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Abstract
Partitioned Global Address Space (PGAS) environments
simplify writing parallel code for clusters because they make
data movement implicit – dereferencing global pointers
automatically moves data around. However, it does not free
the programmer from needing to reason about locality – poor
placement of data can lead to excessive and even unnecessary
communication. For this reason, modern PGAS languages
such as X10, Chapel, and UPC allow programmers to express
data-layout constraints and explicitly move computation.
This places an extra burden on the programmer, and is less
effective for applications with limited or data-dependent
locality (e.g., graph analytics).

This paper proposes Alembic, a new static analysis that
frees programmers from having to manually move computa-
tion to exploit locality in PGAS programs. It works by deter-
mining regions of code that access the same cluster node, then
transforming the code to migrate parts of the execution to in-
crease the proportion of accesses to local data. We implement
the analysis and transformation for C++ in LLVM and show
that in irregular application kernels, Alembic can achieve 82%
of the performance of hand-tuned communication (for com-
parison, naı̈ve compiler-generated communication achieves
only 13%).

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers, Run-time environments; D.3.2 [Language Clas-
sifications]: Concurrent, distributed, and parallel languages

General Terms Compilers; Distributed systems; Languages

Keywords PGAS; LLVM; Locality; Thread migration;
Continuation-passing style
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1. Introduction
When targeting distributed systems, such as commodity clus-
ters, application developers must deal with both parallelism
and locality. Often these are at odds as placing more data on a
single machine node improves locality but may decrease the
ability to exploit parallelism across the entire system. This
lack of separability forces programmers to reason about these
two conflicting drivers of performance in tandem.

Partitioned Global Address Space (PGAS) [8–10] lan-
guages simplify the expression of parallel computations on
large distributed systems. The programmer writes to a shared
memory model, and under the hood the runtime system man-
ages the movement of data. PGAS languages provide the con-
cept of a global pointer that can reference memory anywhere
in the system. Programmers can manipulate and dereference
these just like normal pointers. While elegant, PGAS systems
do not remove the fundamental conflict between parallelism
and locality; in fact, they can easily lead to less efficient ap-
plications [14]. Compared with expressing all data movement
manually, PGAS models may hide cases where the way the
algorithm is expressed leads to excessive communication.

Thus even in a PGAS system, programmers wishing to
exploit the last ounce of performance must manage locality
themselves. The typical way to do this is to carefully layout
data structures such that blocks of data accessed together
are placed together and then when spawning new threads,
explicitly place them where most of the data the thread will
access is located. This is not an ideal solution for two reasons:
(1) it can make otherwise-elegant PGAS implementations ex-
cessively complex with explicit computation movement – in
effect, instead of explicitly moving data around with MPI in-
vocations, the programmer is explicitly moving computation
around using a variety of techniques (spawning new threads,
continuations, etc); and (2) not all applications are amenable
to easy partitions of computation and data – notably, irregular
graph algorithms lack spatial locality, so placing the compu-
tation at any fixed location in the system guarantees several
remote accesses and poor performance.

This paper introduces Alembic, a compilation technique
for PGAS systems that automatically extracts locality from
programmer-created threads. At a high level, Alembic stat-
ically analyzes the code looking for sequences of memory
references that go to the same node in the distributed system.



It then transforms a single programmer-directed thread into a
series of component threads, each spawned on the machine
node that hosts the majority of the data that component thread
will access. Synchronization is added to ensure the sequential
semantics the programmer has expressed are maintained, and
communication is inserted between component threads to
pass the necessary context state.

Alembic provides a substantial performance boost for
PGAS code. Elegantly written PGAS implementations of
common graph algorithms, such as breadth first search,
achieve only 13% of the performance of implementations
where the programmer explicitly (and awkwardly) manages
both parallelism and locality. Alembic can transform these
cleanly written algorithms into high performance locality-
aware codes, achieving 82% of the performance of the hand-
tuned implementation on average.

In summary, this paper makes the following contributions:

• An analysis to prove co-location of global memory ac-
cesses.

• An optimization system that identifies good candidates
for code movement.

• An implementation based on LLVM of these techniques.
• An evaluation of the implementation in a PGAS environ-

ment on commodity cluster hardware.

2. Background
2.1 PGAS Systems
PGAS languages make the assumption that every piece
of global memory is owned by a particular entity which
mediates all accesses to that piece of memory. This entity
often corresponds to a physical locality domain, such as a
node in a cluster. From this domain, any memory it owns can
be accessed directly using simple loads and stores. Memory
accesses to a different node are mediated by the host node
where that memory is located. The distinction between local
and remote memory is hidden from the programmer, typically
via a global pointer abstraction. Having a single node own
each piece of memory makes it much simpler to maintain
a single consistent view of shared data for programs. The
PGAS runtime system ensures that program-level memory
ordering is preserved through the various communication
mechanisms. The PGAS model has been applied to a variety
of system architectures, not just distributed-memory clusters,
and as such often use different terminology. In this paper
we adopt Chapel’s locale [9] to refer to a particular set of
computational and memory resources.

2.2 Grappa
Grappa is a PGAS-style programming model and runtime
system designed for irregular applications. The primary fac-
tors that make an application irregular are unpredictable
data-dependent access patterns and poor spatial and temporal

locality. Examples of such applications include graph ana-
lytics on social networks, fraud detection, or meta-genomic
analysis. To tackle these kinds of applications, the Grappa
runtime, implemented as a C++11 library, uses massive par-
allelism to tolerate the latency of automatically aggregating
communication. In Grappa, the programmer is expected to
provide the runtime with many (potentially millions) of fine-
grained tasks. The runtime then schedules these tasks on the
available computational resources, overlapping the remote
memory accesses from one thread with the productive exe-
cution of other threads. In Grappa, the unit of work being
carried out is referred to as a task. The particular execution
container (stack, context state, etc) that carries out the exe-
cution of a task is a worker thread, or just worker. We will
use the term thread to refer to the more abstract notion of a
sequential thread of execution.

In Grappa, a task is mostly executed by a single worker,
but the runtime has also embraced a delegation-based ex-
ecution model, similar in many ways to the CmPS model
(described below), where arbitrary computations on remote
data are shipped to where the data is in order to be executed.
Delegate operations block the caller until they return their
result in order to preserve a sequential thread of execution.
In the existing system, delegate operations are specified ex-
plicitly and are the only way to access data on other locales.
Composing delegate operations and choosing which code
should be executed where becomes the dominating concern
when writing and optimizing Grappa code, which this work
attempts to mitigate.

2.3 Communication-Passing Style
As the name is intended to invoke, Communication-Passing
Style (CmPS) [23] is an analog to continuation-passing style
for distributed systems. The core idea is that rather than
fetching data remotely, communication is done by sending a
continuation, which contains everything necessary to resume
execution, to the locale where the data resides. Transforming
execution in this way preserves the same sequential execution
expressed in the source program, but now, if there is more
than one access to data on the same locale, no additional
communication is necessary.

In this execution model, communication is still implicit;
however, forcing migration on every access has downsides if
a large amount of state must be carried over to continue
execution. Therefore, the CmPS work also formalized a
notion they call computation migration, where most of the
state is frozen and left behind, and the reduced continuation is
sent, does its computation, and immediately returns to rejoin
the rest of the state it left behind. CmPS programs explicitly
mark when a frozen migration should be done.

CmPS uses a notion of address spaces associated with
objects to reason about when migration is necessary, which
includes ways to recognize when accesses to different objects
refer to the same address space. We refer to this as locality
partitioning.



The CmPS work established formal operational semantics
for a functional language with distributed memory, forming
the basis by which we reason that our own continuation-
passing transformations are sound. Our Alembic transforma-
tion essentially applies the CmPS technique to an imperative,
object-oriented context – our variant of C++ with PGAS ex-
tensions. Additionally, we design analyses to statically choose
when to migrate to minimize communication.

3. Language
We start by introducing some concrete syntax and semantics
to define the context for the rest of the techniques in this
work and establish some common terminology. The aim
of our particular implementation of the PGAS model is to
stay within the confines of plain C++ as much as possible,
both for ease of adoption as well as ease of implementation,
so our extensions are confined to attributes that express
where operations can execute. The syntax and semantics
should not be particularly surprising to anyone familiar with
PGAS languages, and the techniques we apply should be
generalizable to other PGAS environments.

In order to interoperate with the existing Grappa runtime,
which is a plain C++11 library, each of the constructs below
maps to a C++ class and can be coerced between its “library”
and “language” forms. This means that any part of the
application can be written without relying on special compiler
support, and just the region where the new syntax is used will
be manipulated by the passes described in this paper.

3.1 Global Pointers
A fundamental primitive of PGAS-style languages and run-
times is the global pointer, which encodes the locale where
it is valid in addition to the address in the locale’s memory.
These pointers, like normal pointers, may refer to data on
task stacks, static data, or heap allocations. These pointers, all
encoding an address on one particular locale, are expressed us-
ing a new global modifier on pointer types: int global* x.1
We encode the global attribute as a custom address space,
part of the Embedded C extensions [22], which gets prop-
agated into the compiler’s intermediate code. We refer to
pointers without any modifier as local pointers, signifying
that they do not encode a particular locale, but are only guar-
anteed to be valid where they were generated.

Because global pointers are only valid on one particular
locale, a dereference of one implies the chance of communi-
cation, since the actual load or store must be executed on the
locale indicated by the global pointer. The PGAS language
is responsible for ensuring this, typically by turning each
global load or store into a put or get operation supplied by
the runtime.

1 The syntax of pointer modifiers in C/C++ is undeniably confusing. Just as
int const* indicates that the pointer cannot modify the int it points to, so
int global* indicates that the object it points to may be remote. As with
const, global int* would also be correct, but we prefer the first version.

Global pointers are deeply global – pointers computed as
offsets from a global pointer, via member accesses or array
indexing, are also global. The locale of the resulting pointer,
however, is not necessarily the same as the original pointer; it
depends on the operation and the type of the object pointed to.
These rules will be discussed in more detail in Section 4.1.

Method calls through global pointers are allowed. Because
the receiver is now global, any references to the objects’
fields must also be associated with the same locale. And local
pointers used or returned by the method are only valid where
that object resides, so they must also be made global. The
details of this transformation will be covered in Section 4.4.

Global pointers can be explicitly constructed from a local
pointer and a locale, or may come from allocating out of
some global heap which is distributed in some fashion over
the locales in the system. In both cases, the pointer must carry
the information about how the object it refers to is distributed
so that operations on the pointer, such as indexing off of it,
can be resolved correctly. PGAS languages often provide
a variety of choices for how to distribute arrays, such as
Chapel’s domain distributions. In Grappa, we have a simple
block-cyclic heap with a fixed block size. Objects allocated
from the heap must be aligned to the block size so they are not
split between multiple locales. Elements of arrays allocated
from the heap are distributed round-robin among locales.

3.2 Symmetric Pointers
Globally distributed data structures are an important part
of PGAS environments. For instance, it can be useful to
have a hash table that tasks on all locales can operate on
and see a consistent view. These distributed objects can be
implemented in various ways. In Grappa, we implement them
using a handle, or proxy, to the global object on every locale.
Methods called on these proxies from any locale observe
the state of one globally distributed object. Internally, the
implementation of these methods coordinates among all
the other proxy objects and any additional global state to
provide this illusion, allowing optimizations, such as buffered
updates, to be hidden from the user behind this level of
abstraction. These uses are discussed in more detail in a
previous publication [18].

In order for our language to handle these objects correctly,
we introduce a notion of symmetric objects, referred to by
symmetric pointers, which have a copy on every locale. Dis-
tinct from global pointers, which are valid on one locale only,
a symmetric pointer has a valid address on all locales. In order
to refer to one of these globally-distributed objects, all one
needs is a symmetric pointer to its proxies. Methods called
through these symmetric pointers go to whichever copy is on
the current locale, which then takes care of maintaining the
illusion of one distributed object. One additional constraint
is that methods called using symmetric pointers must be ex-
ecuted entirely on one copy of the object – if the method is
inlined, for example, we must ensure all the references to the
symmetric pointer resolve to the same locale. This ensures



that any state maintained internally in each proxy is kept in a
consistent state.

Symmetric pointers can be obtained by using a special
allocation from the global heap that ensures that all the copies
are at the same offset. By obtaining an allocation in this way,
the programmer is asserting that their object has symmetric
semantics. Variables in the C++ global scope, because of the
SPMD nature of the runtime, have the same static offset on
every locale, so they may also be treated as distributed objects
if they are explicitly annotated as symmetric.

3.3 “Anywhere” function annotation
As with unannotated pointers, by default, functions must be
assumed to be local, so cannot be moved in a migration. The
anywhere annotation applied to a function implies that it can
safely be run from any locale. This is useful for functions
that will take care of inter-locale communication themselves,
similar to how symmetric objects work. Furthermore, this
annotation is applied to functions whose semantics allow
flexibility in where they execute, such as print statements and
assertions, or runtime calls such as spawn.

3.4 Tasking and synchronization
In this work, we use the tasking and synchronization provided
by Grappa unchanged. We introduce some constructs here so
that code examples throughout will make sense. As in many
parallel frameworks, we express parallelism in the form of
tasks. A task represents a small amount of sequential work to
be run asynchronously some time after it is spawned. These
short-lived, lightweight parallel threads of execution go by
many names, such as fibers, green threads, or simply asyncs.

Tasks are expressed by passing a C++11 lambda to spawn;
their initial state is made up of captured variables. In gen-
eral, tasks may run asynchronously any time after they are
spawned and must be explicitly synchronized to ensure they
finish. This can be done via ad-hoc synchronization or more
structured constructs. For instance, tasks spawned by parallel
loops, described below, are typically synchronized using a
phaser, which we describe next for reference.

3.4.1 Phased synchronization
A phaser [35] is a flexible, reusable global barrier where the
number of registered events may be unknown at the start. This
is particularly useful for phased rounds of computation where
a large amount of parallel work will be recursively spawned,
for instance while traversing a graph. Tasks may enroll with
the phaser before starting and call complete when finished,
while other tasks can block until the phase is done by calling
wait on it. Phasers are implemented as symmetric objects in
our system, so the same phaser is accessible from all locales.

3.4.2 Parallel loops
Parallel loops (we borrow the name forall used in UPC and
Chapel [8, 9]) conceptually spawn a separate asynchronous
task per iteration. Our parallel loops use a phaser to syn-

struct Counter { long count , winner; };

symmetric Phaser phaser;

void hops(Counter global* A,
long global* B, size_t N) {

forall <&phaser >(�, N, [=]( long i) {
Counter global* a = A + B[i];
long prev = fetch_and_add (&a->count , 1);
if (prev == �) a->winner = i;

});
}

void hops(GlobalAddress <Counter > A,
GlobalAddress <long > B, size_t N) {

forall <&phaser >(�, N, [=]( long i){
Locale origin = here();
phaser.enroll (1);
delegate <async >(B+i ,[=]( long& b){

delegate <async >(A+b,[=]( Counter& a){
long prev = fetch_and_add (&a.count , 1);
if (prev == �) a.winner = i;
phaser.complete(origin , 1);

});
});

});
}

Listing 1: Managing nested delegates and synchronizing
them is significantly more tedious and error-prone. This list-
ing shows code for the HOPS benchmark, a variant on GUPS
that tracks which index from B incremented an element of
A first. The top version uses the extended syntax and relies
on compiler-generated communication; the bottom does ex-
plicit movement and synchronization. The first highlighted
region (green, dashed border), indicates the first migration,
to B[i], the immediately-following region (purple, dotted
border) indicates the second hop.

chronize all spawned tasks and any additional asynchronous
operations that should be completed before the loop is ter-
minated. The non-blocking version, forall<async>, can be
nested inside other loops and typically uses the phaser of the
outermost loop to ensure all iterations complete.

3.5 Example: HOPS
To motivate this work, we use a simple benchmark based on
the HPCC random-access benchmark GUPS [19]. In GUPS,
an array of random numbers, B, is used to index into another
array, A, and atomically modify the element there. There
are more elements in B than A, so most elements will be
visited multiple times. The modified benchmark, which we
call HOPS, additionally tracks which element from B first
reaches a given element in A. This operation is meant to be
representative of work done when visiting objects in irregular
applications, and should look familiar to those who know the
parent-claiming step of the Graph500 BFS benchmark [16].
In addition, we disregard the distribution of the B array
when initially placing tasks in order to better demonstrate
an opportunity to hop directly from one locale to another



when migrating. Two implementations of HOPS are shown
above in Listing 1, one using the extended C++ syntax, the
other explicit communication, with the two migrated regions
highlighted in each.

4. Alembic analysis
Since memory regions are owned by locales, we can think
of accesses to that memory as points in the execution that
are anchored to a particular locale (i.e., a load from a global
pointer must occur on the locale it points to). These anchor
points are constraints on the execution of the task, with the
start of the task anchored wherever the runtime invokes
it. Rather than thinking of remote accesses as necessary
communication points, we can instead think of them merely
as constraining execution of that part of the task to a particular
locale. Many instructions are not anchored, meaning that we
could choose to execute them at either location.

Tasks can be thought of as being divided into regions based
on locality. At each transition between regions, a continuation
is constructed and sent to where the next region is to be
executed. These migrations may either be blocking, in which
case control returns to the home locale immediately after, or
chained, hopping from one locale directly to the next. Though
executed on different locales, these regions still represent a
single sequential task.

Considering task execution in this way enables many
useful optimizations. Regions that include more than one
anchor point can save on round-trips. Values produced and
consumed on the same locale need not be communicated.
Finally, when a continuation constitutes the remainder of the
task, the migration can be asynchronous, immediately freeing
up the worker executing it. We do not consider opportunities
to further parallelize tasks, counting on the programmer to
express the concurrency they desire with explicit task spawns.

The goal of our analysis is to choose how to divide tasks
into locality regions and transform them into a series of
continuation-passing migrations that minimize communica-
tion cost. Our analysis operates at the level of standard com-
piler optimizations, specifically, on LLVM’s intermediate
representation (IR) [27]. First, locality partitioning divides
anchor points into sets proven to be on the same locale. Next,
region selection enumerates and evaluates possible regions.
Finally, a transform pass extracts the regions, computes con-
tinuations, and inserts runtime calls to do the migration. The
following sections describe the steps in more detail.

4.1 Locality Partitioning Algorithm
Anchors are instructions that access memory, restricting them
to execute where that memory is. For most anchor points, the
region of memory is demarcated by a pointer and size. While
the precise locale of the pointer will almost never be known
statically, it is often possible to prove that two anchor points’
locales are the same. The goal of locality partitioning is to
find as many of these co-located anchors as possible.

Expression Locality Operation
Local pointer:
p here() identity
&p[4] locale(p) array index
&p->f locale(p) field offset
p->adj() locale(p) local pointer
p->adj()+9 locale(p) local pointer index
new T[4] here() allocation

Global pointer:
g locale(g) identity
&g[4] unknown array index
&g->f locale(g) field offset
g->adj() locale(g) local pointer
g->adj()+9 locale(g) local pointer index
make_global(p,3) 3 constructor
global_alloc<T>(4) unknown allocation

Table 1: Locality of various pointer operations. In these
examples, assume T is aligned to the block size, and the
method adj() returns a local pointer.

We take an approach similar to value partitioning [1, 5] to
divide anchor points into different locality sets. Value parti-
tioning is a variant of value numbering which tries to divide
value-producing instructions into congruence classes (or sets)
for the purpose of eliminating redundant computations. Con-
gruence is a recursive property, so in order for two values to
be congruent, their respective operands must be in the same
congruence sets. Value partitioning can be approached either
from an optimistic perspective, where values are considered
congruent until proven incongruent, or pessimistic, where
values begin in their own sets and are merged when proven
congruent. Both approaches are conservative.

Locality partitioning differs primarily in the definition of
congruence. Rather than finding when operations compute
the same value, we are concerned with finding when pointer
values are guaranteed to be on the same locale. Table 1 shows
a number of operations on pointers and the information
available about their relative locality. For example, field
offsets in block-size aligned objects are guaranteed to be
on the same locale as the global pointer.

The locality rules supported by our C++ PGAS language
use only local reasoning. One could imagine extending this in
languages with more rich global locality information to prove
co-locality in more situations. For example in Chapel [9],
domain distribution information could be used to prove
that elements with the same index in arrays with the same
distribution have the same locale. To support such features,
additional locality rules would simply need to be added.

The list of locality rules need not be exhaustive – any
operation not covered will be conservatively placed in a
new locality set. Some instructions may have no information
available about the region of memory they access, such as an



opaque function call. These must remain on the home locale
to ensure that they are executed in the context they expect; the
programming model ensures that they handle any necessary
communication themselves.

The current implementation takes a pessimistic partition-
ing approach, initially placing all anchor points in distinct
locality sets and merging sets when it proves they are on the
same locale. This does limit our analysis in the same way as
for value partitioning: we must rely on visiting anchor points
in a topological order, and therefore cannot use loop-carried
information to prove co-locality. A future implementation
could use the optimistic value partitioning approach if this
was shown to be too limiting.

4.2 Region Selection
Once the anchor points have been classified, the next task
is to choose where to execute the remaining unconstrained
instructions. The goal is to come up with a sequence of
migrations, constrained by anchor points, that will result
in the minimum amount of communication. Recall from
Section 2.3 that the continuation must include everything
needed to resume execution; the communication cost is the
size of this continuation. In some situations it is preferable
to leave some state on the original task’s stack, migrate a
smaller continuation, and return to pick up the rest (in CmPS
this was a freeze operation).

This analysis divides the instructions in each task into
regions by locality. All the anchors in a region are proven
to be to the same locale. Non-anchor instructions, including
symmetric pointer accesses and anywhere function calls, are
placed in one region or another to minimize communication.
Though it would likely lead to some improvement in commu-
nication, to simplify the problem, this pass does not consider
duplicating instructions in more than one region, nor splitting
the thread to expose additional parallelism. This means that
regions do not overlap; the task is still a single thread of exe-
cution whose control and data jumps around the system. A
more ambitious transformation which does allow for these is
left for future work.

Before diving into the details of the algorithm, let us revisit
the HOPS code in Listing 1, which will be used throughout
this text to explain the mechanics of Alembic. A parallel
loop from 0–N creates tasks for each iteration. Each task
gets the random value stored at B[i], a global access, and
uses that to index into A, likely referring to another locale,
on which it performs an atomic increment. The LLVM IR
corresponding to this task, on which our analyses operate,
is shown in Figure 1a. Anchors are annotated with their
locality sets and two distinct migrated regions are shown
highlighted. The un-highlighted instructions in these regions
must be hoisted to make the regions contiguous.

Anchor points are annotated with their locality set in blue.
The locality regions we would like to infer are highlighted: the
first migrated region, after the horizontal rule, to be executed
at B[i], and purple for the region at the element in A. However,

instructions highlighted in red, which are anchored where
the task started, currently prevent these regions from being
contiguous.

Choosing the optimal migration policy is intractable: it
would at the very least require full-program analysis, but
would also depend on the layout of data, runtime load balanc-
ing, physical interconnect topology, and many other concerns.
The hypothesis of this work is that automated decisions at
the scope of a task, with the constraints provided by anchor
points, are sufficient to compete with communication explic-
itly provided by the programmer. Even with the above restric-
tion that instructions only appear once, instructions can still
be reordered and because we do not know the optimum num-
ber of migrations, the problem reduces to finding a minimum
k-cut (where k is the number of migrations) on the task’s
dependence graph, which is known to be NP-complete [15].

Instead, we implement a much simpler greedy algorithm
that evaluates a restricted set of candidate regions with a
simple cost heuristic. Rather than evaluating all possible
reorderings, we determine independent regions for each
anchor (migrating back home after each), reorder anchors
only with the home region, and attempt to combine adjacent
regions pairwise in a greedy fashion. Steps of the algorithm
will be explained in the coming sections, but at a high level,
it works as follows:

1. For each anchor, expand a region, starting from the anchor,
to its maximum allowed extent.

(a) When encountering other anchors, determine if they:
(i) share the same locality set, and can be included in
the region, (ii) have a symmetric locality and can be
included, (iii) can be hoisted to the home region, or
(iv) represent a necessary end to the region.

(b) At each step, find the inputs and outputs to the region
and compute the cost heuristic (described below) for
the current region, as if any hoistable instructions were
moved before the region.

(c) Keep track of the best sub-region.

2. Skip anchors that have already been completely subsumed
within another anchor’s best region.

3. For each pair of adjacent regions (those whose maximum
extents overlap or are adjacent):

(a) Compute the continuations needed to migrate directly
between the two.

(b) If the cost combined is less than the cost of the two
separate migrations, then replace the two separate
regions with a new chained region containing both.

4. Mark regions whose exits are the end of the task as async.

4.2.1 Expanding the region
To find regions of code that can be executed at the location
of a given anchor, we start from the anchor instruction and



entry:

  %t.i = getelementptr inbounds %Task* %t, i64 0, i32 0
  %i = load i64* %t.i ;{%t.i, %t.B, %t.A, %t.o}
  %t.B = getelementptr inbounds %Task* %t, i64 0, i32 2
  %B = load i64 global** %t.B ;{%t.i, %t.B, %t.A, %t.o}
  %B.i = getelementptr inbounds i64 global* %B, i64 %i

  %b = load i64 global* %B.i ;{%B.i}
  %t.A = getelementptr inbounds %Task* %t, i64 0, i32 1
  %A = load %Counter global** %t.A ;{%t.i, %t.B, %t.A, %t.o}
  %count = getelementptr inbounds %Counter global* %A, i64 %b, i32 0

  %prev = atomicrmw add i64 global* %count, i64 1, seq_cst ;{%count,%winner}
  %cmp = icmp eq i64 %prev, 0

  br i1 %cmp, label %if.then, label %exit

if.then:
  %winner = getelementptr inbounds %Counter global* %A, i64 %b, i32 1
  store i64 %i, i64 global* %winner ;{%count,%winner}
  br label %exit

exit:
  %t.o = getelementptr inbounds %Task* %t, i64 0, i32 3
  %origin = load i16* %t.o, align 2 ;{%t.i, %t.B, %t.A, %t.o}
  tail call void @complete(%Phaser* @phaser, i16 %origin, i64 1) ;{@phaser}
  ret void

(a) HOPS Iteration task in LLVM IR.

Locality Sets

{%t.i, %t.B, %t.A, %t.o}

{%B.i}

{%count, %winner}

{@phaser}

%count
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%b = load

%A = load

%winner
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(b) Dependence graph for HOPS iteration.

Figure 1: Breakdown of the task executing a single iteration of the HOPS loop. In (a) we show the task’s instructions,
annotated with their locality set (in braces), and divided into regions. At the first horizontal line, the task migrates to
.iB.i (in green). At the second line, execution migrates again for the atomic increment until the end of the task (purple).
Bold, non-highlighted instructions are those that must be hoisted into the first (home) region. The corresponding value
dependence graph is shown in (b) with nodes for instructions labeled with the value they produce. Here boxes are
drawn around regions – arrows that cross these boundaries indicate values that will go into continuations.

iteratively expand the region to include instructions that are
valid to run on that locale. Any instructions proven to not
touch memory are trivially allowed. Thanks to the previous
analysis, any memory-access instructions, including calls to
functions that may access memory, will be associated with a
locality set. Any instructions in the same locality set as the
current anchor are allowed. Symmetric pointers, explained
in Section 3.2, are valid on any locale, so any symmetric
anchors can also be included. For other accesses, we will
attempt to hoist or localize them, which will be explained
next. After determining that an instruction is valid, the cost
function, explained below, is computed for the current region,
and the minimum cost region is tracked.

Though regions may have multiple exits, in order for the
continuation-passing transformation to work, they must have
only a single entrance. To ensure this, basic blocks reached
by the expanding region are visited in reverse postorder,
and basic blocks with incoming edges not already in the
region are disallowed and become exit points. This over-
conservatively disallows loops from being subsumed within
a region, which is a potential pitfall that could be remedied
with further engineering.

4.2.2 Cost heuristic
The cost function attempts to encode the combination of
communication and execution costs inherent in migrating
the given region. In the coarsest view of the runtime system,
the total amount of data moved is worth minimizing, but
the execution overhead – time spent aggregating, sending,
deaggregating, blocking and waking threads – is roughly per
application-level message. These are aggregated into larger
messages by the runtime, but overhead is associated with
each independent task that issues a remote request. Therefore,
our cost function has to take into account number of messages
in addition to the amount of data moved.

Inputs and outputs to each region are computed from
LLVM IR, which is in static single assignment (SSA) form
by design, and used to compute the size of the continuation,
or the total amount of data that needs to be moved, in each
migration. This can be viewed as partitioning the program
dependence graph, similar to how it is done in decoupled
software pipelining [31], but attempting to minimize data
crossing the partitions rather than exposing parallelism. Fig-
ure 1b shows the dependence graph for HOPS, with a node
for each instruction labeled by the value it produces, and



arrows showing uses of those values. Arrows that cross a
region’s bounding box represent values that must go into a
continuation. Grappa’s communication mechanisms currently
only support POD types, allowing Alembic to statically deter-
mine the precise amount of data to be moved. More dynamic
object-oriented features, such as sub-type polymorphism or
serialization of arbitrary additional data, would make this
cost estimate more difficult.

Grouping two anchors with the same locale into one region
eliminates a round-trip message. This is modeled in the cost
heuristic by subtracting the cost of those messages for each
anchor. If all exits from a region return void, this means
it is the final region in the task and the return trip to get
back to the task’s home locale is unnecessary, saving an
additional message, which we also model. The resulting
heuristic equation is:

cost = sizeof(inputs + outputs)
� 2 ⇤ messageCost ⇤ numAnchorsIncluded
� (messageCost, if allExitsVoid)

In Section 5.3, we evaluate this tradeoff empirically to
come up with a reasonable setting for messageCost for our
experimental platform.

4.2.3 Hoisting anchors
We saw earlier, in Figure 1a, that sometimes the order
in which memory accesses are scheduled is not ideal for
migrating because the instruction scheduler is assuming a
different cost model for memory accesses than what we
have in mind. For example, the load of %origin in the exit
block prevents what would otherwise be an asynchronous
migration. It is a clear win in this case to hoist the load before
both regions because it only costs the data movement of 2
additional bytes but saves in total messages sent by allowing
an asynchronous migration. In the general case, one would
need to explore every allowable reordering of anchor points
to find the one that minimizes messages and continuation size.
In our simplified search, we only attempt to move instructions
into the first region (at the home locale), which is a clear case
where reordering will be beneficial. Anytime an anchor with
a different locality set is reached, we check whether it can be
placed in the first region without violating dependences or
locality. We do not consider opportunities to move the access
into other regions, as it would greatly increase the complexity
and search space, and we found it typically did not pay off in
the situations we encountered.

We use LLVM’s memory dependence analyses to deter-
mine if the memory operation clobbers or is clobbered by any
instructions in the region or violates synchronization ordering.
Additionally, to be hoisted, stores must not be conditional
(must dominate all exits from the region). Typically this move
has already been done by previous passes if it is possible. Fi-
nally, we must determine if, recursively, all of the operands
that reside in the region can be hoisted.

If all of these criteria are met, then the operation can be
marked as hoistable. When computing migration cost, candi-
date regions treat them as if they had been moved, but they
are not actually moved unless the minimum-cost selection
includes it. Hoisting instructions is done independent of prior
region selections. There is a slight chance that this hoisting
could have made prior migrations happen if they had known,
but this is a performance, not a correctness, issue.

In the running example, hoisting both of the loads in
HOPS leaves us with two contiguous regions back-to-back,
allowing us to migrate directly between them. The phaser is
symmetric, so calling complete on it can be done anywhere,
so the migration can be asynchronous.

4.2.4 Localizing allocas
Rather than hoisting loads and stores before the region, in
some cases it can be possible to instead change what memory
they are referring to. In particular, temporary objects are
typically allocated on the stack on entry to the function and
used later. If we can prove that a piece of stack-allocated
memory is only used inside a single region, then we can
localize that temporary storage and put it in the migrated
region, so that the loads and stores using it can be done
locally after migration. To determine if this is the case, we
examine all accesses to the region of memory specified by an
alloca instruction, including double-checking with the alias
analysis to ensure nothing else may be using that memory. If
all of the accesses are resolvable, and they all occur in one
region, then we can move the alloca inside the region.

This check can only be done after the region has been
expanded to its maximum extent (see below). Our analysis
speculatively allows the region to include accesses to stack-
allocated memory, expands as far as possible, then does this
check. If any allocated regions are not localizable, we mark
them and redo the region expansion, this time not including
those accesses. This may iterate more times, but each iteration
will remove at least one speculatively-included anchor, so it
will terminate quickly.

4.2.5 Chaining regions
After finding the maximum extents of all single-locale re-
gions, we start evaluating how to stitch these regions together
to form a single migrating thread of execution. We could
simply migrate back to the home locale of the task after
each region, and we would still benefit from moving multiple
anchors on a single locale. However, if two regions to differ-
ent locales are adjacent, additional benefit could come from
hopping directly between the two. Migrating directly saves
costly messages and wake-ups but may increase the size of
the continuation.

To evaluate whether continuing directly to the next region
will be beneficial, we use the same cost heuristic. We compute
the continuation needed to execute the combined region, the
continuation from the first region to the second, and the
outputs of the combined region. If this combined cost is less



than the sum of the individual region costs, which amounts to
whether the continuation between the two regions is smaller
than the cost of an additional message, then the two regions
are chained. As we continue to consider adjacent pairs, longer
chains of linked regions may be generated, resulting in a
task that will seem to hop around between locales, following
where its data is.

4.3 Transforming tasks
This section will explain at a high level how the original
task is transformed according to the choices made by the
analyses above, at the level of LLVM IR. Migration is done by
extracting all of the instructions in the region into a separate
function, sending the continuation in a message to the remote
locale, which, on receipt, invokes the extracted function,
and the output values from the region, needed for the next
continuation, are collected. If the next region is to be executed
back on the original task, these outputs are sent back to rejoin
the rest of the stack. Otherwise, if the next hop is directly
to another locale, then the continuation is constructed, and
another migration is done.

All of the data movement is handled by a generic migrate
call in the runtime. This function takes as input the destination
locale, the function to run, a struct for the continuation, and
a pointer to a struct for storing the outputs. The calling task
blocks until the sequence of migrations returns to rejoin
the stack. In the case where a migrated region includes the
end of the task, the variant migrate_async is used, which
immediately frees the worker to start another task while the
migrated continuation finishes the previous task’s execution
remotely.

Extraction is done using a modified version of the LLVM
CodeExtractor utility. All the basic blocks of the region to be
extracted are cloned into a new function. All of the exits are
redirected to a single return block which returns the output
of a phi to differentiate which exit was taken. At the call site,
this return value is used in a switch to jump to the correct
exit. Before the call, the continuation is constructed on the
task’s stack, and after the call the outputs are loaded from the
other struct passed to migrate.

Figure 2 shows how the HOPS code ends up being trans-
formed. The initial task constructs a continuation with the
values needed for both migrations, and computes the destina-
tion locale. Inside each migrated region, we load the inputs
from the continuation. Finally, in each region, we extract and
use the local pointer from global pointers which are now lo-
cal. Because the two migrations make up the rest of the task,
migrate_async can be used, which allows the initial task to
return immediately, though the enclosing parallel loop waits
for the final migrated region to signal complete.

4.4 Globalizing functions
As mentioned back in Section 3.1, methods can be called on
objects via global pointers. However, this is not expressible

in C++. We allow the C++ frontend to generate these method
calls anyway and fix them ourselves.

To handle method calls on global pointers correctly, they
must be made parametric on the pointer type of the receiver.
This means constructing a new version of the method where
the receiver is a global pointer instead. To do this, we clone
the function, then propagate the changed pointer type through
all the instructions, which may cause other pointer values
to become global. Any local pointers referenced inside the
method are wrapped up in a new global pointer with the
locale of the receiver pointer, including the return value if the
method returns a local pointer. Finally, we replace all calls
where the receiver was cast from a global pointer with a call
to the new globalized version.

In fact, because methods are really just functions, we apply
this same transformation on any functions that accept a local
pointer but are passed a global pointer instead.

4.5 Put/get generation
For comparison, we also implement a version of our compiler
that generates just put and get operations. This is a fairly
standard baseline for PGAS languages without any optimiza-
tions enabled. Each global memory access is replaced with
a call to a corresponding remote operation in the API. After
fixing up function calls with global pointer parameters (as
described in Section 4.4), all of the global memory accesses
are clearly delineated in the LLVM IR. We then simply find
all instances of load, store, cmpxchg, and atomicrmw which
have a global pointer operand and replace them with calls
to the underlying PGAS library (in our case, grappa_get,
grappa_put, grappa_compare_and_swap, etc). To maintain
the sequential semantics implied by the original memory
operations, these operations all block the calling task.

Beyond the generic memory access optimizations applied
by LLVM, our compiler generates fairly naı̈ve puts and
gets compared to optimized communication generated by
other PGAS systems (see Section 6.3). However, the Grappa
runtime dynamically aggregates messages from multiple
tasks and tolerates remote access latency using massive
multithreading which give much of the performance benefit
of those other techniques but with some runtime cost.

5. Evaluation
Our goal in this evaluation is to quantify the extent to which
these static migration analyses and transformations are able to
match the performance of hand-tuned locality optimizations.
First, we evaluate the performance of Alembic on 4 irregular
application kernels. Then we probe more deeply into the
effect of each optimization using the HOPS case study.
Finally, we explore the tradeoff between asynchronous and
blocking migrations in order to empirically choose a value
for messageCost.



Locale X Locale Y Locale Z

Phaser (symmetric)

}
  ret void
  call @migrate_async(%dst, @m1, %cont)
  %cont = @continuation(<...>)
  %dst = call @locale(%B.i)
  %B.i = getelementptr %B, %i
  <load inputs from %t>
void @task(%t) {

}
  ret void
  call @migrate_async(%dst, @m2, %cont)
  %cont = @continuation(<...>)
  %dst = call @locale(%count)
  %count = getelementptr %A, %b, 0
  %b = load %local.B.i
  %local.B.i = @local_ptr(%B.i)
  <load inputs from %cont>
void @m1(%cont) {

}
  ret void

  %local.winner = @local_ptr(%winner)

exit:

  br i1 %cmp, %if.then, %exit

  %winner = getelementptr %A, %b, 1

void @m2(%cont) {

  %local.count = @local_ptr(%count)

  br label %exit

if.then:

  call @complete(@phaser, %origin, 1)

  %prev = atomicrmw add %local.count, 1

  store %i, %local.winner

  %cmp = icmp eq %prev, 0

  <load inputs from %cont>

Figure 2: Alembic transformation of the HOPS task doing multi-hop migration (much-simplified LLVM IR with
types elided). Code added to do the transformation (bold and highlighted blue) includes: for each migration,
construct a continuation and find the destination locale, and in each migrated region, extract local pointers from
global pointers.

5.1 Application performance
The purpose of Alembic is to be able to automatically gen-
erate task migrations that are onerous to do by hand. We
evaluate the analyses on 4 representative irregular application
kernels which were implemented and optimized in previous
work evaluating the Grappa runtime [29]. The existing imple-
mentations have explicit delegate calls to do communication
and move parts of the computation to different locales. These
delegates calls were tuned by hand to get the best perfor-
mance out of the Grappa system, including changes to make
them asynchronous, reduce the number of messages, and
minimize data transferred.

In each application, we ported the most performance-
critical sections, removing all explicit communication and
instead using the C++ extensions described in Section 3 (e.g.,
global*). These sections now rely on Alembic to automat-
ically generate communication for them. In the following
sections we will briefly describe the applications, the sections
ported, and the regions identified by Alembic.

BFS Breadth-first-search is a common kernel used to eval-
uate irregular application scaling, and is the primary bench-
mark for the Graph500 rankings [16]. The benchmark does
a search starting from a random vertex in a synthetic graph
and constructs a tree out of parent vertices for each vertex
traversed. We port the entire timed region; a snippet which
does a single level of the traversal is shown in Listing 2.

Alembic determines that the atomic compare-and-swap
and everything after it can be in an asynchronous migration.
This includes pushing the vertex onto the next frontier, which
can be moved because GlobalQueue is symmetric and safely
handles push operations from any locale.

symmetric GlobalQueue frontier , next;

void bfs_level(Graph symmetric* g) {
Vertex global* vs = g->vertices ();
while ( !frontier.empty() ) {

VertexID i = frontier.pop();
forall <async ,&phaser >(adj(g,vs+i),

[=]( VertexID j){
if (cmp_swap (&vs[j]->parent , -1, i))

next.push(j);
});

}
phaser.wait();

}

Listing 2: Code from BFS which does a single level of the
traversal. Alembic identifies and transforms the highlighted
region into an asynchronous migration.

Connected Components Another core graph analysis ker-
nel is Connected Components (CC). We implement the three-
phase CC algorithm [4] designed for the massively-parallel
MTA-2 machine. The first phase does multiple recursive
traversals in parallel, each labeling vertices with a color.
Whenever two traversals encounter each other, an edge be-
tween the two colors is inserted in a global set. The second
phase performs the classical Shiloach-Vishkin parallel algo-
rithm [34] on the reduced graph formed by the edge set from
the first phase, and the final phase propagates the component
labels back out to the graph.

We port the first phase, which does the traversals and
insertion into the hash set and takes the majority of execution
time; a snippet is shown in Listing 3. Most of the iteration
is able to be subsumed in a single asynchronous migration
because the stack-allocated lambda which is passed to spawn



GlobalHashSet symmetric* set;
Graph symmetric* g;

void explore(VertexID r, color_t color) {
Vertex global* vs = g->vertices ();
phaser.enroll(vs[r].nadj)
forall <async >(adj(g,vs+r), [=]( VertexID j){

auto& v = vs[j];
if (cmp_swap (&v.color , -1, color)){

spawn ([=]{ explore(j, color); });
} else if (v.color != color) {

Edge edge(color , v.color);
set ->insert(edge);
phaser.complete (1);

}
});
phaser.complete (1);

}

Listing 3: The first phase of Connected Components where
we assign colors and insert an edge into the set whenever two
traversals conflict. Alembic detects 2 migrations, highlighted
above. The second region is only able to be asynchronous
because the alloca for spawn could be localized.

void spmv(Graph symmetric* g, double global* X,
double global* Y) {

forall(g, [vx ,vy]( VertexID i, Vertex& v) {
forall <async >(adj(g,v), [=,&v]

(int64_t localj , VertexID j){
Y[i] += X[j] * v->weights[localj ];

});
});

}

Listing 4: Ported code from Pagerank. The index into weights
is local, so just two chained migrations are needed to visit the
element in X and then update the element in Y.

is able to be localized, the set is symmetric, and spawn and
complete are annotated with anywhere.

Pagerank This kernel is a common centrality metric for
graphs which iteratively computes the weighted sum of
neighbors until convergence. The computation essentially
amounts to a sparse matrix dense vector multiply for each
iteration, which in our implementation is parallelized over
vertices in the graph as well as over the adjacencies for each
vertex. We report performance as throughput, comparable
to Graph500’s TEPS measure, computed as the number of
edges in the graph over the average time per iteration.

We port just this multiply section, shown in Listing 4,
which makes up nearly all of the communication and exe-
cution time. This kernel is able to benefit from doing two
continuation-passing migrations back-to-back to go from the
original spawned task which is executed at the source vertex
where the edge weight is, to the corresponding element in
the source vector, and finally to the element in the resulting
vector. That multi-hop migration can all be done with asyn-
chronous migrations, eliminating the need for any blocking

calls (except of course the main task which blocks on the
phaser used to synchronize all this work).

IntSort This benchmark comes from the NAS Parallel
Benchmark Suite [2, 30]. The second-largest problem size,
class D, ranks 0.5 billion random integers sampled from
a gaussian distribution using a bucket sort algorithm. The
performance metrics for NAS Parallel Benchmarks, including
IntSort, are “millions of operations per second” (MOPS).
For IntSort, this “operation” is ranking a single key, so it is
roughly comparable to our TEPS measure.

We port the phase which scatters elements into buckets.
This is done by essentially just appending individual elements
to pre-allocated buckets, which involves a remote fetch-and-
increment and a store. The entire remote end of the scatter is
able to be done with an asynchronous migration.

5.1.1 Performance comparisons
To evaluate the impact automatic migration has on application
performance, we performed experiments comparing compiler-
generated communication against manually-optimized ex-
plicit delegate calls. As explained earlier, the manual imple-
mentations were optimized in previous work evaluating the
Grappa runtime itself, so though they may not be the best pos-
sible implementation, they are the best known so far. For each
application, we compare 2 variants of compiler-generated
communication: individual puts and gets, as described in Sec-
tion 4.5, and Alembic with the messageCost which will be
chosen empirically in Section 5.3.

Experiments were run on a small cluster with 12 nodes,
each with two 6-core Intel Westmere 2.66 GHz Xeon proces-
sors with hyperthreading disabled, 24 GB of memory, and
40 Gbit Mellanox ConnectX-2 InfiniBand interconnect. For
these experiments we run 8 Grappa processes per node as
this gives more reliable performance. The results in Figure 3
show the performance of each application as a throughput
measurement (bigger is better). Also plotted is the total num-
ber of bytes transferred during execution, which is dominated
by application data such as puts and gets or continuations.

It is clear that the naı̈ve put/get model is insufficient,
despite the the runtime’s efforts to mask latency. On average,
manual delegates performed 7.6x better than put/get. This
vast performance pitfall is due to the much larger number of
round-trip messages that must be sent, and is echoed in the
larger total amount of data moved. By looking at the static
migration metrics in Table 2, we can get a sense for how many
messages are saved. For instance, IntSort performs 5 remote
accesses per scatter operation, which can be done manually
with a single async delegate, a ratio of 10 messages to 1, so
the performance difference should be drastic.

One the other hand, for Pagerank the discrepancy is
smaller. The three remote accesses are transformed into two
chained migrations, but the second one is back at the source
locale, so the put/get implementation, which only does one
get, moves less data than the transformed version. However,



Application Anchors
(global)

Migrations
(blocking)

Migrations
(async)

Hoisted
accesses

Allocas
localized

Symmetric
accesses

“Anywhere”
calls

HOPS 3 0 2 2 0 1 0
BFS 4 2 1 1 0 5 0
CC 5 2 1 4 1 13 3

Pagerank 3 0 2 2 0 0 0
IntSort 5 0 1 0 0 0 0

Table 2: Static metrics: frequency of each optimization in each benchmark. Counts are for unique
source-code instances, so more than one inlining location does not count in these metrics. Only the
ported part is counted. HOPS and Pagerank’s two asynchronous migrations are each chained.
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(c) Pagerank (scale-23 graph)
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Figure 3: Application kernel performance: comparing manually-optimized movement against compiler-generated
migration. Experiments were done on 12 nodes with 8 cores per node. Overall, Alembic performs competitively with
manually-optimized communication, and significantly better than naı̈ve puts and gets. This performance is due in part to
reduced data movement, which is also shown. The outlier, Pagerank, is explained in Section 5.1.1.

the additional scheduling overhead of waking the blocked
task is such that the asynchronous version is still faster.

Alembic-generated migrations perform favorably with
manual delegates, on average achieving 82% of their per-
formance. The cause of this shortfall is visible in the total
data moved metric – Alembic moves more data in each of
the applications. Rather than doing template specialization
and inlining as the C++ code does, Alembic currently uses
a C-style interface for migrate which requires an additional
function pointer and phaser pointer in each message, which,
for messages on the order of 16-32 bytes, is significant.

Another situation where Alembic-generated continuations
are larger than necessary is when it includes values which
could be re-computed. One example is in IntSort, where
rather than computing two field offsets from the base pointer,
it includes both pointers in the continuation.

These shortcomings can of course be remedied with some
engineering effort. A technique analogous to C++ template
specialization could be used by the code extraction pass to
make optimized versions of migrate, eliminating the need
for the extra arguments and allowing opportunities to pass ar-
guments through registers. Common register allocation tech-
niques could be applied to determine when to rematerial-
ize [6] values to save space.

Time Messages (billions) Data moved (GB)

0

3

6

9

0.0

0.5

1.0

1.5

2.0

0

10

20

30

put/get

alembic (blocking)

alembic (no multihop)

alembic

manual

put/get

alembic (blocking)

alembic (no multihop)

alembic

manual

put/get

alembic (blocking)

alembic (no multihop)

alembic

manual

Figure 4: Performance of HOPS using manual communica-
tion, naı̈ve puts and gets, or Alembic migration, with various
features disabled. We can see that only with all features en-
abled does Alembic produce the same number of messages
as the manual version.

5.2 HOPS Case Study
Our goal with this study is to explore how various opti-
mizations implemented by Alembic affect its performance.
Put/get does 3 blocking remote accesses, while the manually-
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Figure 5: Exploring the tradeoff between asynchronous and
blocking migrations. The async version must carry additional
data with it, while blocking can leave its data behind. Past 64
bytes, blocking wins out, but performance degrades slowly.

optimized version and the Alembic version both do two
chained asynchronous migrations. Figure 4 shows three met-
rics: execution time, total number of messages, and total
data movement. We can see that blocking migrations end up
moving more data even than put/get. This is because of the
additional function pointer and phaser pointer explained ear-
lier, which results in the greater amount of data for Alembic
compared with manual. The message count metric matches
our expectations closely: both blocking versions have the
same number of messages, the next bar is allowed to do an
async migration, saving a return trip, and the full Alembic
additionally avoids yet another message by hopping directly
between two locales. In the end, Alembic achieves 95% of
hand-tuned performance for HOPS.

5.3 Measuring message cost
The heuristic which drives region selection, described in
detail in Section 4.2.2, relies on having an estimate of
the relative cost of each message. To get a rough idea
of what a good setting for this message cost may be, we
construct another variant of GUPS. The goal is to measure
the tradeoff between making larger continuations, requiring
larger messages for each migration, compared to the benefits
of async migrations. For this experiment, GUPS is modified
to do additional work after the increment to A[B[i]] – it
copies an array of randomly-generated values into a static
variable on the locale.

For the first experimental condition, we manually do an
asynchronous migration containing the GUPS increment and
the array computation, so the statically-sized data array must
be included in the continuation, and synchronization is done
via the default phaser. Alternatively, the second condition
leaves the data array on the original stack, does a blocking
migration to do the increment, and returns to do the array
computation on the original locale. We then vary the size of
the data array and measure the performance.

The results, shown in Figure 5, show that blocking perfor-
mance is flat, because the communication, which dominates
execution time, is constant. The asynchronous migration,
however, varies greatly as the continuation’s size changes.
For smaller amounts of data, avoiding the return message and
task wakeup is a clear win (3.5x better than blocking). As
continuation size increases, there is an initial drastic drop in
performance. This is due to some logic in Grappa’s commu-
nication layer that optimizes for fitting messages plus some
additional metadata in a single cacheline. After that initial
drop, however, performance continues to degrade as more
memory and network bandwidth is consumed. In these exper-
iments on GUPS, the advantage shifts to the blocking version
around 64 bytes of additional data.

Because of this slow degradation, it is safe to err on the
larger side when choosing what to set messageCost to. In our
case, we have chosen to set messageCost to 80, which is large
enough that in our applications, whenever it is possible to
migrate asynchronously, the compiler chooses to do so.

6. Related Work
Program partitioning to reduce communication has been
explored in a variety of systems previously. These can broadly
be separated into solutions related to moving computation
closer to data, offloading computation to a more capable
locale, and other communication optimization techniques.

6.1 Computation migration
Early DSM systems Computation migration was employed
in multiple early DSM systems, most notably MCRL [20, 21]
and Olden [7, 32], to improve performance for unpredictable
access patterns. MCRL, and prior simulation work in the
Prelude language, generated a continuation and appropriate
messages to perform a lightweight migration, but only at
user-annotated procedure calls. On the other hand, Olden
performed a relatively heavyweight thread migration (reg-
isters and top stack frame) at every remote memory access.
Both used heuristics similar to Alembic’s to predict when
to migrate – Olden used static analysis and annotations to
determine how many accesses are co-located, and MCRL
used the dynamic read and write load to determine how to
balance work. Alembic’s migrations are both lightweight
like MCRL’s, and may happen anywhere in a program, as in
Olden. Alembic’s aggressive instruction reordering and alloca
localizing further improve the effectiveness of computation
migration.

Traveling threads The traveling thread execution model [28]
is another notable instance of moving execution context to
data. In this execution model, threads are split up into much
smaller threadlets, consisting of just a few instructions, which
represent a migration to execute that part of the code closer
to the memory it accesses. This work is part of a larger ef-
fort to overcome the von Neumann bottleneck by leveraging
processing-in-memory (PIM) technology [26]. Aimed at of-



floading small snippets of execution to the memory system,
their notion of locale is extremely fine-grained, at the level
of banks of physical memory. Some of the analyses they
describe use a similar minimum-cut optimization strategy
over the dataflow graph to determine where to split threadlets.
Our work could be seen as implementing a form of traveling
thread architecture in software on commodity clusters.

Charm++ & ParalleX Charm++ [25] and ParalleX [24] are
event-driven distributed-memory programming models based
on sending messages between dynamically movable objects.
These models allow for a form of computation migration
via fine-grained asynchronous active messages. While these
models provide opportunities for latency tolerance and scala-
bility, reasoning about sequential control flow can be difficult.
Alembic comes from the opposite direction, taking sequential
tasks and turning them into asynchronous messages.

6.2 Computation offload
Automatic program partitioning has also been explored in the
domain of mobile application offloading, where the goal is
to reduce the load on resource-constrained clients. Wang and
Li [37] partition statically based on a cost heuristic, but rather
than using a fixed cost, specialize for multiple cost ranges
and select among them at runtime. Other work in dynamic
object-oriented languages [36, 38] has modeled communi-
cation patterns with object relation graphs, assigning costs
according to a target platform and doing min-cut analyses
to partition computation and place objects. In the interest of
keeping sensive data on the server, Chong et al. [13] used a
similar notion of “anchoring” computation and optimizing
communication based on those constraints, in this case for
security.

6.3 Communication optimization
UPC Unified Parallel C (UPC) [8] is a PGAS language
with a number of compiler optimizations to make communi-
cation more efficient for the runtime. In addition to common
optimizations such as redundancy elimination, the UPC com-
piler coalesces puts and gets [12] and tolerates latency by
automatically making some remote memory operations asyn-
chronous [11]. The latter optimization involves aggressive
reordering of memory accesses and coordination of data de-
pendences. Expressing global accesses as C++ pointer deref-
erences allows us to leverage built-in optimizations, such as
simple redundancy elimination, but we do not do static coa-
lescing. The Grappa runtime dynamically aggregates requests
and uses programmer-specified parallel tasks to tolerate la-
tency. These techniques, while improving performance by
making communication more efficient, do not significantly
affect total data movement as migration has the potential to.

FortranD An early PGAS-like programming language,
FortranD [17], used layout information to partition straight-
line programs to place computation where its data is. Like
modern PGAS languages, FortranD has ways to express at a

high level how data is distributed across locales, which it uses
to determine where to run iterations of loops and generate
communication, using what they call the owner computes
rule. For these techniques to be effective, they need global
knowledge of layout, which is not always possible, especially
for workloads where layout is dependent on the data.

Chapel & X10 Chapel [9] and X10 [10], two PGAS lan-
guages in active development, employ a mix of techniques
leveraging high-level information about data layout to opti-
mize communication, such as coalescing communication into
bulk operations and spawning tasks with their data [3, 33].
These languages also support explicitly running blocks of
code on other locales (via on or at statements) which operate
the same as Grappa’s delegates. To the best of our knowledge,
that work has not included automatically splitting up tasks
and migrating them to improve locality, which is important
when there is no “good” initial task placement, and allows
the code to remain readable – free of combersome nested
migration blocks.

7. Conclusion
Alembic automatically extracts locality in PGAS programs
by migrating execution, which achieves better performance
and a reduction in messages and total data movement over
other optimization techniques which only move data. The
technique, which finds co-located memory accesses and
chooses migrations that minimize communication, should
be generally applicable to other PGAS environments. On
the set of irregular application kernels evaluated in this
work, Alembic provides performance close to that of hand-
optimized migration – on average within 18%, and is 5.8⇥
faster than naı̈vely generated communication.
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