer understand the bug’s cause.

StringBuffer::erase(start,end){

    int len = end - start;

  if (len > 0) {  

      //modify buffer

      this->count -= len;  } return; }

StringBuffer::append(StringBuffer *sb){ ...

    int len = sb->length();//returns sb->count

    int newcount = count + len;

    

    assert( len < sb->count ); //in sb->getChars()    }

A

B

Thread 1 Thread 2

Thread 1's len = 10

shared sb->count = 5

BCore Dump @

Bug: Thread 2 modifying sb->count 

makes len  inconsistent
Interleaves 

Thread 2 may exit  

erase() before the failure, 

masking any connection.

LWS(sb->count) = Thread 2 @ 
BLast Writer Slice @

A

Collected together in production

Figure 4: Using last writer slices to debug an ordering viola-

tion in the JDK 1.4 StringBuffer library. The last writer slice

reveals the buggy interaction between erase() and append().

Another important trait of last writer slices illustrated

by Figure 4 is that when the assertion fails at B, stopping

the execution, the LWT is saved and can be sent to the

programmer with the core dump. Capturing good debugging

information is especially important for concurrency bugs

that manifest very rarely or in the presence of only peculiar

real-world inputs. A primary goal of this work is to show

that we can collect last writer slices with very low overheads

so they can be included pervasively in bug reports.

3.2 Runtime & Compiler Support

Figure 5 shows an overview of our system support for last

writer slicing. The programmer writes their program as

usual. Our compiler instruments write operations in the pro-



gram with calls to our runtime that update the LWT. The

LWT is maintained in the runtime and saved with the core

dump.

Original

Program

LWS  Compiler
Adds LWT 

Update Calls

LWS Executable

LWT

Core

Dump
Debugger/

Bug Report
-Exposes LWT to 

programmer

LWS Runtime Library

-Update LWT @ writes 

Figure 5: Overview of system support for LWS. Our compiler

and runtime library ensure the LWT remains updated so it can

be used during debugging.

The LWT implemented in the runtime library is a shadow

memory that holds one entry for each potentially shared

memory address accessed by the program. Each LWT en-

try records the thread and program point that last wrote to

the entry’s corresponding memory location. When a thread

performs a write to a memory location, our runtime library’s

LWT update function updates the LWT by recording the

thread’s identifier and the program point of the write opera-

tion in the memory location’s LWT entry. A program point

may be an instruction address or a call stack. We use instruc-

tions by default, but we also experimented with 2-address

call stacks.

Collecting last writer slices requires instrumentation on

each write operation. We built an instrumenting compiler

pass that inserts a call to the LWT update function in our

runtime library just before each write that may access data

last written by another thread . LWT update calls are passed

three pieces of information: the address of the memory word

involved in the access, the thread identifier of the accessing

thread, and the accessing program point. We use escape

analysis to identify accesses to unshared data and we do not

instrument them.

3.3 LWT Formalism and Correctness

We developed a formalism of our LWT-based last writer

slices support, but we omit it due to space constraints. We

used our formalism to show that the LWT correctly records

last writer slices. There are two important caveats in our

formal discussion. The first caveat is that the LWT imple-

mentation introduces no synchronization. We proved that

the LWT is always correct in data-race-free programs be-

cause LWT accesses are synchronized by program synchro-

nization. However, if an execution has a data-race, program

memory operations and LWT accesses are no longer atomic.

If such a data-race leads to an unserializable interleaving of

LWT accesses, the memory location’s LWT entry may re-

flect the wrong last writer. The second caveat is that the LWT

assumes that a memory location accessed at one granularity

(e.g., byte-aligned) is never accessed at a different granu-

larity (e.g., as part of a word-aligned access). Assuming ac-

cesses do not overlap ensures there is always only one LWT

entry for each memory location.

4. Communication Traps

CTraps is a framework for analyzing and interposing on

inter-thread communication. CTraps uses LWS (§ 3) to track

inter-thread communication. CTraps exposes communica-

tion events as traps during an execution that trap handlers

can handle to perform analysis and interposition.

4.1 CTraps Design

We now discuss CTraps in more detail by describing the

design of our CTraps system support. Figure 6 shows an

overview of our system support. The programmer writes

their program as usual and compiles it using the CTraps

compiler. The CTraps compiler includes the compiler sup-

port for collecting last writer slices. The CTraps compiler

also inserts calls to the CTraps runtime at points where com-

munication may occur. The resulting compiled executable

links to the CTraps runtime that collects last writer slices

and monitors communication. The runtime loads and man-

ages CTraps handlers when the execution starts via a plu-

gin interface. CTraps handlers, written independently of the

original program implement CTraps applications. Traps are

delivered to handlers by the runtime when operations com-

municate. Together, the CTraps executable and the CTraps

handlers are deployed.

CTraps

Apps.

Original

Program

CTraps 

Executable LWT Debugger

Ctraps Runtime

Handler

API

LWS Runtime

-Track comm. using LWT info

-Register trap handlers

-Call trap handlers @ comm.

Figure 6: CTraps system support.

4.1.1 Compiler and Runtime Support

CTraps delivers software traps before each read and write

operation executed by one thread that accesses memory

that was last written by another thread, i.e., communicating

memory operations. Traps are simply function calls made

before such operations execution. CTraps implements traps

using a combination of compiler and runtime library sup-

port.

Compiler Support Our compiler inserts a call to the CTraps

trap hook function immediately before all read and write

operations to potentially shared variables. Trap hooks are

passed the variable’s address, the accessing thread’s ID, the

type of access, and the program point of the access.

Runtime Support The CTraps runtime implements the trap

hook function, which has two purposes. The trap hook func-

tion detects communication and delivers traps to CTraps ap-

plications when communication occurs. The trap hook func-

tion detects communication by looking up the LWT entry

for the memory location being accessed. If the thread identi-

fier in the LWT entry is different from the accessing thread,

then the trap hook function delivers a trap to the accessing

thread, just before the memory access is allowed to proceed.



To deliver a trap, the trap hook function calls trap handler

routines that are defined in CTraps applications. Trap han-

dler routines are like signal handlers. The CTraps runtime

maintains a list of trap handlers that are registered when

the program starts via a configuration stored in the envi-

ronment. Trap handlers may contain arbitrary application-

specific code. CTraps defines a trap handling API. Trap han-

dlers are passed the four pieces of information passed to the

trap hook, as well as the LWT’s record of the program point

and thread identifier of the last write to the involved location.

4.2 CTraps Applications

CTraps applications are implemented as shared library plu-

gins that are loaded by our runtime. They must implement

the CTraps trap handler API, which requires a trap han-

dler function and permits a constructor, destructor, thread

constructor, and thread destructor, which allow initialization

and disposal of global and thread-local state. Many useful

CTraps applications are possible, several of which were out-

lined in Section 2.2. To demonstrate that CTraps can imple-

ment real analyses with little work, we implemented two

applications. The first application is a variant of an analy-

sis from CCI [13]. The second application is a communi-

cation graph collector, like DefUse [23], Recon [19], and

DMTracker [11].

CCI-Prev Implementation CCI-Prev is a technique from

CCI [13] that records a set of code points that access a mem-

ory location when the previous access to the same location

was by a different thread. We implemented a variant of CCI-

Prev using CTraps that records such a set of code points. In

our implementation, communcating read operations update

the LWT like writes normally do. Under this policy, any op-

eration that accesses a location that was last accessed by a

different thread is recorded. The set of recorded accesses is

the output of the analysis. Our CTraps implementation of

CCI-Prev took about 10 lines of code (on top of our base

system).

Communication Graph Implementation Communication

graphs are the basis of several prior debugging techniques [17,

19, 23]. We implement communication graph collection us-

ing CTraps. When a trap is delivered, our implementation

records communication graph edges composed of the code

point of the last writer to the location being accessed and the

code point of the trapping access. The set of recorded edges

is the tool’s output. Our implementation took about 50 lines

of code.

5. System Implementation

We implemented LWS and CTraps. We built our compiler

support as a plugin for GCC (gcc-4.7). We used GCC’s

points-to and escape analysis support to prune instrumen-

tation on accesses to non-escaping memory locations. Our

compiler instruments calls to free and delete as writes

to the pointer being deallocated. Our analysis handles all

code compilable using this version of GCC except for a

few cases: we do not handle accesses that compile to GCC

BITFIELD REFERENCE IR types because these are undocu-

mented, we do not handle inlined assembly instructions, and

we do not handle C++ exceptions. Note that these limita-

tions of our research prototype are not fundamental and the

limited cases are uncommon.

We built our runtime system from scratch. The LWT is

a fixed size 2GB array of 64-bit words. Each entry packs a

program point and a thread identifier into the 64-bit word.

By default, program points are single instruction addresses,

but we also support limited (2-address) context-sensitivity

by packing the current instruction’s address and the nearest

return address into a 64-bit LWT entry. When an access to

a memory location occurs, we index into the LWT with the

lower bits of the location’s address. Our prototype imple-

mentation uses a lossy resolution policy for hash collisions.

We use this policy in our prototype because it is fast and

bounds memory overheads at 2GB. Collisions are rare (see

Section 6.5), so this simplification is unlikely to be a prob-

lem.

Release We released our implementation, free and open-

sourced, on the web [1] and published it to the GCC plugin

repository. Since its release, we have seen contributions to

our codebase from members of the GCC community and

downloads from interested developers.

6. Evaluation

We evaluated last writer slices and CTraps along several

axes. We show that last writer slices provide information that

is useful during debugging in Section 6.1, looking at a set of

buggy programs and comparing to prior work. We evaluate

our performance overheads and show that last writer slices

and CTraps are feasible for use in deployed systems for a

majority of workloads we studied. We then characterize our

instrumentation and discuss sources of run time overhead.

We show that CTraps is useful by implementing two existing

applications and analyzing their performance.

6.1 Debugging with Last Writer Slices

We illustrate the debugging benefits of last writer slices

by using our system to debug several real-world programs

studied previously in the debugging literature. Table 1 shows

the bugs we studied, describing the program, bug type, and

report information. We followed the procedure described by

the author of [31] for installing and triggering each bug . We

study various bug types, including both single- and multi-

variable bugs and both atomicity and ordering violations.

The table also summarizes our evaluation of LWS’s de-

bugging benefits. We mirror the evaluation strategy of bad

value origin tracking [4] and evaluate our system using their

three evaluation criteria - (1) effectiveness, (2) triviality,

and (3) usefulness. Our technique is effective if it tracks a



App Ver. # Bug # Type Eff.? Triv.? Usef.? O.T.?

jdk1.4 1.70 N/A Atom. Yes No Yes No
pbzip2 0.9.4 N/A Order Yes No Yes Yes
httrack 3.43.9 N/A Order Yes No Yes No
transmission 1.42 N/A Order Yes No Yes No
mysql 4.0.12 791 Atom. Yes No Yes No
apache1 2.0.48 21285 Atom. Yes No Yes Some
apache2 2.2.9 45605 Atom. Yes No Some No

Table 1: Concurrency debugging with last writer slices. We

describe each bug and summarize the debugging benefit of last

writer slices using the evaluation criteria from [4].

correct last writer slice for the value or values involved in

causing the failure. A failure is trivial to debug if its cause

is made obvious by examining the core dump alone, i.e., a

last writer slice is unnecessary. A last writer slice is useful if

it is effective and the thread and code point in the slice help

understand why the failure occurred or how to fix it. We di-

rectly compare to bad value origin tracking [4]. The O.T.

column in Table 1 shows whether their analysis could help

debug each bug, based on the description of their technique.

The results in Table 1 show that for both atomicity and

ordering violation bugs, last writer slices are effective. In

all cases, we found that the last writer slice revealed the

provenance of at least some data involved in the failure, so

LWS was effective. We found that none of the failures we

looked at were trivially debuggable. This finding is consis-

tent with the difficulty of debugging concurrency bugs – the

core dump does not reveal the interaction between threads

that led to a failure, only the result of the interaction.

Last writer slices were useful for helping understand how

to fix the bug in all but one case and useful at least for under-

standing the bug in the remaining case, apache2. The main

reason last writer slices are helpful is that they reveal the

connection between code running in different threads that in-

teracts to cause a failure. Without last writer slices, program-

mers have no easy way of connecting these otherwise dis-

parate parts of a program. The case studies in Section 6.1.1

show in more detail how LWS is useful for debugging and

illustrates its limitations.

Our evaluation shows that bad value origin tracking [4]

is helpful in one case where LWS is useful and provides

limited help in one other case. For a use-after-delete bug in

pbzip2, bad value origin tracking helps. For this bug, when

one thread deletes a variable, it makes that variable unusable

and bad value origin tracking would track that value. When

the failure occurs, the programmer would then know why the

value was deleted.

For apache1, bad value origin tracking may help. The

bug is an atomicity violation that leads to a double free. Two

threads manipulate an object’s reference count and deallo-

cate the object when the count hits zero. Zero-checks and

deallocation should be atomic, but the code does not ensure

they are. If threads interleave their code, multiple threads

might see zero reference counts, which is incorrect. When

that happens, both threads free the object and the second free

causes a crash.

Bad value origin tracking may help in this case. At the

first free, the freed pointer becomes unusable and its origin

is tracked. At the crash, the bad value’s reported origin is the

code point of the free. That information may help debug the

program by suggesting a double free. However, in apache,

many threads perform different tasks and all call the same

free code. Bad value origin tracking does not record the

thread information. The programmer is left unsure whether

the problem is with single-threaded logic or synchronization.

In contrast, last writer slices reports the code point and

thread, making it clear the bug is a concurrency bug and

identifying the involved threads.

6.1.1 Debugging Case Studies

We now provide detailed cases studies showing the debug-

ging role of last writer slices in several of the bugs we exam-

ined.

jdk-1.4 The running example in Figures 2 and 4, and the

text in Section 3.1 describes the benefit provided by last

writer slices in debugging an ordering violation in the JDK-

1.4.

httrack Figure 7 shows how last writer slices help under-

stand the root cause of a concurrency bug from HTTrack-

3.43.9. The program crashes at point B when it calls hts

mutex lock() with an invalid mutex. The root cause of

this bug is that Thread 1 fails to initialize the mutex before

Thread 2 uses it. The core dump is of little debugging use,

only showing that, indeed, the lock is uninitialized. Even if

the programmer compared the core dump from the failing

run to the memory image from a correct execution – a help-

ful debugging strategy – they would find only that in a cor-

rect execution, the lock contains valid mutex state.

int hts_cancel_file_push(...) {

    int ret;

    hts_mutexlock(&opt->state.lock);

    ret = hts_cancel_file_push_(opt, url);

    hts_mutexrelease(&opt->state.lock);

    return ret;  }

void hts_mutexinit(htsmutex* mutex) {

    htsmutex_s* smutex = malloct(sizeof(htsmutex_s));

    pthread_mutex_init(&smutex, 0);

    *mutex = smutex

}

Examining the last writer slices from failing and non-failing executions reveals the ordering violation.

A

B

Failing Run Core dump @Non-Failing Run Memory Image @
&opt->state.lock = <valid mutex state>

B B

&opt->state.lock = <garbage data> or NULL

Thread 1 Thread 2

Non-Failing Run Last Writer Slice @

LWS(&opt->state.lock) = Thread 1@ 

B

A LWS(&opt->state.lock) = <uninitialized>

BFailing Run Last Writer Slice @

Bug: Thread 2 uses the htsmutex before Thread 

1 initializes it.

Figure 7: Using last writer slices to debug an ordering vio-

lation in HTTrack. The provenance information in the mutex’s

last writer slice helps understand the bug’s root cause.

Looking at last writer slices make the root cause clear:

in the failing execution, the last writer slice indicates the

mutex is uninitialized; in the non-failing execution, the last

writer slice indicates the mutex was initialized by Thread 1 at

point A. While the core dump provides no information about

the connection between point A and point B, the last writer

slice reveals that the programmer should ensure B follows

A to prevent the failure. Note that even augmenting the core



dump with bad value origin tracking [4] does not help with

this bug. In the failing execution, origin tracking shows that

the unusable lock is uninitialized, revealing no more than

the core dump. In the non-failing execution, origin tracking

does not monitor the usable lock value, adding nothing. By

contrast, comparing the last writer slices for the failing and

non-failing executions reveals how to fix this bug.

transmission We used last writer slices to debug a use-

before-initialization bug in transmission-1.42. We omit a full

case study due to space constraints, but we mention a few

notable properties of this case. First, like httrack, we de-

bug transmission by comparing the last writer slice from

failing and non-failing executions. Second, last writer slices

reveal all the code and data involved in this bug, making

the bug and its fix clear. Third, bad value origin tracking

does not work in this case because in failing executions, the

bad value has no origin and in non-failing executions, the

involved variable holds only usable values.

mysql We used last writer slices to debug an atomicity vi-

olation in MySQL-4.0.12 that is a critical security vulnera-

bility. Figure 8 shows the buggy code. Thread 1 rotates the

database’s log file. Log rotation should be atomic, but the

lack of synchronization allows Thread 2 to run its insert dur-

ing log rotation. In that case, the insert query is not logged,

manifesting the failure. We added an abort statement to the

non-logging case because this behavior is a security vulner-

ability that the bug report describes as “critical”. Adding the

abort is reasonable, as the bug report describes the else

block as an error case. Running in a debugger, a program-

mer might equivalently use a breakpoint, rather than adding

an abort.

Unlogged database inserts done while the access log is being rotated are a security problem.

LWS(log_type) = Thread 1 @

CLast Writer Slice @

Bug: accessing log while 

log_type == LOG_CLOSED

We added the else in Thread 2.  The bug report is marked 

 critical  and the case in the else is described in the report. 

It is reasonable a developer would add this abort().
A

MYSQL_LOG::new_file(...) {    

    ...

    log_type = LOG_CLOSED;

    //open new log file 

   log_type = save_log_type;   }                             

int mysql_insert(...) { 

    ...

    if (mysql_bin_log.is_open()){  //log_type != LOG_CLOSED      

         mysql_bin_log.write(...)         

    }else{ 

        abort( Security Violation: Insert not logged! );  }  }

Thread 1 Thread 2

B

A

C

Figure 8: Using last writer slices to debug an atomicity

violation in MySQL 4.0.12. The last writer slice reveals the

code that closes the log before a database insertion that goes

unlogged, which is a security problem.

We triggered the bug by running an insert query during

a log rotation and execution stopped at C. The core dump

showed the log was marked closed, which is the failure state

(e.g., log type was LOG CLOSED). However, the core dump

did not reveal why the log was marked closed. The last writer

slice at C for log type shows that it was written last by

Thread 1 at A, in the log rotation code, which should be

atomic. Thus, the last writer slice shows the programmer

the need for log rotation to be atomic with respect to the

insert code to prevent this failure. Bad value origin tracking

does not help debug this bug because log type only ever

contains usable values so it would not be tracked.

apache2 We used last writer slices to debug an atomicity

violation in Apache-2.2.9 and we found that last writer slices

help understand the bug, but not fully how to fix it. The bug

involves a group of worker threads that handle web requests

and a network listener thread that passes requests to the

workers. The server tracks the number of idle workers. When

a worker becomes idle, it increments the number of idlers

and when the listener passes work to a worker, it decrements

that number. The counter’s increments and decrements are

synchronized using condition variables. If there are no idlers,

the listener waits for a signal. When a worker becomes idle

when no others are, it delivers a signal to the listener.

The problem is that the listener does not check the condi-

tion governed by the condition variable after being signaled

on that condition variable. As a result, the listener can in-

correctly decrement the idler count twice, underflowing the

unsigned value, which then causes an assertion to fail. When

the failure occurs, the core dump shows the idler count un-

derflowed, revealing a primary symptom of the bug, but not

providing much help. The last writer slice for the idler count

reports that the listener thread last wrote the idler count at its

decrement operation. That information shows the program-

mer why the underflow occurred, which is helpful for under-

standing the failure. However, we conclude that last writer

slices are only somewhat useful in this case. Solving this

complex bug requires understanding not just the connection

between the underflow and the listener’s decrement, but also

the synchronization protocol that coordinates that decrement

and other accesses to the variable.

6.2 Performance Evaluation: Setup and Benchmarks

We conducted our evaluation on a machine running Linux

2.6.27-7, with a 2.27GHz 8-core Xeon E5520 processor with

2-way SMT and 10GB of memory. We evaluated our system

using the PARSEC benchmarks [3] and several real-world

applications.

6.2.1 PARSEC

We ran PARSEC programs with their native input set, and

with each program’s 8 thread configuration. We have omitted

three of the PARSEC benchmarks because our compiler pass

does not handle C++ exceptions.

6.2.2 Servers

MySQL-5.1.65 MySQL is an industrial-strength database

server. To benchmark MySQL, we used SysBench OLTP

running 8 threads, measuring MySQL’s performance as the

throughput reported by SysBench.

Apache-2.4.3 Apache-httpd is a popular web server. To

benchmark Apache, we used ApacheBench to request a

static html page 1,000,000 times using 8 threads, measur-

ing Apache’s performance to be the throughput reported by

ApacheBench.



LevelDB-1.5.0 LevelDB is a high-performance key-value

store written by Google developers. To benchmark LevelDB,

we used the included db bench utility, running its “Read

while Writing” test with 8 threads. We measure LevelDB’s

performance to be the throughput reported by db bench.

Memcached-1.4.4 Memcached is an in-memory key-value

store frequently used as a cache for web services. We were

unable to find a standard benchmark for Memcached. In-

stead, we wrote a C program that uses libmemcached-0.49

to issue a mixture of 10% load requests and 90% store re-

quests for a single key simultaneously from 8 threads. We

measured Memcached’s performance to be the total time to

complete 10,000 requests in each thread.

6.3 Performance Evaluation

The main performance result of our work is that our designs

impose performance overheads that are low enough for use

in production for many of our workloads. Figure 9 shows

the slowdown suffered by our benchmarks due to LWS and

CTraps running with “no-op” trap hooks (i.e., no handlers),

relative to the natively executing baseline. In these experi-

ments, we consider a run time overhead of 10% or less to be

ideal for production use and a run time overhead of 50% as a

reasonable upper bound on acceptable overhead for produc-

tion use.

Last Writer Slices The data show that LWS has very low

overheads with a geometric mean of less than 10% across

our server programs and less than 50% across PARSEC.

Such low overheads are likely to be acceptable in produc-

tion. In many cases (Apache, MySQL, dedup, canneal),

overheads are negligible. In all but two cases (vips &

swaptions), the overhead of collecting last writer slices

is less than 100%.

CTraps CTraps imposes a geometric mean overhead of

14% for server applications and 110% for PARSEC appli-

cations. In 7 out of 13 of our tests, the overhead of CTraps

is less than 50%. These seven low overhead benchmarks in-

clude all of our server programs, as well as blackscholes,

dedup and canneal from PARSEC. The overhead for these

applications is likely to be tolerable in production. vips

and swaptions saw the highest overheads – around 400%.

We discuss sources of high overheads in Sections 6.3.1

and 6.3.2.

By comparing CTraps and LWS, we see four applica-

tions (dedup, streamcluster, fluidanimate, ferret)

that have CTraps overhead that is probably too high for pro-

duction use (averaging 153%). By comparison, those appli-

cations have a LWS overhead that is likely acceptable for

production use (averaging 38%). These programs perform

relatively more reads than other applications, thus experi-

encing more overhead due to CTraps’s read instrumentation.

These high-level results support our claim that our over-

heads are low enough for deployed systems for many appli-

cations, especially for servers.
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Figure 9: Runtime overhead of CTraps and LWS.

6.3.1 Overheads Due to Conservative Escape Analysis

swaptions had the highest run time overhead in our tests.

We investigated the cause and determined it is largely

due to shortcomings in our escape analysis. We located

the inner-loop function HJM SimPath Forward Blocking.

The function uses two local matrices that are allocated

through an external call. Our escape analysis cannot de-

termine that the matrices are only used locally in that func-

tion, so it conservatively assumes the matrices escape. We

manually inlined the matrix allocation calls (and a matching

deallocation calls), and escape analysis eliminated their in-

strumentation. The program’s overhead dropped from about

420% overhead for CTraps to about 300% overhead; the

change for LWS was from 300% to about 130% overhead.

We also looked at an output matrix passed into the inner-

loop function. The matrix is allocated and deallocated in the

inner-loop’s caller, but is never shared. Eliminating instru-

mentation on accesses to this matrix yielded an overhead of

46% for CTraps and just 30% for LWS.

These manual improvements to the escape analysis re-

duced the run time overheads for these workloads from be-

ing unacceptable for any production environment to being

reasonable for use in production systems. Better escape anal-

ysis would find these performance gains automatically.

6.3.2 PARSEC vs. Servers

We discern several reasons that server programs better toler-

ated the overheads of LWS and CTraps in our experiments.

Independent Parallelism In most cases, the servers we

evaluated have abundant, completely independent parallel

work. Server programs use a pool of threads to handle re-

quests. Each thread incurs some instrumentation latency,

but that latency is hidden by other threads making progress

on independent requests. This analysis also applies to the

PARSEC applications that had performance similar to the

servers. For instance, blackscholes uses largely indepen-

dent threads to compute on different regions of a matrix.

In addition, threads performing independent computation

(i.e., non-communicating computation) are likely to operate

mostly on non-escaping, local data. Local data are not in-



strumented by our compiler, sparing the overhead. We ana-

lyzed the amount of unshared data in each application and

found that for our server workloads, 21–66% of accesses

were to provably local data. Far fewer accesses are provably

unshared for PARSEC: just 8–30%. The difference supports

the fact that the servers have more independent work (i.e.,

more local accesses) than PARSEC.

Interference with Optimization The PARSEC programs

are heavily hand-optimized. Several use hand-coded assem-

bly and cache-aware algorithms. The instrumentation that

accesses the LWT may disrupt such delicately optimized

behavior, leading to higher overheads. Such carefully op-

timized code is often written by an expert. As with other

expert-written code (e.g., lock-free data-structures), this

code may be machine verified or simply not require as much

debugging support as code written by an average program-

mer. Depending on the maturity and level of verification of

code, a programmer can disable LWS and CTraps to pre-

serve performance.

6.4 Context-Sensitivity

We briefly evaluated the cost of context-sensitivity using

CTraps with no-op trap handlers. With 2-address context, the

average overhead for server programs was 18% and for PAR-

SEC was 145%. These data show that context-sensitive anal-

ysis is possible in CTraps with practically low overheads.

6.5 Memory Overheads

As we describe in Section 5 our prototype LWT is a 2GB

hashtable of 8 byte entries. We use a lossy hash collision

policy: all updates always overwrite existing entries. This

strategy fixes memory overheads at 2GB, but frequent colli-

sions may lead to imprecision. We instrumented our runtime

to count collisions and found that for PARSEC applications

the geometric mean rate of collisions was very low - 89 per

10,000 memory accesses. This summary result shows that

our prototype implementation is reasonable, especially for

debugging in production, when low memory use is key. Note

that collisions did not introduce noticable imprecision in our

debugging experiments. When precision is more important

than memory overhead, (e.g., for sound, offline analysis), a

lossless hashtable is a better option.

6.6 Evaluating CTraps Applications

We evaluated our CTraps applications and our results show

that they have modest overheads that scale with their analy-

sis complexity.

Figure 10 shows the performance overheads of CTraps

applications as the slowdown relative to native execution.

The overheads vary across applications and the average run

time overheads are higher than our no-op CTraps application

(Section 6.3). In six cases (the four servers, blackscholes,

and dedup), the overhead for CCI-Prev is tolerable for de-

ployment use (around 50%). This result supports our claim
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Figure 10: Performance overheads of CCI-Prev and Graph Col-

lection implemented with CTraps.

that CTraps helps build useful analyses that have overheads

low enough for deployment for an important class of appli-

cations.

Overheads for communication graph collection are gener-

ally higher and probably too high for production use in most

instances. The higher overheads are not a negative result;

instead, they illustrate the “complexity proportional” nature

of CTraps’ overheads. Our communication graph collector

does more costly data structure manipulations on each trap,

so its overheads are higher. CTraps provides a low-overhead

foundation and applications scale their overhead as neces-

sary.

The PARSEC benchmarks have higher overhead than the

servers for CCI-Prev and graph collection. Graph collection

overheads for vips and streamcluster are the worst cases

we saw (23x and 47x, respectively). We described some rea-

sons for the higher overheads in these tests in Section 6.3.2.

The overheads discussed there are further exacerbated by

the increased cost of reads in these applications. These over-

heads are too high for use in deployment; however, we note

that PARSEC applications are batch focused and compute-

intensive; we expect the long-running, event-driven nature

of server applications makes them a more important target

than PARSEC for these types of analyses in production.

7. Related Work

Debugging with Data Provenance Information Prior work

has shown that some limited forms of provenance help with

debugging [4, 15, 27].

Bad Value Origin Tracking [4] tracked code that wrote

unusable values into variables [4]. That work showed that

revealing the connection between an unusable value’s origin

and a failure it causes is helpful during debugging. Bad value

origin tracking is the closest prior work to this work [4] and

we directly compare to it in our evaluation. At a high level,

bad value origin tracking is like our work because they also

track a form of provenance for debugging.

Bad value origin tracking relates to our work in several

other ways. First, their technique tracks the provenance of

unusable values only – a fraction of all values in an exe-



cution. Our work, instead, tracks provenance for any value

stored in a potentially shared memory location, which in-

cludes a broader set of provenance and targets our technique

to concurrency debugging. Second, for Java programs, bad

value origin tracking has runtime overheads acceptable for

production, which was a goal for our system. Bad value ori-

gin tracking “piggybacks” provenance information on stor-

age allocated by the Java runtime for bad values. Piggyback-

ing is a key to their low overheads. For C/C++, the overhead

of bad value origin tracking is much higher. In C/C++, they

cannot use piggybacking and, instead, use heavy-weight bi-

nary instrumentation with overheads unacceptable for pro-

duction. Our technique has overheads low enough for pro-

duction for C/C++ programs, especially for server applica-

tions. Third, their technique does not explicity record thread

information with tracked origins. Our work focuses on con-

currency and we include thread information. As we show in

Section 6.1 thread information is important for some bugs.

Other work showed that programmers debug more effec-

tively when they can ask “why” questions about values dur-

ing debugging [15, 27]. Like our work, the WhyLine debug-

ger [14, 15] allows programmers to ask questions about why

variables hold particular values during debugging. WhyLine

answers by presenting data- and control-flows that influ-

enced those variables. WhyLine differs from our work in that

it uses slicing on recorded executions to answer provenance

questions, it has high run time overheads, and does not focus

on concurrency.

Program Slicing Program slicing techniques identify use-

ful subsequences of a program’s instructions. Slicing can

work by analyzing program code statically or analyzing ex-

ecution traces dynamically. Many slicing techniques dis-

cussed in the a recent survey [27] monitor control and data

dependences to identify which parts of a program might be

relevant to a task.

Thin Slicing [24], is a slicing technique that is related to

our work. Thin Slicing yields the set of statements that com-

puted on or wrote values that influenced a “seed” variable’s

value. Thin Slicing is similar to our work in that slices pro-

vide provenance and it excludes most control-flow informa-

tion. Thin Slicing is different in that it has overheads too high

for production and focused on minimizing the size of each

slice compared to prior slicing techniques.

Communication and Sharing Analyses Several techniques

have been proposed analyze communication in concurrent

programs and are especially related to CTraps.

A closely related recent effort on dynamic dependence

analysis is Octet [5], which exposes inter-thread communi-

cation soundly to concurrency analyses. Octet reports an av-

erage run time overhead of 26%, which is comparable to the

overhead of LWS and CTraps.

To acheive these low performance overheads, Octet makes

fundamental assumptions about its target system that LWS

and CTraps do not make. To track communication, a thread

in Octet must stop at “safe points” in an execution. At a safe

point, the thread executes extra code to check a message

queue that reports communication with other threads. Octet

assumes safe points at loop back edges, method entries, and

blocking function calls. This assumption is reasonable for

Java, as many Java VMs use safe points to implement GC.

Octet uses existing safe points and their performance base-

line assumes a VM with existing instrumentation at such

safe points. In contrast, C/C++ programs do not have a VM

or existing safe points. Checking a queue on every function

call and method entry is likely to impose a higher perfor-

mance penalty than Octet saw in Java. LWS keeps overheads

practical by relying on program synchronization to keep de-

pendence information consistent — unlike Octet which is

always sound, Data-races may leave LWS data inconsistent.

However, LWS need not pay the cost of safe points and mes-

sage queue checks.

Another important difference between Octet and this

work is that this work illustrates the benefit of directly using

LWS’s provenance information for debugging. Octet does

not explore provenance debugging.

CCI [13], Bugaboo [17], LBA [28], Recon [19], and

DefUse [23] all explicitly track some thread interactions.

Unlike our work, several of these techniques were not de-

signed to run in production systems [19, 23]. A distinguish-

ing characteristic of our work is that it is effective and fast

enough for production without the need to aggregate in-

formation from multiple different sampled executions, like

CCI [13] does. Additionally, our system does not require in-

vasive hardware changes like Bugaboo [17] or LBA [28].

Extensible Program Instrumentation There are many

systems for building analyses using program instrumenta-

tion. Binary instrumentation [6, 10, 20, 21] is general and

tracking provenance and communciation is possible in such

systems.

These systems are similar to CTraps in that they enable

dynamic analyses. They are different from our work because

they rely on dynamic binary translation, yielding overheads

often too high for deployment. We trade some generality for

performance. CTraps is effective mainly in the restricted do-

main of concurrency analyses, but has overheads low enough

for production. Another difference is that our work handles

some of the delicate, performance sensitive code required

concurrency analyses, like last writer tracking. In general

instrumentation systems, programmers write that code from

scratch at their own risk.

8. Conclusions

In this work we proposed LWS, the first technique to col-

lect data provenance information that is not limited to cer-

tain values, is targeted to concurrent programs, and has over-

heads low enough for production use. We showed that dur-

ing debugging, the provenance information provided by last

writer slices reveals crucial connections between different



threads’ otherwise disparate regions of code. Understanding

how code in different threads interacts is essential to con-

currency debugging and this work aids that understanding.

Using last writer slices, we then built CTraps, an extensible

framework for implementing concurrent program analyses

that interpose on inter-thread communication. Trap handlers

implement such analyses in just a few lines of code.
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